Power Comparisons of Tests of Two Multivariate Hypotheses
Based on Individual Characteristic Roots
by
N . L1 . 2
K. C. Sreednaran Pillai and Charles 0. Dotson

Purdue University

Department of Statistics
Division of Matnematical Sciences
Mimeograph Series No. 108

May, 1967

*
The work of this author was supported by the National Science Foundation
Grant No. GP-L4600.

2Now with the Department of Health and Physical Education, Stepnen F. Austin
State College, Nacogdoches, Texas; this work was carried out while the author
was with the Department of Physical Education, Purdue University.



Power Comparisons of Tests of Two Multivariate Hypotheses
Based on Individual Characteristic Roots
by
. K. C. Sreedharan Pillail and Charles O. Dotson2

Purdue University

0. Summary. In this paper, power comparisons are made for tests
of each of the following two hypotheses based on individual character-

istic roots of a matrix arising in each case: (i) independence between a

p-set and a gq-set of variates in a (ptq)-variate normal population with
p< qand (ii) "equality of p-dimensional mean vectors of £ p-ﬁafiaté
normal populations having a common covariance matrix. At first, a |
few lemmas are given which help to reduce the central distributions of
the largest, smallest, second largest, and the second smallest roots in i
terms of incomplete beta functions or functions of them. Since the
central distribution of the largest root has been discussed by Pillai
carlier in several papers (1956a, 1960, 196ha, 1965, 1966, 1967) cdf's

of the three others in the central case are given. Further, the non-
central distributions of the individual roots for p = 3 are considered
for the two nypotheses and that of the smaller root for p = 2; that of
the largest root for p = 2 has been obtained by Pillai earlier,

(Pillai (1966), Pillai and Jayachandran (1967)).

1. Introduction. TFor test of hypothesis (i) the joint distribution of -

the characteristic roots ri,...

the following form: (James, 196k4)

,ri is given by Constantine (1963) in
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where fo(ri,...,rg) is the joint distribution of ri,...,ri under the

null hypothesis given by

(:2) 2,050 en2) = olpmn) [ - )1 62 - o)

1> i’
1 1 . . .
f,=q m= E(q—p—l), n = E(\rqu-l), (and if n is defined as

1 . ' .

§(fl-p-l),\) =f + fe), R = dlag.(rl,...,rp)_z = dlag.(pl,...,pp),
where pi's are the population characteristic roots (see Pillai and
Jayachandran (1967)),

o L A . 1o, .. Lo, s 1,
p,m,n) = 0° 10 1"[2(2m+2n+p+1+2)'.\/{1"[2(2m+1+l)]1“[—2-(2n+1+l]I"(21)}:.
=1

and the hypergeometric function of matrix argument, 2Fl’ is defined in
James (1964).

Similarly for test of hypothesis (ii) the joint density function of
the characteristic roots £

l""’lp is given by Constantine (1963),

James (196h))in the form

- %tr £ 101, .1 p
(1.3) e F1Gv 36,5 50 L) fo(zl,...,zp)iril as,
- . 2
where fo(zl,...,%p) follows (L2) with 2 and E replacing Ty

2 , o P _
and R respectively, m = 2(f2 p-1), n = 2(fl p-1), v= fl + f2,
L =.diag.(zl,...,%P),g = diag.(wl,...,wp), where o, 's are the non-
centrality parameters (See Pillai and Jayachandran (1967)) and in the
context of (ii), £f,=4 - 1 and f; =N-4, N being the pooled

sample size of the samples from the £ populations.



Pillai has studied (Pillai (1966) and Pillai and Jayachandran (1967)) the

power function of the largest roots, rg, for test (i) and 4, for test of (ii)

P

for p=2, and p =3 in the linear case i.e. when there is only one non-zero

non-centrality parameter. In this paper the non-central distributions of rf

and %4 (i=1,...,p) are considered for p =2 and 3. In the null case, the cdf

of the second largest and second smallest roots are also given for any P, the
approach being to reduce by means of certain recursion formulae the cdf's to in-

complete beta functions or functions of them. Roy (1945) nas attempted to reduce

th . ) L. . ) L. . e e s ‘
* "root in a similar manner but his results seem t0O be in ‘error.

the cdf of the- i
Hence, some new lemmas are given in this connection. -Further, extensive power
function tabulations have been made for various values of the parameters, m=0,1,2,5

and 'n=5,10,15,20,25,30,40,60. But from these, only selected values are given in the

paper to support some of the findings discussed at the end of the paper.

2. Some recursion formulae. Let V(qp,n;...;x‘,x",qj?n;_._;ql,n) denote the

determinant

1 1 x"! X X2
3 n
J qup(l_xp )ndxp[ xz?l(l'xp—l>ndxp-1‘"Jxxxzp(l'xj)ndxj"'»{ xzp(l'xa)ndxa[o xip,(l'xl) 4
X X o]

p-1 p-2

X x
1 q 1a "q a o q
1 n 1 n J 1 n J 1 n f 1 n
1- 1- dx .o X, (1l-x.) dxX.... X l-x dx X, (l-x
[ o ex e [l (e )P .| g () e N A s U
Xp—l xp_2 : .




Then we state below a lemma due to Pillai (1956b).
Lemma 1. The determinant

(2:2) Vlowmsg s sapon) = ()™ w(pf uo®))

where
(2.3) AI()P) = Io(o,x;qp,ml) V(o,x,qp_l,n;---;ql,n),
1
-j-1
(2.4) BI(,p) =2 2(-1)p I 1(0,x,q, 54,20 1) V(02,0 105 e 5Ty, 285
j=p-1
q.j_l’n;"';q.ln)
and
(2.5) CI()P) = V(o,x,qp-l,n, ++3G750);
and where
, +1ix"
(2.6) 1(x'sx"sa o) =y Py HE
and
X"
" a b
(2.7) I(x',x",am) = [ ¥ ay
Xl

Lemma 2. The determinant

Py

©), 36) 4 ¢ of

(2.8) V(qp,n;.--;x,l,ql,n) = (qp+n+l)-l (47

where



(2.9) A(P) = (-1)P Io(x,l,qp,n+l) V(qp_l,n;---;x,l,ql,n) ’
1
T _-_l
(2.10) Bip) =2 ) (1777 20,1, 00,200 L) Vg ) on5e ey, 03
J=p-1 -
qj_l:n5-‘-sx:lﬂql:n)
and

(2.11) Cﬁp) V(qp—l,n;...;x,l,ql,n) .

