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NOTATIONS

Let F(t) be a function of bounded variation in [0,%]. Its
laplace=-Stieltjes transform (L.S.T.) will usually be denoted by

the corresponding small letter, i.e.

0

£(s) = ur "5t ar(s)

(o)

The halfplane of convergence of f(s) is {s: Re s > c} for some
real ¢. If c¢ >0, then Qe write P(c) for the halfplane

{s: Re s > -c}. |

The cenvolution of two functions of beunded variation F(t), G(t)

0 <t <o is denoted by

t
F*ag(t) = I Flt-x) d6(x)
. o

if it exists. The n-fold convelution of F(t) is denoted by
- *
F(n)(t) = F * F(n-l?(t) and eccasionally by F" (t).

Uc(t) denotes the unitstep function at ¢, i.e.

U (t) =0 if t<ec

1 if ¢t >c.
If ¢ =0, we write U(t)?
The determinant of a square matrix A is denoted by |A].

Theorems in the appendix are referred to as A. Thm.



CHAPTER I

EXPONENTIAL DECAY IN RENEWAL THEOREMS

For the special case of a distribﬁtion function that tends to one
exponentially fast, the ﬁhree basic renewal theorems are proved by the
same method. Moreover an estimate of the remainder term is obtained.
This extends results of M.R. Leadbetter [30].

Series expansions are obtained for the renewal function by using
~ matrix methods. Similar methods apply equally well to the $-renewal
moments as indicated in séction Iy,

Further generalizations are given in section 5.

1. Exponentially Bounded Distributions

Iet F(t) be the distribution function of a non-negative random

- varisble. F(t) is said to be exponentially bounded [at + @] if there

exist constants A >0 and 0 S K<<= such that for all t 2>t 20

(1) 1-Ft) <keM

Theorems 4 and 5 of the appendix give equivalent conditions for (1),

the former on F(s) and the latter on the moments of f£(t).

The decay parameter \¥ of F(t) is defined by

(2) , A¥ = lim sup {\: l-F(t.) = o(e'“)}.

t e
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- 7~It then follows immediately from A. Thm 3 that -A* is the '1first!'!
singularity of £(s).

We make the following assumptions:
(3) (1) F(t) satisfies (1) with X = a¥

(%) (ii) F(t) is strongly non-lattice i.e.‘F(t} is non-lattice
end lim inf |1-£(it)| > 0, [43].
[t} = =
In case F(t) is lattice, f(s) behaves differently on thé imaginary
axis. Even if F{t) is non-lattice,]l-f(it)| can become arbitrarily
small for large values of t, [31, p. 24]. A sufficient condition for
(ii) is thét F(t) is absolutely continuous. We remark thet (ii) im-

plies in particular that F(t) is non-degenerate at t = O.

2. Basic Reneyal Theorems

Let {Xk, k 2;1} be a sequence of independent, identically dis-
tributed non-negative random varfables with common distribution func-

tion F(t) satisfying (i) and (ii). Let p = E[X, ] £ 0 and M= E[Xi].
. n
Considexr the partial sums S = X Xk’ n=122,... and the func-
k=1

tion WN(t) = max{n: 5, < t}. The process {Xk, k >1} is called an

ordinary renewal process, and its renewal function is defined by

(5) H(t) = B[N(t)].

It is well known [36, p. 158] that

n(s) = £(s) [1-(s)]*
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By A. Thm 1, £(s) converges in P(.) so that f£(s) and 1-f(s)
are analytic in P(L). At s = 0, 1-f(s) has an isolated zero of
order one since f(0) = F(w) = 1 and for |s| <e, £(s) = l-us+o(s)
where p + 0 by (ii).

Since F(t) is non-lattice, 1-f(s) . has no zeros on the imagin-
ary axis. An gpplication of the Borel'covering theorem yields that

for every finite T > 0, there exists a A, >0 such that 1-f(s) 0

1
and |Im s| <T.

1
By (ii) we can choose T so large that for t >7T [1-£(it)] > K7

for a1l s £ 0 for which Re s > =)

where 1) is some positive quantity and K is defined by (1). Since

. A
A > 0, there exists a real number Ay such that 0 < Ay < A= T+

From (1) it easily follows that for all +t

K
|f(-x2+ it) - £(it)] < 5;%2- .
Let t >T, then
|l—f(-k,2+it)’ > |1-r(it)] - [£(-at it) = £(it)]
_>_K'q~>»—7_k)2h§= K1 - i%i—] > 0.

Hence for -\, <Re s <O and [Ims| >T, also 1 - £(s) $0. If

we put ' = min (xl,x2) then we have proved:
. Lemma 1.1.
If F(t) satisfies (i) and (ii), then there exists a real number

L' >0, such that -1-f(s) = O has no solution in P(x') except s = Q.
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Define p = min(i,A') > 0. We prove the three basic renewal theo-
rems in the case where F(t) is exponentially bounded. To indicate
the restricted character of the theorems, we put ''R-'' in front of
the statements.

