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On Bishop's Upcrossing Inequality

by

TawFeng Lin

Bishop used a simple but elegant combinatorial lemma to derive an upcross=-
ing inequality (unpublished), fram whiéh the Chacon-Ornstein Ergodic Theory
follows. Here we shall use the same method to derive a somewhat different
upcrossing inequality.

Before we sté.te the upcrossing inequality, we would like to introduce the
conmbinatorial lemms.

For fixed n, let a(0), a(l), ..., a(n}; p(0),...,b(n) bve real mumbers,

consider such N that there exists UysVypeees Uy Vi with

(l) 05u1<v1<u2<v2<...<uN<vN_<_n.
(2) a(u;) < vlv,) 1<i<N,
(3) aluy ) gﬁ(-vi) 1<i<N-1 .

Define w, be the maximum of such N , W, is called the upcrossing
nunber from sequence [a(i)}g to sequence {b(i)};

Iet 4 be the collection of empty or finite sequences P = {sl,tl,... ’
<t, <s5, <% <...<s <t <n .

1 1-="2 2 -~
Define m, =m, and SP = § ['b(t ) - a(s )] for P = {sl,tl,...s bty } e P.

By, t} with 0<s

Lemma: For P e §, there exists Q € (¢ such that By 2w, and SQ2 SP .



Proof:

It suffices to prove the case mp <w (=N say).

(a). If vy <8y, let Ql={ul<v <s, <t _—<-'°'Ssm<tm} .

1 1 i

(v). If v,>s;, let s =n.

1 m+l

Then m intervals (sl, s2] ,...(sm, s +l] contain N(> m) points; hence there

exists (si, si+1] » 1<i<m, such that {vk, vk+l} e (Si’ si+1]

If t, Sw,,, let Ql 189 <ty Seve £8,< b SU L < Vi SBi4y
LX) H i > B = soe
< <tm}, if ti uk+l,let Q’l {sl<tl_<_ Ssi<vk_<_uk+l<ti

S si+l LAYt < 'tm} . In any case, SQl z SP and le = mP + 1 .

Repeating the same procedure, one will get the result.

Iet T be a positive contraction linear operator on Ll and let

f= {fo, fl,...,fn}, p = {po,pl,...,pn} be sequences of measurable functions with

(4) f;: e L for any Q¢ {0,1,...(n-1)3.

12 0S4 <n eand T(Bf

+
) 2 g fin

(5), P; 20,0gi<n, and if hel, |n} $p; 5 051i<n-1,

then T|n| <p ., -

We shall use here a convention. that the summation over empty sets is zero.

Let Cu ,
a(u,x) = % £, (x)
’ O'Kuv<n.-

B = ¥ (2, - p)00)
e T Y



Define ¢ (x) to be the upcrossing number from sequence {ai,x)}? i-o to
sequence {b(i,x)P j=g» and u)n(x) to be the upcrossing number from Sequence

{ o, alo,x),s.. alp,y)} to the sequence {o,b(o,x),...d(n,x)}

Theorem 1: (Bishop's upcrossing inequality). u)n(x) and -w-n(x) are measurable

and

[ 8,6) p) aw < [ 25,y

Theorem 2: +
— j o (x) p (x) du < [ T (x)dy .

We shall prove only Theorem 2.
Proof': In order to prove theorem 2, we introduce
a' (u,x) =%f (x) = alu,x) - £ (x)
) l i 24 o) 2

o<wy,,v<n.
b (vy) = ¥ (£, - p,)x) = B(v,x) - (£52,)) -

m ¥ t
(6). 8P(x) = § [b(ti,x)-a(si,x)} = g?ilh.-l—s;:l) fi(x) - (%l""--'* ,gm) Pi(x) ’
t
(7). s'B(x) = %ﬂ (br(t,,x) - at(sy,x)] = ( z:il+..+ z,) £;(x)- (V tout Z’")pi(

= SP(x) + mpo(x) .

for P={tl<s 5..._<_sm<tm} eﬁa.

1

Let A(x) = max SP(x) (>0),

Pep _

A'(x) = max S8'P(x) (>0) .
Pep



For fixed x , from the definition of u)n(x) , 1t is possible to choose P ¢ 69

such that m, =m > wn(x) . Then, using (7), we have

u)n(x) po(x) <m po(x)_ = 8'P(x) - 8P(x) < A'(x) - SP(x) .

This inequality is true for all P e f) such that mp > o (x); hence

) (x) P, (x} <At(x) - SP(x) = k’(x)-h(x) .

mP_w(X)

The last equal sign follows from the lemma. Hence, for any x ,
(8). w (x) p_(x) <a'(x) - alx) .

If we prove that

(9)- M) S TA() +TE) (x),

then we are done.

To prove (9), consider mny P = <t, €40 £ Sh < tm} e(P .

{Sl 1

(a) If s, >1 let P ={sl—l<t

12 1 -1 <. <8 ~1<%t -1} ; then

1l

tp-1 b1 t1-1 ty-1
SP(x) = (5 + vus + % ) FAx) = (T + 0ee + 2 ) p.(x),
1 51 Sp i 0 o i

and by (4), (5) and (7), we have

T [A(x) + £ (x)] > T [(8P)(x) + fo<x)1 > 7 [{6P) " (x)]

t.-1

> (% +...+% e, ) - (i:+..+z ) T, (x)
51
t t -t t

> ( §1- et E) 2,60 - (F et ) 2,0

stP(x) .



“1<..o<s -1<t-1} .
- -~ m m

2

(b) £ 8, =0, % =1 let P ={s2-1<t

(¢) I s, =0, ¢t

>
1 >2 let P

={s) <t-1<8,m1 <1< hen < s -1< ¢ -1},

1 2

1 1

One can prove, as in (a), that
+ + +
T [A(x) + fo(x)] > 'I'[SPl) (x) + :f‘o(x)] > 8'P(x) .
In any case, P ¢ @ anda TAa(x) +7T f; (x) >8'P(x) . for any Pe®.

Hence

[ alx) + f;(X)] >at(x) .

This concludes the proof.