The lemma can be proved by methods similar to those used by Pillai
for proving lemma 1. It may be pointed out that Roy (1945) has given
a formula in this context which, however, is incorrect to the extent

that it does not show the factor (-1)® involved in (2.9) above.

Temma 3. The determinant

(2.12) V(qp,n;o,x,qp_l,n;...;ql,n) = (qp+n+l)- (A(P' + B + épi
where
l -
(2.13) Aé}fi = I,(0sx,q,,0+1) z (-1)P97 I(x;15q5,n) V(0525 5m3.0 03
j=p-1

qj+l,n; q.j_l’n; L ;ql’n)

1 .
b — 9=l
(2.14) Bé_i 2 E:(-l)P J I(o,x,qp+qj,2n+l) V(qp_l,n;o,x,qp_z,n;...,
Jj=p-1
q3+11n>q lon: ;ql’n)

and



P
(2.15) ¢ 1 = V(a-1m50,%,0, 150500 5dp50)

The proof is omitted. However, it may be pointed out that the proof
follows generally the same lines as in Pillai (1956b) but an additional

result has to be used in the proof which is stated in lemma 4 below.

Lemma 4. If V(qg,n”,...;x',x”,qg,n” .3q l,n”)(l) denotes (2.1) with the

T 1

indices of the itn column, shown with ', differing from those:

of the rest in the determinant, then

(2-16) V(o,x,q:;_l,n";. ’qln” (p- ) Z( l)p—l— ( "oon" 503}(’%_2)11"'3---;
{=p=2
q'l',n”)(l)
1
- -j-1 1
=z (-1)P" 1(0,x,q%,n") V(qp_l,n;o,x,qp_z,n;.--;qj+l,n;qj_l,n;...;
J=p-1

qlﬂn) 

Now by the use of a result similar to that of lemma 4 and others

from Pillai (1956b) the following can be proved:

TLemma 5. The determinant

(2.17) V(qp,n;...;x,l,qe,n;ql,n) = (qp+n+l)_l(A§p) +IB(p)-+ qPC&))):

where
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(1) 1, (L) ) (-1 2(o,x,q,50)
j=p-1

(2.18) Aép)

V(qp_l,ns:-.sqj+l,n;qj_l,n;---;x,l,ql,nl,

1
p-j-1 ..
2. E:i—l) I(x,l,qp+qj,2n+l) V(qp_l,n,...,qj+lﬂg QJ—l’n;
J =p—

(2.19) p(P)
2
-;x,l,qg,nsql,n)

and

(2.20) Cép) = V(qp—l,n;...;x,l,qZ,n;ql,n) .

3. caf's of some individual roots in the central case.

Roy (1945) has given an expression for the cdf of the ith root in

the central case (i=l,...,p). However the expression is not correct
and even the total probability for the whole range does not equal
unity. Since the cdf of the largest root has been dealt with by
Pillai in several papers by using lemma 1 (1956a, 1960, 1965), we
consider here three other cdf's, namely, those of the smallest,
second largest and second smallest.

Since fo(ri,...,rg) and fo(zl,.,.,zp) have the same form, |
we may label by (xl,...,xp) either (ri,...,ri) or (zl,...,zp)

and hence
(3.1) Pr(xlnfix) =1 - C(p,m,n) V(mtp-1,n;...3x,1,m,n) ,

and to evaluate the right side of (3.1) we may use lemma 2 with

qj =mtj-l, j = 1,...,p0 .



Further
(3.2) Pr(xp_l < x) = ¢(p,m,n) V(m+p-1,0350,X,M4D-2,05. .. 3m,0),

and hence the right side of '(3.2) can be evaluated using lemma 3

with q = m+j-1 (j = 1,2,...,p). Again
(3.3) Pr(x,<x)=1- C(p,mn) V(m+p-1,n;...3x,L,m+l,n3m.n) ,
2

and, as before, lemma 5 can be used to evaluate the rigﬁt side of
(3.3), noting that qy = mrj-1 (j = 1,25...,0).

Further we prove below a lemma to show that the cdf of X,
can be derived from tnat of xp-i+l or vice versa. It has been
shown earlier (Wanda (1948), Pillai (1956a)) that this result holds

Lemma 6. If x, and x_ . are the i and (p-:'L+l)tn roots
—_— i p-i+l

i=1,... where i r .

( yeresD), Wi Xy 5...5x, follow the density fo(hl,...,xp?m,n)
of the form in (1.2), then

<1- Xsﬂ:m) ’

(3.4) Pr(xi < xjm,n) = 1 - Pr(xp__i+l <

where on the right side of (3.4) +the parameters m and n are

interchanged.

]

Proof: First transform x, 1- z; (i =1,...,p), then

(3.5) £.(2.500052_) = f (2 5.0.52_3n,m) , 1>z, >...>2z_ >0.
1Vl P o1 P 1

Hence



(3.6) Pr(xi < x3m,n) = Pr(x

i+l > 1-x3n,m) =1- Pr(x

i+l <1 - x;n,m).

Hence the lemms.

Y, Non-central cdf's of individual roots. Denote by D(qp,n;...;ql,n)

the integrand in (2.1) which is a Vandermonde-type determinant. It

is obvious that if q; = m+j~1 (j=1,...,p), then
()"'-l) fo(xl;---axn3m:n) = C(P,m:n) D(q.pﬁn;"'.;qlﬂn)

Now noting that the hypergeometric functions of matrix variates
2?1 or 1Fl are series whose terms are expressible as functions
of elementary symmetric functions (esf's) of the characteristic
roots of the matrices involved in the respective series, and that
by Pillai's lemma (1964b) the product of a basic Vandemonde-type
determinant by powers of esf's can.be expressed as a linear compound
‘of Vandermonde-typé determinants, it is easy to see that the non-central
cdf's of the individual roots in (1,1) or (1.3) can be expressed és a
series of determinants of the type (2.1) (see Pillai (1966), Pillai
and Jayachandran (1967).