Theorem l.l. R-elementary renewal theorem.
Let F(t) satisfy (i) and (ii). Then there exist constants p >0

‘end 0 <K <o such that for t >t >0

| . ]
(1) o lu) - Ee B gk e

2u

 Proof:

Consider the function G(t) = H(t) - E— .+ Then g(s) exists and
equals h(s) - f; . But h(s) has a simple pole at s = 0 with resi-
due u—l._ By lemma 1.1, h(s) has no other singularities in P(p).

From A. Thm 2 then as t -

o(=) - a(t) = o[e PP,

This in turn implies the existence of constants to and 0 <K<o

such that for all t 2%,

a(t) - 6(=)] <k e PF,

u
where G(=) is obtained from the equality G(=) = g(0) = —= - 1.
: ' Eu
This proves the theorem.

We proceed to prove



"~ Theorem 1.2. R-Blackwell's theorem.

Let F(t) satisfy (i) and (ii). Then for every a > 0 there

exist constants p >0 and 0 <K <= such that for t Z'to >0

(8) IH(t+a) - H(t) - :'l_._l < Ke-—p'b )

Proof':
Let a >0 Dbe fixed and define G{t) = a’l{H(t+a)—H(t)}. Then

g(s) exists and satisfies

as .a
(9) g(s) = 2 h(s)le **- 1] - S= [ ™% an(y).
. O

The first term on the right hand side of (9) converges in P(p) by

-the same argument as before.

The second term is an entire function of s. Hence A. Thm 2 and

the dominated convergence theorem imply that for all t E,to >0
..p't
la(t) - e(=)] <Ke

where G(=) = G(0) + g(0) = % . This proves the theorem.

Finally we prove a restricted version of the key renewal theorem
originally due to W.L. Smith [41]. If we require that Q(t) of the
theorem does not destroy the analyticity of sh(s) in a neighborhqod

of the origin, then A. Thm 2 still applies. See [11, p. 41].



\\‘Theorem 1.3. R-key renewal theorem.
- , let F(t) satisfy‘(i) and (ii). TLet Q(t) be a real valued
function satisfying the following conditions:
1. Q(t) =0 for t < 0;
2. Q(t) >0 for t >0;

3. @(t) is non-increasing for t > 0;

. cO r
4. TFor some p' >0, f 't a(t) @ <o
o .

Then there exist constants o = min(p,p') >0 and 0 <K <« such

that for t zto >0

’ . + oo
- (10) ] Q@ﬂﬂdﬂu)-%f (t) at] < xe™% .
o , o o :
Proof':
"
Define G(t) = J Q(t-u) dH(u). By a well-known theorem [48, p.88]
o ,

rg(s) exists and is equal to

(1) g(s) = sn(s) | ™% q(t) at.
(e}

But sh(s) converges in P(p) and assumptions 2-4 together with

A. Thm 3 imply that the second factor in {11) converges in P(p'"). The

reméining part of the proof follows as before.

It is worthwhile to indicate that the above theorems are in some

sense best-possible. For if PF(t) is not exponentially bounded then
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"~ = 0. Obviously f£(o+) = 1, but lim f(s) does not exist. This

~

s|= 0
means that the origin is an essential singularity of f(s), so that
neither f£(s) nor h(s) can be continuea as é meromorphic function
in fhe left half plane [11,p. 153]. This implies that an exponential.‘
deéay as indicated by the above theorems is possible only if F(t) is
exﬁonentially bounded. More specificaglly we prove
Ieﬁma l.2.

If t(s) = h(s) - i%- converges in P(A) then for some X > O,
f(é) converges in P(}).
Proof:

It follows from (6) that
(12) ©£(s) = [1sust(s)I[1as + pst(s)] 7L .

B&:assumption, the numerator and the denominator of (12) are both_analy-
tic in P(A). The only possible singularities of f(s) in P(A) are
at zeros of the denominator. vOn the other hand A. Thm 3 states that
the first singularity of f(s) lies on the real line. But at s = O
1+ pus +us t(s) = 1, hence by continuity this functioﬁ is non-zero
for |s| <e¢ fér some € > 0. This proves the lemma.

8 Combining the above lemma with theorem 3, we obtain the interest-
ing

Corollary l.1.

Iet Q(t) be defined as in R-theorem 1.3. Suppose that there

exist constants A >0, 0 <K <« such that for t > to >0

Xt. Then there exist constants A¥ >0, 0 <K* <o

|m(e) - 3 <xe”
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such “l;,hat for t >t* >0 relation (10) holds, with K and ¢ re_placed-
by K¥ and A% resﬁectively. |

ﬁe remarkﬁthat any one of the ergodicity conditions (7), (8) and
(10) is sufficient to obtainvthe other two. We chose this version for
future use.

In many cases one can improve the rate of convergence in the R-
renewal theorems. This is indicated by Leadbetter in [30]. If one
can compute the zeros of f£(s) - 1, then the function sh(s) can be
further continued in the left halfplane as a meromorphic function.
This is possible since we stay inside the region of convergence of
f(s). See Cox [10] for more specific examples.

Also if 1-F(t) = A e M, O[e-“t] for p >\ then a similar
procedure improves the decay parameters, [11, p. 467]. By using Mittag-

Leffler series, analogous results can be derived if h(s) has an in-

finite number of poles in the negative halfplane.

3. Series Expansion of the Renewsl Function

By A. Thm 4 f£(s) has a Maclaurin expansion for |s| <A so
that h(s) has a Laurent expansion in 0 < |s| < p by Thm. 1.1.
We derive a matrix procedure to obtain the coefficients in the

formal expansion

A
-1 * o)
(13) h(s)f s- t A, T AS A ST L.
using
(1) _ f(s) =1+ B, s +B s° + B s34 et

1 2 3
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xﬁhere
| - .

1 * .
Clearly A_; = 5 We also define A =1+ A . Using (6), (13)

td
i
Ll
]
)
N
s
&
o
=
]

- and (14) the following chain of equalities is easily established:

A B =-1
,(15) | A, B,+A B =0
Ay By + A By +AB =0

Although this system can be solved recursively, we can find an
explicit solution by introducing an infinite matrix £, called the

moment matrix:

Bl 0 O L LN
D = B2 Bl ) O LR 4
B3 B2 Bl cae

The matrix ) obtained from 2 by deleting the first row is called

the auxiliary matrix of €. For n > 0, let Cn be the submatrix of

3 obtained by deleting from £ all rows and columns with index greater

than n. Clearly |c | = Bi. The submatrix 9, of O is obtained by
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~

dropping from ® all rows and columns with index greater than or equal

n>1l. In addition Ql = 1.

- We truncate the system (15) at the nth equation and solve for Ai’
i = -l’o,l"-vo,n"gl We then get

n-i-2

B .

i

~Since By = -, Ionl = (-1)" u®. 80 (16) reduces to

-(i+2)

(a7) A, = |9 i=-1,0,1,...

for all i, since the right hand side is independent of n. We obtain

. immediately:
-1
A-l W
¥ 1 -2 " 2
AO - 2 33 [H2 - a“- ]

Jo-d
1

1= f% w3 [3 ug - 2 pyig]
1

w73 ug ol N ue ]

=3
N
i
[)8)
=

5. Series Expansion for the Renewal Moments

The fact that f(s) has a convergent Maclaurin expansion may be

further exploited to derive expansions for the renewal moments. This
- is somewhat similar to results of Leadbetter [29]. It turns out that

it is sufficient to take powers of the triangular moment matrix £.

W.L. Smith defines the nth renewal moment & (t) for n >1 by
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(18) 5, (6) = BLIN()+LIN(E)2] .. [N(t)wm).

It is easy to pfove [29] that the L.S.T's are given by

U9? %ﬁs?=n![bf@?rnb n > 1.

Let

(20? ¢n(s) n! = @n(s? n>1
¥ (s) =1

. then '¢n(s) has a laurent expansion in 0 < |s| < p of the form

, - no, _ ~n+l + +
(21? "’n(s? Ay on 8 By 1B et Ay A st

where the first index of Ai j refers to the renewal moment under con-
’ 2

sideration; the second indicates the power of s in the expansion. A

moré compact potation is acquired by introducing the vectors

t
Al —.(An,_n, An,_n+l,..., An’o, ...) n>1
Aé':(l ,O ey O 2 o-o) n=0
- n
S, =(l ) s 380 ey S E} .ll)

vhere A' is the transpose of A. Denoting by (a,b) the scalar

product of & and b, (21) becomes

—n —
(22) ¥,(s) =57 (2, 8) =n-=o,1,2,...
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The computation of the vectors An is simplified by using

Lemma 1.3.
(i) For evefy n>1, QA=A ;
(23)
(ii) For every n>1, @° A = (-1)" Ay
Proof':

To obtain (i) equate coefficients of equal powers of s on both
sides of the equality [l—f(s)]-(n+l) [1-f(s)] = [1-£(s)]™. Repeated
use of (i) yields (ii).

QOnce the péwers of the moment matrix are calculated, (23) can be
solved explicitly for the vector An. The powers of @ however have
" a simple form as shown in the next lemma, the proof of which is easy.
Lemma 1.k.

Iet A = (aij) and B = (bij) be two (possible infinite) matrices,
such that AB is well defined; Suppose that

aij = bij =0 _ if j >4

al.ij Ai-j and bij = Bi-j if §j <14,

Then C = (cij) = AB -satisfies

i
o

C. . if jJ >1
1J

c.. =0, . ir j <1
for some constants Ck’ k=0,,2,...

The matrix (@ is of the form required by the lemma. So there exist -

constants »B§n), i=1,2,3,... for all n = 0,1,2,... such that
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Bin) 0 0 cee
) Bén) Bﬁn)‘ 0 .
6 =
n) ) (n)
\Bé Bén Bln cen

To obtain the vectors An from (23), we repeat the procedure of
the previous section.