Further reductions wquld follow by the use of lemmas in section
2. The cdf's of individual roots for p =2 and 3 are consideréd
in detail below. |

2(2)

2 -
5 and zé ) when p = 2, and

Largest root. The cdf of the «r

+2(3)
3

Pillai (Pillai (1966), Pillai and Jayachandran (1967) and unpublished

and £§3) in the linear case when p = 3 were studied by

reports with Department of Statistics, Purdue University). The non-

2(3)

central cdf of r3 is given below: (using seven terms of (1.1))
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6
K{-Io(o,x’m+2,n+l) [( E: Bixl) v{(o,x,m+l,n3m,n)

i=o

(k.2) Pr(r§<3) < x)

6 6
( E:Cixi'l) V(o,x,m+2,n3m,n) + ( E: Digl'g)'
i=2 i=3

+

V(o,x,m+2,n3m+l,n)
6 6
E:Eixi—g V(o,x,mt3,n3m,n) + E:(Fixi
i=h i=5

_3)

+

V(o,x,m+3,nm+l,n)

3

+ @ x° V(o,x,mtl,n3m,n) + H x° V(o,x,m+3,n;

m+2,n)]
6
+ 2I(o,x,m,n) E:(B§l) I(o,x,2m+3+i,2n+1))
i=0
6
-  2I(o,x,m+l,n) §:(B§2) I(o,x,2m+2+i,2n+%))
i=0o
L ,
-  21(o,x,m2,n) E:(B§3) I(o,x,2m+3+i,2n+%))

i=0

2
(L)
- 2I(o,x,m3,n) ZB

i=o0

i I(o,x,2m+l4i,2n+1)

- 26 I(o,x,m,n) I(o,x,2m+5,2n+1)3 ,



1l

Vv

n -

where X =

=W

2
I (l-pi) ¢(3,m,n) and the B;» C;» Dys Ey» Fop

G, H and the ng) coefficients are available in an unpublished
report (Department of Statistics, Purdue University).

Now the cdf of z§3) can be obtained from (4.2) by making'
some simple changes in the coefficients, K and others, given

in the preceding paragraph. These changes are descirbed in Pillai

and Jayachandran (1967).

Smallest root. For obtaining the non-central cdf's of the smallest

root, note first that the recursion formuta (2.8) of lemma 2 is%
similar to that in (2.2) of lemma 1. Moreover, lemma 6 further#
points out how the central cdf of the smallest root is derivable
from that of the largest root and vice versa. Hence the non-
central cdf's of the smallest root for p =2 and 3 and tests :
(i) and (ii) may be obtained from the corresponding non-central

cdf's of the largest root by making the following changes:
- Io(o,x,qp,n+l) - (-1)F Io(x,l,qp,n+l)
()'l"3) 1(09X>Cl:r) = I(X:lyc.br)
V(0sx,a,5n5+ 39y 50) = V(q,m;..05%,15q,50)

Median root. In obtaining the non-central cdf of the median root
for p = 3, we U1se the recursion formula (2.12) of lemma 3

(or alternately (2.17) of lemma 5) to the determinants of the form



Sl

(2.1) obtainable in (1.1) or (1.3) as described in the beginning
of this section, but note that the coefficiénts, K and others,
involved in (4.2) would remain the same in the process of re-

2(3)
2

duction. Hence for obtaining non-central cdf of r , the

median root when p = 3, the following changes may be made in (4.2):

- Io(o,x,m+2,n+l) - Io(o,x,m+2,n+i)

(b 1) V(0,%,q,,n39) 5n) > I(x,1,4,,0)I(0,x,q;,0) - I(x,l,ql,n)
I(O,X, 2,n

I(O:vxaqj)n) I(O,X>q3+qj,2n+l) - B(qj""l:n'}'l)l(}f:l:q?’*'qj’

2n+l))j =1,2.

Further, the non-central cdf of zé3), the median root when p =3,
(3)
2

can be obtained from that of r by making simple changes

(see Pillai and Jayachandran (1967)).

5., Tabulation of percentage points. In order to facilitate the

tests of the two hypotheses considered in the_paper and others,
Pillai (1956a, 1960, 1964, 1965, 1967) has tabulated the upper

5% and 1% points of the largest root for values of p up to 20:
Using (3.1) and (3.2) or (3.3), similar percentage points
were obtained for the smallest root for p =2 and 3 and for
the median root for p = 3 and for values of m = 0(1)5, 7, 10, 15
and n = 5(5),30, Lo, 60, 100, 130, 160, 200, 300, 500 and 1000.
These are presented in Tables 1 to 6 and are used for |
the power function tabulations in the following section. The per-
centage points are believed to be accurate to within a unit of the

last decimal quoted.
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6. Power function tabulations. Further, povers of test (i) are computed
2(3)
3

based on the largest root, =T , Tor various values (pi,pg,pg) using

2(3) . . . 2(3)
(4.2), the smallest root, r;*7’, using (4.3) and the median root, ry
using (4.4). These are presented in Table 7 for m = 0,1,2,5, n = 5,15 and
40, & = .05 and various values of the vector (pi,pg,pg). Similarly
powers of test (ii) are presented for p = 3 in Table 8 for the same ?alues
of m and n and various values of the vector (wl,wz,mS). In addition,
Table 9 gives for p = 2 powers based on each of the two roots for teét (1)
and Table 10 for test (ii). Extensive additional power tabulations are

available with the authors, for other values of m and n and also for

o = ,01.

. Power comparisons., Powers of individual roots for test of hypothesis (i)

may first be compared, Cases p =2 and p =3 may be considered separately.

p =2, When p =2, the following observations may be made (Table 9)}

1) Altbough the larger root has generally more power than the sm?ller
root, for small values of n the smaller root has generally greater péwer
for small deviations (except for m = 0).

2) For pi + PS = constant, while the power of the larger root ié

greater (and quite so for large deviations) for p, = O, that of the smaller

1
root is greater generally for small deviations and, almost equal to thét of
the larger root (and greater for small n)&ﬁ for larger deviations Wheﬁ
Py = 0oe The power of the larger root decfeases as the two roots tend;to
be equal while the smaller root increases. |

3) The individual root possesses monotonicit& property of power with

respect to individual population root but not with respect to their sum or

product.
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4) For large values of n, the power of the larger root is greater

or at least equal to that of the smaller root.

P = 3. The following observations may be made vhen p = 3: (Table 7)

1') Although the largest root has generally more power than the other
two roots, for small values of n the median root has greater pover. <The
power of the smallest root generally stays below those of the others.

2') For pi + Pg = constant, while the power of the largest root. is
greater for Py = Pp = 0, that of the median root is greater when
Pp = p3- The power of the largest root decreases as the roots teqd

to be equal while those of the other two increase.

Py

3') is the same as 3) above for p = 2.
L*) For large n, the power of the largest root is generally gréater
than those of the others except when the population roots tend to be equal

in which case the median root shows larger power.

Now consider the pdwers of individual roots for test of hypothesis (ii).

As before, first let us consider p = 2.

p = 2. The findings are somewhat similar to those for test (i), (Table 10).
1" ) is the same as 1) and
2" ) is the same as 2) with p? changed to ®; 5 i=1,2. Further,

3% ) and 4'') are the same as 3) and 4) respectively.

p = 3. The observations are somewhat similar to those for test (ii),
(Table 8).
1'"* ) Although the largest root has generally more power than the
other two roots, for smaller values of n the median root has greater power
for small deviations. The power of the smallest root stays below thosé of the

other roots (except in a few cases for small values of n).
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2'"') For w, + W, = constant, while the power of the largest root
is greater for 0 = w2 = 0, that of the median root is greater when
W, = w, = m3 for small deviations. The power of the largest root de-

creases as the roots tend to be equal while those of the other two in-
crease,

3"') is the same as 3).

45 ') For large n, tne power of the iérgest root is greater than
those of the others.

It may be pointed out further that the monotonicity property of the
power of the individual roots with respect to individual population roots,
for tests of hypotheses (i) and (ii) was shown earlier by several authors
(Roy and Mikhail, 1961; DasGupta, Anderson and Mudholkar, 196h; Anderson
and DasGupta, 1964).

The authors wish to thank Mrs. Louis Mao Lui, Statistics Section of
Computer Sciences, Purdue University, for the excellent programming of
the material for tihe computations in thnis paper carried out on tne IBM

709k Computer, Purdue University's Computer Sciences' Center.
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Table 1

Upper 5% points of the smallest root for p =2

16

\f 0 1 2 3 4 5 7 10 15
5 .20582  .32250 L0706 47207  .52392  .56633  .63170  .60043  .769B1
10 ,12212  ,20256 . .26731 ,32152 36785 .ho8ok . L7hho  ,54988 63645
15 ,086781 .1k754  ,19882  .24352  ,28310 ,31850 .379h0 45233  ,5k16h
20 ,067297 ,116008 ,15824  ,19592  .23001 ,26110 .31593 .38399 47115
25 .054956 .09557hk .131k0  .16387  .19366  .22119  .27060  .33352 41679
30 ,0k6k39 .081258 .11234  ,14083  ,16722 .19185  .23662 29474  ,37362
Lo ,035450 .cé2524 087075 ,10990 ,13135 .15161 ,18911  ,23909 .309L5
60 ,02L061 ,042791 .060057 .OT76362 ,091904 ,10680  ,13490  .17352  ,23G27
80 ,018211 .032525 ,0Ws583h4 ,058504 070676 .082Lk27 .1048k  ,13616  ,18333
100 014649 ,026232 .037058 .oh7h15 .057h1k 067111 .085736 11204  ,152h6%
130 .011326 .020331 .028789 ,036918 ,0L4802 ,052483 ,067329 ,088513 ,12169%
160 ,0092318 ,016597 .023537 .030227 .036733 .043090 .055L428 ,073151 .1012h*
200 ,007L4060 013333 .018932 .024343 .029620 034789 .oLL857 .059hoLk ,082697%
300 ,0049557 ,0089377 ,012713 .016375 ,019958 ,023480 .030374 .okok23* ,0567LO*
500 .0029823 .0053864 ,0076726 .009897 ,012079 .014229 ,018456 ,024661% ,034851%
1000 .0014945 0027022 .0038532 .0049753 0060786 0071682 .0084013 .010231% ,012288%
*Values extrapolated
Table 2
Upper 19 points of the smallest root for p = 2
n\\f 0 1 2 3 L 5 7 10 15
5 .29830 .41613 49670  .55663 .60335  .6h093  .69783  .75560  .O14h8
10 ,181k5 26844 ,33502  ,38921  LL3hsk  h732h 53613 .60604 68468
15 .13025 ,19781 .25229 .29849  ,33863 ,37hol 43388 ,50k19  ,58855
20 ,10156  ,15654  ,20219  .2h191  ,27718  .30891 ,36k02 k3115 5154k
25 083222 ,12950 ,16866 ,20330 .234ks54  ,26303  .31340  .37641  .L45822
30 .07OM9O 1102 ,1hkk66 17531 .2032k 22897  .27509 ;33391 .hlé31
4o ,053973 .085275 ,11259 ,13742  ,16039 18183 .22098 ,27231 .3k332
60 036748 .058588 .077997 .095939 ,11279 .12877 ,15853  ,19882  ,25708
80 .027857 .ok621 .059661 LOT73687 .086973 .099662 .12358  ,15653  .205L0
100 .022430 .036031 .ohB30k .059812 .070769 .081287 .10126  .12907  .1712hk*
130 .017358 ,027958 .037575 .O46638 ,055311 .063675 .079662 ,10217  J13TOL*
160 .014156 ,022840 .030745 ,038220 045394k ,052334 ,065659 .08k552 ,11h16%
200 ,011362 ,018359 ,024748 ,030806 .036636 .042291 ,053191 .0687L43 ,093379%
300 0076080 ,012317 .016635 ,020745 .024715 .028580 ,036068 .046854* ,064199%
500 ,GChs5809 ,cOTh2B82 ,cicch7  ,c12548  ,01L971  ,017337 LC21chkl  .028624x ,039498%
1000 ,0022965 ,0037285 ,0050489 ,0063127 ,0075400 .0087409 0093410 ,010554*% ,011h79%