Let ﬁ; be the submatrix of @ obtained by deleting from o
every row and column with index greater than m > 0. Then IBE[ = {B§n?}m'
The auxiliary matrix of 2® is denoted by 9°. The submatrix @; is
obtained by drqﬁping all rowvs and colums from o with index greater
than or equal m > 1. In addition Qi =1 for every n > 0.

The infinite system R A = (-1)" A, is truncated at the mth

equetion and solved for ‘An 3 where J =-n, ~n+l,..., =~n+m.
. s

(_l)n+k'|Qn lfBgn)}m~k-l

n
Iﬂm"A‘n k+1

,=ntk

But Bin) = B; = (-l)n un, so that we obtain

(2k) A , n Iu—n(k+l)

k = O,l,g,noo

since the right hand side is independent of m.
By subtracting the principal part of (21) from ¢n(s), the remain-
ing function is convergent in P(p) where p is defined in Thm 1.1.

This is clear since the singularities of ¢n(s) are the same as those
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of h(s) by (19) and (20). From A. Thm 2 we easily get
Theorem lgh.
Let F(t) satisfy conditions (i) and (ii) of §1. Then for every

n > 1 there exists a constant 0 < K <o such that for % > t, 20

‘ én(t . k(n+l) -n(k+l); n g2k -pt
(25) |-2— - ) (1) Wl <k e

k=0

As an appiication, take n = 2. Then

2
B 0 0

2 2
oy = 2 BB, B] 0
2 2
2 BB+ B} 2 B,B, B

" Corollgry 1.2.

Let F(t) satisfy (i) and (ii). Then there exists a constant

0 <K, < such that for t >t

o 520
B 11 > | -t
(26) lég(t?—F-hﬁt-gF(QMQ-hpp?))lsKEe

5. Extensions of the R-renewal Theorems

A, Modified Renewal Process

A modified renewal process is defined as a sequence of independent

- nonnegative random variables {Xk, k > 1} where Fl(t) = P{Xl <t} and
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CF(t) = P{X, St} for k=2,3,... .

The renewal function (5) is determined by its L.S.T.

h(s) = fl(s) [l—f(s)]-l as shown in [36, p. 158]. All theorems frém

* before are still valid if we assume that Fl(t) satisfies (i) of §1
 with an gppropriate decay parameter. The minor changes in the results .

© are obvious and wiil be omitted.

B. Generalized Renewal Process of the Chung-Pollard Type

Assume that a sequence of independent random variables is given,

'with common distribution function F(t) = P[Xk <t], k= 1,2,...,

~© <t <». Define the partial sums as before. Define the function

[ev]

(27) H(t) = Z P{s <t}

n=1

A process {Xk, k > 1}, satisfying the above conditions, and with

''renewal function'' H(t) of (27) is called a generalized renewal

process of the Chung-Pollard type [7].

Although H(t) is no longer the expeéted value of the random
variable N(t) = méx[h: 5, < t}, its study is closely related to that
of the renewai function of section 2. Several authors discussed its
asymptotic properties, [7], [36].

Let us denoté by T(s) and h(s) the bilateral L.S.T's of F(t)

and H(t) vrespectively. It is well-known [48, p. 257] that

(28) B(s) = Fs) [25(e)17 2
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.The region of convergence of 'f(s) is a strip, parallel to the imagi-

nary axis. This strip contains an open neighborhood of the origin, if

and only if F(t) is exporentially bounded at both tails, i.e.
' ~A b
>0, 1-7F(t)=0[e 1] as t - + o

AT .
(ii) for some My >0, t) = O[e'2 ] as t = -=,

(i) for some A

. The proof of this statement, the analogue of A. Thm 1,2, can be found

~in [48, p. 239].

We assume in 2ddition that
(iii) F(t) is strongly non-lottice.
In this context lamma 1.1 becomes

Lenma 1.5,

Let F(t) satisfy (i), (ii) and (iii). Then there exist two

real numbers xi

for which —hé <Pe s < xi

is a simple zero of 1 = %zs), Otherwise this zero is double.

>0, 2} >0 such that f(s) -1 =0 has no solution

s except s = 0. If yu + O then s =0

il = 1, i n ! &. ' = 1 ! .
Define p,= mi (xl,xl? nd p, mln<x2’x2? Then
Theorem 1.3,

Let F(t) ocatisfy the conditions (i), (ii) and (iii). Then

there exist constants 0 <K, <=, 0 <K, <« such tﬁat for every

1 2

a > 0 holds that:
| - ot

(1) If p >0, then IE(—J“ELI«{—(@— - —l—[ <K e T fort>%. >0
a . pt =1 - 1~
(29) .
. - p -
|-1L_.§m§.(t—?-| <K e? for ¢ < -t, < 0.



L7

- ot
(i1) If u <0, then |HERRIHE) - "1 pit >t >0
T a b= "1 - 1=

'(30)

- pt |
(ECta) HE) L 02 o b < ot < o
a ‘ pt=2 - e-

(iii) If F(t) is symmetric then 1= Py= p and

leLt+a)+H(t-a)-2H(t) - <keP fort >t >0
T L oHp T Tt
(31)
|H(tta)s(t-a)-2H(t)) o ot for t < -t <O
. b= = 2=
2a
Proof':

(1) Suppose p >0 and let a >0 be fixed.
Coﬁsider a(t) = i-{H(t+a)~H(t)}, then 7Z(s) exists and is equal
to % {e°%-1} gxs).‘ | | |

By lemmanl.é we deduce that

- pl't
G(«) - a(t) = ofe 1 as t = +

| ot
G(t) - 6(-=) = 0fe ] as t - -o.

From the theorem of Chung-Pollard [7]; [36, p. 215] we know that
G(-®) = 0. On the other hand G(+) - G(-=) = & This proves both
parté of (i). | |
(ii) The proof is similar for p <O.
(1ii) Assuming that F(t) is symmebric, we obbain that F(s) = T(-s).

Introduce
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' G(t) = -1-2- {H(t+a') + H(t-a)-2H(t)].

Hence

B(s) = -15 {°% + e'sa—g} h(s).

By the same argument as before it follows that 'é'(s) converges in

~=p <Re s <p=op>= p,+ Since h(s) = h(-s), E(e) = g(-s) so that

G(==) = 0 and G(+4) = ;—2— « - The result follows as before.

2 _
The other renewal theorems can be generalized to renewal processes
of the above type with obvious changes.
One can .assume that only one tail of the distribution is expo-

nentially bounded. Results of this type, were obtained by Ch. Stone
in [44], [45].

C. Generalized Renewal Process of the Heyde Type:
In [17], C.C. He&de defines a general renewal process where H(t)
preserves the character of an expectation. Let {Xk, k >1} be a |
sequence of independent random variables with common distribution F(t),

- <t <o, Let N = max{O,Sl,S

2,.'..,Sn} for n >1. If we put

max{k:Nk <t} then a ''renewal function'' is defined by
ElN(t)].

The process {Xk’ k > 1} with H(t) as renewal function is called

N(t)

i

H(t)

a generalized renewal process of the Heyde type.

We introduce the mass function F(t) = U(t) F(t). The right tail
F(t) does not change, so that F(t) is exponentially bounded if and
only if F(t) has an exponentially bounded tail for t = <, Theorem 1

of [17] asserts that
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(32) CH(t) = F() + U() T * H(t)

So all R-theorems apply to this case.

6. The Constant K

In every R-theorem there appears a constant K. In [30] Leadbetter
gives an elegant way to compute X, that we include for completeness.
Assume that (=) - G(t) = 0[e™™] where A >0, and that G(t)

is normalized. For O <c <) the inversion formula [48, p. 69] gives

‘that for t >0

. c+i
(33) o(t) = 5= | St B o,

25l .
c-i ®
. st -1 . .
Integrating e gls) s — along the rectangle with vertices
[c-iR, c+iR, -c+iR, -c-iR] and letting R = ©, it easily follows that

for all © >0

N ,
(34) eXtIG(w)—G(t)I < inf 2 I lﬁilgiigll du.
_ - 0< ¢ < xzn o c-iu

If the integral on the right converges, then it is a possible
value of K. This happens for example if [g(-c+iu)| = o(|u|%) as
u = for some « < Q. Another possibility occurs if G(t) has a
bounded derivative p(t). For then Parceval's formuls yields

At e '
(35) lo(=)-6(6)] <& | P [9(x)17 ax.
. IR o -
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In other cases different contours might be more appropriate. Cox
{10, p. 51] gives an example of g semi-circular path for the case of a

gamma, distribution.

T Examples

The above theory applies to many practieal-examples. Genefal cri-
teria for condition (i) of §1 are given by the theorems in the appendix,
while (ii) is usually satisfied in practice.

In particular we mention all gamma distributions and any Weibull
distribution with parameter not less than one. The latter example is
quite interesting: ILet Xk' have a Weibull distribution with parameter

o > 0,

(36) F(t) = P[X, <t] =1 - exp{-t"}.

It is easy to show that uk.='F(§ + 1) which is finite for all k.

- By using Stirling's formula, one shows that .

k

1l

so that . lim sup\//;; <e if and only if o > 1. This example illu-
: k2o *

strates that (ii) in A. Thm 5 cannot be dropped.
Another example to which the above theory is not applicable is

furnished by the log-normal distributions, i.e.