*Values extrapolated
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Table 3

Upper 5% points of the smalles root for p = 3

:;\ii& 0 1 2 3 N 5 7 10 15

5 213295  ,22800  ,30516 .36795 L2038~ LELBI  .53600 .61323  .69726
10 .0798k7 1438k 19956  ,2k859 29204 ,33079 .39693 A7h89  .56809
15 .057048 ,10k92 14825  ,18770  .22375 .25679  ,31522  .38760 JL79hT
20 ,Ob4375 ,082571 11792 ,15077 18135 .20986  .26143  .32745  ,41h83
25 .036309 .068072 .097899 ,12599  ,15246 17743 .22333  .28347  .36558

30 ,030724 05790k ,083687 ,10820 13151 .15362 JA9hk92  ,2h992  ,32679

ho ,023495 .044585 ,06L4857 084374 .10316  .1212 .15539 ,20208 26960

60 ,015977 .030536 .Ohh728 058577 .072082 ,085243 ,11056 ,1Lk615 .19972

80 .,01210k ,023219 ,034135 ,0hL862 .05539% ,065729 .085805 ,11hk7 .15861
100 .0097422 ,018731L ,027598 ,036350 ,O4k981 ,053486 ,070108 .09kOTh .13167%
130 ,0075364 014521 ,021856 ,028297 .035087 ,041805 ,055012 .074237 . 10kgox
160 ,0061451 ,011856 ,017528 .023165 ,028761 .034312 045266 061309 LOB87LL6x*
200 ,0049313 .0095253 .014099 ,018654 ,023187 .027693 ,036616 0Lo762% L O71377*
300 ,0033011 .0063865 ,009LETT 012546 ,015619 ,018683 024779 .033830% .0U8902*
500 ,001.9872 ,0038495 0057140 ,0075816 009450k ,011319 ,015049% ,020625% 03000k
1000 .0009959*.0019312*.0028696*.0038116*.ooh756o*.0057021*.0068507*.0085560*.010579* )

*¥Values extrapolated

Table L .

Upper 1% points of the smallest root for p = 3

25\31 0 1 2 3 4 5 7 10 15

5 .19691 .30010 37797 LE3968 [IBI7G 53188 50776 .66772 . 7E228
10 .12008  ,19217  .25176 ,30260 .34669 .38539 45026  .52577 .61284
15 ,0863k1 ,1k127  ,18863  .23053 .26805 ,3019L  .36085 L3241 L5210
20 .067397 11167 .15078 ,18615 .2184k 24813  .30099 .36739 .L45356
25 .055268 ,092320 ,12552 ,15608 ,18431 ,21059  .2581k 31933 k0128

30 .046838 ,078685 ,10759  ,13438  ,158k0  ,18290 22595  ,28237  ,35978
Lo ,035889 ,060740 .083629 ,10513 12548  ,14481  ,1808L »22926 29809
60 ,02kh55 ,oh1712 057855 ,0732h1 088006 ,10227 @ .12922  ,16659 22193
80 .018546 ,031762 ,okke2k ,05619h 067767 .078993 ,10053  ,13082 17675
100 ,014937 .0256Lk 035791 045584 055095 ,064364 082257 10769 J1h702%

130 ,011568 .019896 ,02783%L .035523 ,043127 ,050370 .O64636 .085115 L11T73T*
160 0094309 .016253 022767 .029100 ,035296 041375 .053233 070365 ,097658%
200 0075705 .013063 ,018322 ,023kL8 ,02847L ,033418 ,043095 ,057166% .079807*
300 ,0050701 ,0087639 ,012313 .015783 ,019197 .022567 029195 ,03891kx L05k766%
500 .0030532 ,0052850 ,0074357 ,0095436 ,011624 ,013682 ,017748% ,023751% .033650%
1000 .0015306*.0026527*.0037362*,0048011*noo585ho*.0068981*.0075558*.0087571*.0097797*

*Values extrapolated
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Table 5
Upper 5% points of the median root, for p = 3
N :
NEo 1 2 3 4 5 7 10 15
n \,\ .

5 36354 46055  .52007  .58280  J62NBL 65861  .71073  .76hL0  .B1988
10 .23104  ,30763  .36800 41766 45956 ko552 ,55L31 ,62013 69473
15 ,16915  .23054  .2812h  ,32h61  .362hk7  .39596 45280 51982  ,60058
20 ,13338 ,18427  ,227hk 26528 ,29900 32940  ,38230 .uk6Bg  ,52818
25 ,11008  ,15343 ,19088 .22421 ,25436 ,28189  .3306k  .39169 L7106
30 093707 L131k3  ,16kk2  ,19k13 22128  ,2h631 ,29122  ,34853 .h2ﬁ95
Lo 072219 ,10213 L,12872 ,15303 L17556 19661 23506  .28548  ,35319
60 ,049508 ,08867h ,089732 .107h9 12420  .1hCOM 16957  L,20951  .26720
80 ,037662 ,053970 .068867 ,082828 ,096075 .10873 .13260 1654k  ,21h6Lx

100 .030391 .Ok3672 ,055873 .067369 .O7833% ,088863 ,10885 13667  ,17926%
130 .023566 .033953 .O43547 .052633 .061341 ,0697H3 .085801 .10839 .14368*
160 ,01924k ,027772 035676 043186 050405 .057392 ,070805 .089808 ,11986%
200 ,015463 .022348 ,028748 ,0348L46 ,0ho725 Oh6h29 ,057H22  ,073110% ,098196%
300 ,010369 ,015016 4019353 ,023500 ,027514 .031423 ,038995 .OLOQOT* .067616%
500 ,0062511 ,0090667 ,011703 ,01k4232 .016687 .019085 ,023751 ,030527% ,041654*
1000 ,0031367 .00L5549 0058861 0071664 .0084118 ,0096311 ,011987% ,012996% ,015336%
*Values extrapolated