5

T2l

Tl o 8

| t 2
_ R [log ex]7y ax
(37? : F(t) - P[Xk <tl-= /2 ”[o expf o x ’
. -k X o
vhere o > 0, ¢ > 0. An easy computation shows that b=c exp{—é—

so that (ii) of A. Thm 5 is again violated.
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CHAPTER II

EXPONENTIAL DECAY IN MARKOV RENEWAL PROCESSES

In [22] D.G. Kendall proved a solidarity theorem for irreducible

denumerable discrete time Markov chains. D. Vere-Jones refined Kendall's

theorems by obtaining uniform estimates [47] Whilé J.F.C. Kingman proved
énalogbus results for an irreducible continuous time Markov chain [2&,
25].

We derive similar soiidarity theorems for an irreducible Markov
renewal process. The transient case is discussed in section 3, and
seétion It deals with the positive recurrent ‘case.

Section'5 contains some more specific results on a finite Markov
renewal process. An applicatidn to the MlGll queue is included in

the last section.

1. Definitions and Basic Relations for a M.R.P.

We briefly recall the definitions and relations in R. Pyke's pa-
pers [37,38,39].
Let K(t) and L(t) be matrix functions with indices in the

statespace I, and with t e [0,2]. The matrix convolution product

K * L(t) is defined by

K * 1(6)}, , = Z Ky * Loy(t) for 1,5 e I.
- ' kel - '
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+-..Q(t) is the matrix of transition probabilities Qij(t). For all i,jel

(i) Qij(t) is a mass function;
(1) (ii) Qij(t).= 0 for t <O0;
(111) ) @ (=) = 1.

" jeI

A two dimensional process {(Jn,Xn), n >0} is defined on a complete
probability space by means of

(i? P[Jn=k: xn StlJo:Jl:'“’J -1’ l)XEJ"")X ] = QJn—l’k(t?;

(ii) P[XO 0] = 1;

k]

1
]

(4i1) Pl &, vhere a >0, E: a, =

keIl

If Jn is the state after the nth transition and Xn the time spent
in that state, then Qij(t) is the probability that the next transi-
tion is into state J from-i, and occurs before time t. For all iel
define Hi(t) = .za (t) By-(l) H; (t) is a probability distribu-
tion. Ve denoteJEy ﬂ < e« the flrst moment of H, (t) The process

{(J X, ), n > 0} is called a semi-Markov sequence. The process

{J , n > 0} is a Markov chain with transition matrix (PiJ) = (Q ( ))
n .
Iet S = Z X . Ve define integer valued stochastic processes
l .
{n(t), t >0} where N(t) = sup{nlsn <t} and {Ni(t), t >0, iel}

where N.(t) is the number of times J,= 1 for k =1, 2,...,N(t),

N(t)+l. The vector stochastic process {Nl(t) N (t seee} is called

a Markov Renewal Process (M.R.P. ) Clearly N(t) % Ni(t 845
iel :
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Related to the '‘counting'’ process defined above is the '‘state!!

process {z%, t >0} where Z(t) =J which is called a Semi-Markov

N(t)
Process (S.M.P.). '

R. Pyke has shown that N(t) is an a.s. finite random variable
if I is finite. If I is denumerable we assume that {N(t), t > 0}
is regular [37] so that N(t) is finite a.s.

— - — s _— a'] .

Iet G(t) = {Gij(t?} where Gij(t? = P[z, = J{zo_ il if £ >0

and zero elsewhere. Then Gij(t) is the distribution of the time

that the process {Zt, t >0} visits state j for the first time,

.starting in state i. The first moment of Gij(t) is denoted by

< mn_

“ij =

Let Mﬁj(t) = E[Nj(t)|Z0= i] for + >0 and zero elsewhere and

et M(t) = {Mij(t)}' The functions Mﬁj(t) are called the renewal

functions, i.e. Mig(t) is the mean numbef éf visits of the process
{zt, t >0} to state‘ j up to time t starting at i.

| Fipally let P(t) be the matrix {Pij(t)} where Pij(t)=P[Zt=j|ZO=i]
for t >0 and zero elsewhere. P, 5(t) is the probability that the

S.M.P. is in state j at time t starting in state i.

Introducing taboo probabilities analogous to those used in the

_theory of Markov processes, we can define mass functions like kGij(t)

and kMij(t). The following relations are frequently used in the se-

guel. To avoid repetitions we only state them for L.S.T.'s.

(2a) mij(S) = E:mik(S) qkj(S) *a4(s)
' " keI '
(2v) = Ej Ay (s) m5(s) + q4(s)

kel



(3) . n, . (s)

ij = kmij(s) + gik(s) mkj(s)
(1) omyg(e) = gy5(s) + gyy(e) m ()
(5) 03306 = 3835(2) g5y ()
(6) g;5(s) = g, ,(s) + ILON- SO
(7) 8;:(s) = ,&.,(s) + 1B () ymy, (s)
(8) i(6) = ) Gg(e) ap ) # [iogg (511 oy (6)
kel
(92) yy(e) = [1-hj(s)3[1-gjj(s)]‘l if 1=
(9p) | = g (s) " (s ifidg.