Té.ble 6
Upper 1% points of the median root, for p = 3 |

G 5
n«\\ 0 1 2 3 L 5 7 10 15

5A.45317 .5U339 60601  .05276  L,68924 ,T71859  ,L,T76307  .0C025 05433
10 429593  L37273  JAU3172  Lh79ko  .51910 ,55282  .60730  .667h2  WT3L5T
15 ,21921  .28277  .33k03  .37719  WJhibkho  LLhegg 50169 L56529 64080
20 17399 .22760 .27211 ,L31051 .34436  ,37h59 L2663 L8933 56709
25 .1kh20 19039  .22946  .2637h  ,29k0  .32217  .37083 43099  .50809
30 12311 .16361 ,19833 .22916 L,257Ch  .28253  ,32782  ,38490 L5997
Lo 095240 ,12766 ,15596 ,18149  ,20hk92 22664  .,26595 ,31689  ,386L2
60 ,065548 ,088674 L,1092%  ,12812 14573  ,16231  ,1929%  ,23394  ,292LL
80 ,0k9966 ,067922 ,08k0k9 ,098992 ,11305 ,12639 L1513k  ,18533  ,2357T*

100 040369 ,055039 ,068296 ,080650 ,092335 ,10348 12448  ,15343 .19738*
130 .0313k0 ,042848 ,053308 ,063108 ,O72h2L ,081357 .098303 .12193  .15857%
160 ,025611 ,035078 ,Oh3713 ,051832 ,059576 067024 ,081219 ,10115  .132L48%
200 .020592 ,028247 .035253 ,0L1859 048179 .o5h27h ,065939 ,082hkhx ,10875%
300 .013821 ,018999 ,023758 ,028264 ,032591 ,036781 .ouk8hhL ,056371% ,075031%
500 ,0083375 ,011481 ,014379 ,017133 .019787 .022364 ,027346 .03u527% OL629T*
1000 ,00k1858 0057711 ,0072372 ,0086335 ,0099821 ,011295 .013352% ,016334* ,020597*

*Values extrapolated



Powers of individual roots for p = 3 for testing Py = 0,

Table 7

against different simple alternative hypotheses, «

19

Po = 0, P3 =0
05

22 o2 r§<3) 2(3) 203) r§<3> 2(3) 203) r§(3> 2(3) 203)
m=0,n=5 m=0,n=15 m =0, n=ko
00125 ,00125 .00125 ,05093 ,05105 ,05079 05265 ,05253 05175 ,05708 0563k ¢05k21
0 0 012 .05306 .05337 .05250 ,05906 .05810 ,05538 ,07620 06979 (06205
s004  ,00k  ,00k  ,05300 ,05340 ,05257 ,05867 0581 ,05578 07384 07195 ;064L6
«C00125 ,0025 LO5 06k9 L0655 ,0609 ,0992 ,0876 LOT2h  ,2177 .1kO3 jogsh
005 015 ,08 .0803 .0821 ,0722 ,1550 L1334 .0986 ,ho92 ,2580 §1508
1
. m=1l,n=5 m=1, n=15 m=l,n=1'§0
«00125 ,00125 ,00125 ,05072 ,05088 ,05076 .05204 ,05210 ,05165 LO5543 ,05520 505389
0 0 ,012  ,05238 ,05285 05242 05695 05680 05515 406998 06669 406156
00k 00k 00k ,0523h ,05286 05247 L05667 .05693 05542 ,06826 .06TT5 §o6320
000125 ,0025 .05 0616 .0632 0607 L0877 .0822 .O721 1805 .1292 £0957
005,015 .08 0735 LO77L ,O7L7 L1310 .1199 ,0969 ,3415 .2305 ;5231508
m=2, n=25 m=2, n=15 m=2,n=1§»0
.00125 ,00125 ,00125 05062 ,05078 ,05072 05171 05184 05154 .05452 05450 ;05357
0 0 ,012 .05202 ,05254 ,05231 05581 ,05598 ,05483 06652 06465 §06082
00k .00k L,00%  ,05199 ,0525k ,05235 .05559 05605 0550k 06517 06527 io6203
«000125 ,0025 ,05 0598 .0618 L0603 .0813 L0786 L0711 ,1585 ,1210 §09ho
2005 015 J08 L0699 .LOTHL L0708 L1173 L1116 .00k3 2977 .2116 41469
m=5 n=5 m=5,n=15 .m=5,n=£10
.00125 ,00125 .00125 05047 .0506k ,05065 .05125 05144 ,05131 .05322 05342 ,0529k
0 0 .,012  ,05154 05207 .05208 ,05420 0571 ,05417 .06157 06130 205916
00k 00k ,004  ,05152 ,05206 .05210 .05406 LO54TL 05429 L0607k 06148 305983
.000125 ,0025 .05 .057h L0597 L0594 L0723 .O727 L0686 .1263 ,1062 0888
005 015 .08 0651 L0697 L0689 .,0982 ,0982 ,0887 .2299 L1753 ?1329

b e
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Table 8. Powers of individual roots for p = 3 for testing

Wy = o, Wy = 0, wg = 0 against different simple alternative hypotheses o = .05

o mowy ) D LD B OB e 6 6

m=0,n=>5 m=1, n=5 m=2,n="5

.001 .001 .001 .050041 .050046 .050035 .050029 .050035 ,050030 .050022 .050028 ;050026
0 0 .825 .06218 .06272 .05900 .05845 05975 .05801 .05648 .05791 ;05701

125 .250 ,500 .06249 ,06LLL 06080 ,05871 .06077 .05925 .0567L .05863 {0579k

275 .275 .275 .06168 ,06370 .06036 .05816 .06018 .05882 .05629 .05814 .05755
0 0 2 .0825 .0806 .0699 .0723 .0739 .0683 .0670 .0695 , 0663

.0803 ,0853 .0752 .0709 .0760 .O717 .0659  .0707 20686

o 1 1

0 o0 3 .1025 .0953 .0777 .0858 .0859 ,0761 .O771 .0795 0735
11 1 .0970 .1082 .09k5 .0829 .0918 .0863 .0755 .0827 O8Ok
0 0 5 .iko1 1224k .0898 .1178 .1091 .0889  .1013  .0993 ;0859
o 0o 6 .75k .134 0943  .1365 .120  .0939 .1161 .109 {0909
2 2 2 .1754 aan .17 .1k60 135 .1232  ,1300 .116 1110
0 0 8 .233 .155 .1017  .180 .139 .1010  .153 .125 0980
2 2 L .256 2197 .a5h2 217 .154 .13k9 195 .130 1218
0 0 10 .297 171 1035  .233 .152 .1038  .201 .136 1006

m=5 n=5 m=0, n=15 m=1, n=.15
.001 .001 .00L .050013 .050018 .050018 .050055 .050053 .050036 .0500L0 ,050042 ,050033
0 0 .825 .05382 ,05507 .05500 .06690 .O6LL8 ,05935 .06223 .06161 ;05860
.125 .250 .500 .05386 .05545 .05552 .06710 .06658 .06128 .06245 .06290 ,06000
275 .275 .275 .0537h .0551k .05523 .06593 .06574 .06083 .06161 .06220 ;05954
O 0 2 .0598 .0626 .0619 .0967 .0848 ,0706 .0836 .0785 ;0696

L0509k L0629 .0629  .0924 .0909 .O763 ,0807 .0815 io73h

0 1 1

o} 0 3 .0655 .069L .0675 .1272 .1014 ,0786 .1054 .0928 0778
1 1 1 .,0653 .0700 .0705  .1154 ,1181 ,0968 .0978 .1011 0896
0 0 5 .0801 .0822 .0777 .1998 .1314 ,0909  .1585 .1202 ;0912
0 o0 6 .0903 .0883 .0819 .2uh1 145 .0956 ,1895  .133 . 0965
2 2 2 .108 .0986 .0919 .215 .193 k67 1787 .156 .1301
0 0 8 .121 .0689  .0880 .329 .167 .1023  .259 155 ;1043
2 2 4y .16h L1062 ,1029  ,309 .22k 1593 .261 .180 .1k23
0O 0 10 .168 .115 .0900  .kh20 .184 .1061 .336 171 ,1083
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Table 8 (Cont'd.)

3
o s ow D) 80 0 O 0 e 6 6

m=2,n=15 m=5, n=15 m=0, n=140
.001 .001 .001 .050032 ,050035 .050029 .050021 .050024 ,050022 ,050063 .050055 ,050037
0 0 .825 .05968 .05975 .05773 .05605 .05670 .05589 .06951 .06529 ,05951
.125 .250 ,500 .05989 .06068 .05882 .05624 .05722 .05653 .0696L 06758 06149
275 .275 .275 .05923 .06008 .05839 .05584 .05680 ,05619 .06824 ,06669 06104
0 0 2 .0763 .otke 0679 .066L .0667 .06kO  .1048  ,0B67 0709

0 1 1 .otk2 .0759 .O7O7T .0650 .0673 .0653 .0992 .0935 ,O768
0 0 3 .0932 .,0866 .0758 .O760 .0756 .O7O5  .1k13  .10k1  ,0790
1 1 1 .0880 .0915 .08k2 ,074O .O771 .O7M6  ,1256 .1228 {0978
o o 5 .13k .1111 .0891 ,1011 .0936 .0822 .2288 .1354 [0O9Lh4
0 0 6 .1596 .123 L09ks5 117 .102 L0872 .278 149 ;0961
2 2 2 1577  .135 1187 .127 104 .0995  .238 .20h 1188
0 o 8 .27 L1143 .1025  .158 J117 .09hk5 381 172 11030
2 2 L 233 .155 .1303 .190 .116  .1101 .339  .236 . ,1615
0O 0 10 .285 .158 1062 .21k 168  .097h 485  ,190 ;1072

m=1, n=540 m=2, n=540 m=5, n=ko
.001 .001 .00l ,050047 .0500L45 05003k .050039 .050038 .050030 .050026 .050027 05002k
0 0 .825 .06hks2 ,06254 ,05887 .0617H .06074 .05809 .05771 .O5T73 ;05639
.125 .250 .500 .06Lk66 06398 0603k .06190 .06180 .05925 .05789 .05835 ;05712
275 .275 .275 .06365 .06323 .05987 .06109 .0611k .05881 .05737 .05787 ,05675
0 0 2 .0906 .0808 .0701 .0826 .0767 .0687 .O710  .069k 0651k

.0866 .0843  ,07h2  .0796 .0788 .0718 .0694  .0702 ;0668
JA179 .0962 .0785  .1043  .090k  ,0768  .08LE6  .0798 §0722
.1068  ,1060 .0911 .0962  .096h  .CB6L  .0805  .0818 ;0770
.18k9  ,1255  ,0922 .159 1173 .09C6  .1190 .1007  ;C843
.224 139 L0977  .191 .130 L0962  ,1ho J111 §0901