The mass functions Gij(t) are used to describe classification
properties of the states. States, i and j are said to communicate
if and only if i = j or Gij(w) Gji(m) > 0. The M.R.P. is called
irreducible if all states are communicating. State i is called re-

current if and only if Gii(w) = 1, otherwise it is called transient.

A recurrent state i is said to be positive [null] if Hyg is finite

[infinite]. Part of the relationship between the M.R.P. and its cor-
responding Markov chain (C.M.C.) is expressed in
Lerma 2.1. |
(i) A M.R.P. is irreducible if and only if its C.M.C. is irre-
ducible; ’
(ii) State i is recurrent [transient] in the M.R.P. if and

only if i is recurrent [transient] in the C.M.C.;
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(iii) If I is finite, then i is positive in the M.R.P. if’
| and only if i is positive in the C.M.C. and for all jeI,
ﬂj < @3
(iv) If a M.R.P. is irreducible then the hyy are all finite
| or all infinite.
Jt is well known that in an irreducible Markov chain all stateé

are of the same type. Lemma 2.1 states that .the same property holds

in an irreducible M.R.P. This is ah example of a so~called solidarity'

- property of a MiR.P. The main object of this chapter is to prove the

following ''solidarity theorem'': ILet a M.R.P. be irreducible. If
for some fixed state iel, Mii(t) has a ''certain'' exponentisl  de-
cay as t = , then for every kel Mkk(t) has a similar exponential
decay as t - =. |

Analogous properties can be derived for the Pij(t).

2. A Lemma

The proofs of the solidarity theorem in the case of a Markov chain
depend highly on the behavior of generating functions with nonnegative
coefficients. 1In the M.R.P. case the proofs invol;e\properties of |
L.S.T's of nondecreésing functions.

In addition to A. Thm 3 which has its analogue for powerseries,
we need a lemma which is of a similar type. |
Lemma 2.2.

Let A(t) >0, B(t) > 0 be nondecreasing. |

(1) 1f ‘C(t) = A(é) + B(t) and c¢(s) converges in P{A), then

a(s) eand b(s) converge in P());
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"_?(.ii) If C¢(t) = A *B(t) and B(t) £0 and c(s) converges
. in P(hj, then a(é) convergés in P()A).
Ki) Suppose s real. Since A(t) is nondecreasing, a(s) > O.
L But then c(s) = a(s) + b(s) 2 b(s). Hence b(s) coﬁverges
_ in P(0). Siﬁilarly'for a(s). |
(ii) By A. Tﬁm 3 the real point of-the abscissa of convergence
” of a(s), o, is a singularity of a(s). If A <ao then
o shouid be a zero of b(s) since é(s) = a(s) b(s). But
b(s) > 0. Hence o <A, | ‘
This lemﬁa will be used repeatedly in the proofs of the solidarity

" theorems.

3+« The Transient Case

Consider an irreducible regular M.R.P. Assume that for some
fixed pair of states 1i,jelI, Mij(t) has an exponential decay, i.e.
there exist constants O < Kij <, xij >0, 0< Lij < e such that

forall t2>¢t,., >0

ALt

by (1) - 1]
(L‘o} IMiJ(Q Lijl <Ky e .

By A. Thm 1 mij(s? converges in P[xij] agd mij(O) <o, From (k)
we get that

my5(0) = 83(0) [1-gjj(o)3"l

s0 that ij(@) <1l. Lemma 2.1. (ii) together with a standard Tauberian

argument implies:
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If (EO) holds then:

(10) 1. The M.R.P. is transient;

(12) 2. Ty =M (=) = g (0)[1-g,,(0) 17 <o

Theorem 2.1,
Iet the M.R.P. be irreducible and regular. Suppose that for some

fixed pair of states i and j (Eo) holds. Then for any pair of

states k and f ‘there exist constants 0 <K P < =, xkz >0,

k
0< Lkz << such that for t > tkﬁ >0
) W
k4
(12) 1, (8) =yl <Ky e y
Moreover there exists a constant B > xkﬁ such that (12) holds where
sz is replaced by B.
Proof':

We first show that (12) holds for ¢ = j (fixed) and arbitrary
k. This follows immediately from (3), lemma 2.2 and the fact that
Gy () £ 0 by irreducibility.

To prove (12) for arbitrary 4, use (2.a) with i = k. -In terms

of mass functions we can write (2.a) in the form

(13) Mes(B) =2, *Qp (8) +F (%)

where
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B g,5(8) = Qy(t) + Z Mg * Q4(t)
: ifs '

Iterating (13) if necessary, there exists an integer n > 1 such

that
ey (8) = 1, % ol (0) + F L (6)

for an appropriate nondecreasing function t) and where

oo
k)E:J(
|
Qﬁg)(t) £ 0. This is possible again by irreducibility.
Lemma 2.2 applies and an appeal to A. Thm 2 proves (12) for ar-
bitrary k and 4.

To prove that there exists a ''"best~possible'' decay parameter

'6, we note that xkﬂ > xij. By fixing k and L as new original

states we can go through the same proof as before. Hence if

B =sup ) then all m (s) are convergent in P(B) but not in
2,ker & ke .
3

any larger halfplane.