leNel _NeoNe]
QO+
o W

2 2 2 .,199 167 .1333 .176 L1k6 J226 .1k2 L11h ;10k2
o 0 8 .,310 .162 .1058 .26k .152 L1047 193 .129 ;0981
2 2 L .289 .194 k57 258 .168 JA345 211 .129 ,1151
0 0 10 .hko2 .180 110k 346 .169 L1091 ,259 kb2 .1018
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Table 9. Powers of individual roots for p =2 for testing
0y = 0, oy = O against different simple alternate hypotheses, o = .05
2 ~2(2
2 02 @) 2@ 2C) 2@ ) Pe) 2r 2()
- m=0, n=25 m=1l, n=5 m=2,n=>5 m=5 n=25
O .001 .050395 .050357 .050290 .050303  .0502h1 .050271  .050180 ,050225
0 .005 .051999 .051785 .051465 .051522  ,051217 .051362  .050910 ,051129
o .02 .05836 .05716 .05612 .05615 .05508 ,05553 .05379 ,05L60
.01 .01 .05814  ,05753 .05596 .05633 05495 ,05564 .05370 ,05L65
.005 .03 .06hoL 06310 .06095 .06115 .059C8 .05998 .05676 ;05828
.01 .015 .06027 .05951 .05753 .05799 05625 .05711 .05466 ,05586
.002 ,075 .08756 .07817 07754 07480 .07278 .07255 L0668k ;06906
o .1 .1026  .0858 .0886  .0822 0819  .0796 .0735  ,0753
.05 .05 L0961  ,0957 .0838  .0873 0780  .0829 L0708 L0768
0 .15 .1ho2  .1031 L1168 .0991 1053  .0958 .0907  ,0899
m=0, n=15 m=1, n=15 m=2, n=15 m=5,n=15
O .00L .051126 .050858  .050815 .050716  .050666 .050628  .050473 ;050495
0 .005 .055777 .054277  .OSW179 .053588  .053410 .053153 .052419 .0524%2
0 .02 .07532 06685 .06832 ,06LL1 06491 06278 .06048 ;06021
.01 .01 .07398 .06929 .06737 .06565 .06416  .06359 .06001 06058
.005 ,03 .09615 ,08261 .0834k9 0771k .0772L 07385 .06910 ,06884
.01 .015 .08055 .0T7h460 L0721 .06990 .06805 06726 .06273 ;063h2
.002 075  .1772  .1133 L1439 L1067 1266 .1016 .1033 0927
0 .1 .2332 124k A87h L1198 L1628 L1150 .1286  ,1054
.05 .05 .1986  .1833 1599  .15hk2 1399  .1391 1129 51179
0 .15 .3673 .1510 2976 .1595 2573 .1h53 L1977 1346
m=0, n=Lo m=1, n=540 m=2, n=54o m=5,n=40
O .001 .052984 ,052102  .052152 .051737  .O5L746 .051507  .051211 051152
O .005 .065803 .060359 .061389 .058671 .059219 .057567 .056352 ;055820
o .02 .1258  ,0889 L1050 0840 .00kl 080k L0801 ,07396
01 .01 .1180 .1039 099k ,0921 .0900 .0857 077k (0765
.005 .03 .1908  .13k6 .1538  .1196 JA342 L1107 L1071 §0966
.01 .015 .1381 ,1197 Jd1k2 L1042 .1019  .0960 .0855 ;0840
002 075  L4hos  .178L 3672 1711 .3168  .1634 .2373  ;1h67
0 .1 594 177 .503 .184 Ak .181 .336 167
.05 .05 486 L51 .395 .368 .3h0 .321 .254 .251
0 .15 .823 .207 LThT .264 687 27k

.565 @238



Table 10.

Powers of individual roots for p = 2 for testing

23

Wy = o, Wy = O against different simple alternative hypotheses, o = .05
A R A A S
m=0,n=>5 m=1, n=25 m=2,n=>5 m=5,n=5
0 .001L .050025 .050022 .050016 .050017 .050012 .05001k  .050007 ,050009
0 .2 .05503 .05442 .05327 ,05336 L0524l 05271 .05140 ,05173
10 .1 .05498 05460 .05324 05344 .05242 . 05275 .05139 ;0517h
o 1 07723 .07123  .06775 .06658 .06298 .06351  .05731 ,05870
.5 .5 .07607 .07560 .06690 06850 .06256 06461 L0571k ;05907
0 3 1452 1070 L1111 0973 L0947 ,0896 L0743 ,0763
1.5 1.5 L1357 L1435 .1055  .11h7 L0909  .0999 L0728 0798
1 2 L1368 L1394 L1061 .1128 .091k  .0988 L0730  ,0794
.5 L 1973 .1580 L1455  .1325 .1198 L1169 .0878 ;0926
0 5 .226 i .164 .12k .133 .1135 L09kk 10936
2.5 2.5 .203 .227 .150 Bl .123 J143 .0902  ;10k1
0 8 .358 .162 .257 .155 .202 44 .130 \1181
L L .310 .36k .223 .269 .178 .218 119 2146
0 10 JAke 176 .324 172 .253 .161 158 :133
5 5 .383 458 276 .3k0 .218 .273 L1b1 ;178
m=0,n=15 m=1l,n=15 m=2,n=15 m=5, n=15
0 .001 .050031 .050024  ,050021 .050019 .050017 .050016 050010 ;050011
o .2 .05639 .05473 .05438 .05376 .05339 .0531k4 .05208 05215
I § .05632 ,05493 .05433  ,05385 .05336 .05319 .05207 ;05218
0 1 .08541 ,07266 071y 06851 .06855 06565 .06119 ;06088
5 .5 .08348 07765 .07291 .07092 .06769 06711 .06078 ;06144
0 3 .1780  .1103 .1381 102k J17h L0957 .089k ;0829
1.5 1.5 1625  ,1518 1275 L12hk2 L1096 ,1096 .0856  ,0885
1 2 Jd6é6k2  L1h71 .1287  .1218 .1105  .1080 .0860 ;0879
.5 l 2481 .1659 .1886  ,1430 L1565 1284 .1123 ;1043
0 5 .289 .138 .219 131 .180 .123 125 ;10k
2,5 2.5 .252  .243 192 190 159 .162 115 ple1
0 8 .63 .166 .358 .163 .292 .156 .193 §134
4 L .393 .391 .299 .303 2k .253 .166 ;179
0 10 571 L1179 453 .180 37k 17k 245 1152
5 5 485 RIte}] 374 .383 .306 .320 .203 y222
m=0,n=4 " m=1,n=1L40 m=2,n=1540 m=>5, a=540
O .0OL .050034 .050025  .05002L .050020 .050019 .050017  .050012 ;050012
0o .2 .05705 05485 .05497  .05394 .05393 .05335 .05255 ;05240
5 S § .05696 .05507 .05491 0540k .05389 .05341 .05253 05243
0 1 .08943 ,07324 07773 .06939 L0718k .06669 .06390 ;06214
5 .5 .08709 .07851 .07615 .07203 .07068 .06836 .06329 0628k
0 3 J9k2 L1116 .1532 .10bL7 .1313 .0986 .1006 ;0867
1.5 1.5 L1756 .1553 L1396 .1287 1207 L1ikk L0948 0937
1 2 777 150k Jk11 L1259 1219 L1126 .0954 ;0930
.5 L 2726 L1691 .2125 L1476 .1790  .13ko .1306 1111
0 5 .319 .1k0 .2kg .13k .209 127 .1k49 110
2.5 2.5 276 .2hg .215 .199 .181 171 .133 2131
0 8 .509 .168 410 167 .346 .161 241 .142
N L 432 o2 .339 .319 .284 271 .199 ;199
0 10 .623 .181 .516 .184 A2 179 .311 2161
5 5 .530 .505 425 403 .358 .343 .250

;249
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