Note that I , Tollows from (11). The proof is terminated.

4. The Positive Recurrent Case

Consider an irreducible regular M.R.P. Assume that for a fixed
pair of states 1,jel, there exist constants 0O < Kij < o, xij >0,

0<p,. <o and |L,.| <o such that for all t >t., >0
3J iJ _ =iy =

. | -
(£) e, (t) - -1 ] <K..e
. 1J “jj ij' = 713

We first prove that:
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() If (E) holds then the M.R.P. is positive.

For (E) 1mplies by A. Thm 1 that mij(s) [u.Js]-l converges
in P[xij]. But by (h) m, (s) = 8 (s) [1- 8; (s)] so that
ng(O) = 1. Hence state J is recurrent. Mbreover J is positive
since My <« and hence all states are p051t1ve by lemma 2.1 (1v)

In order to prove that (E) holds for any pair of states, we 1ntroduce

the functions

(15) N, () = 1 ,(t) - gi-;

and thelr L.S.T.'s

() - my(s) = my(e) -

The functions Nkz(t) are not necessarily nondecreasing so that
lemma 2.2 is no longer épplicable. Nevertheless there exists a family
of distribution functions { (t), k,%¢I} which is closely related
to the functions { (t), k,zeI} Iemma 2.2 applies to the functions
Gkg(t)’ and since (E) supplies more information sbout the states 4
and j we prove |
Lemma 2.3,

When (E) holds then:

(1) l;gjj(s) has as its only zero in P(hij) & simple isolated
| zZero at. 5=0;

(i1) {gk (s), keI} have a common halfplane of convergence P(ﬁ )

where B > 0.
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" Proof:
We first prove (ii).

From (6) with k=j we obtain that
L (B) = .g,.\8 l+g..(s) ]
FORFNORMO:

Therefore jGij(t? £0 and 'gjj(s) convergés wherever-.gij(s) con~
verges by lemma 2.2. If we set i=j in (6) then lemma 2.2 shows that
gkj(s) converges in the same halfplane as .gjj(s), if jij(t) £ o.
The latter fact follows from (5) with i = j, j=k and s=0.

Repeating the same argument starting with gkj(s), we find that
for some Bj >0 all gkj(s) converge in P(Bj). From this argument
it follows incidentally that nij(s) and njj(s) converge in the
seme halfplane. This proves (ii) fér Bj >0. By (E) =and A. Thm 1
we know that nij(s) converges in P(xij). So does njj(s). But by

(3) and (16)
nJJ(S) = gJJ(S) [l"gjj(s)]-l' [S ujj].‘l

so0 that by lemma 1.2 there exists a value 53 >0 such that gjj(s)
converges in P(Bj) and gjj(s) £ 1 if s $ 0. To prove that the'
root s =0 is siﬁple, we finally note that gjj(s) is analytic in
P(ﬁj) by A. Thm 3, gjj(o) = 1, but gsj(o) = -Hyy + 0. This proves
the lemma.

| We now show that the previous lemma remains Vaiid for arbitrary
L. An auxiliary formula will prove to be useful. In (6) we put i=2,
J=£ and k=j, and then i=f, j=j and k=f. By eliminatingzgﬂj(s) from

the two equations obtained we get
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() [g(e) = 583000 Ty, (8) 17 = 1g(6) gy s).-

The right hand side of (17)is symmetric in J and £ so that it also

equals the left hand side with £ and J reversed. After some mani-

~ pulations we obtain

. l"ggzz(s)
(18) [1-g,,(s)] = {5— J[1-g..(s) ]
_ £4 1 gg..(s) 33
33V
Lerma 2.4.
When (E) holds, then for every fel:
(1) 1-g,,(s) has as its only zero in P(ﬁj) 'a simple isolated
zero at s=0;
(ii) {gkﬂ(s), keI} have a common halfplane of convergence P(Bé)
where BE > 0.
Proof:
In view of (18) and lemma 2.3 we first prove
o (4di) 1~jg£z(s) is analytic and nonzero in P(Bj);
(iv) l"ﬁgjj(s) is analytic and nonzero in P(Bz) for some 6£ > 0.

To prove (iii) we start from (6) with i=#¢, k=¢. Then

so that l-jgzz(s) is analytic in P(Bj) by lemma 2.2. From (19)
is also follows that l—jgﬁz(s) =0 in P(Bj? if and only if zgﬂj(s? = 0.
However zgzj(s) + 0, as follows from (5) with i=g.

In proving (iv) we note that (6) with i=j and k=¢ implies that
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l-zgjj(s) “in analytic in P(Bj). Since Gzz(t) is nondecreasing

“A. Thm 3 states that gﬁz(s) has its first singularity on the real"

axis, say at I < 0. If we show that l~£gjj(s) 10 at s =0

then by continuity there is a neighborhood of s=0 in which l-zgjj(s)

does not vanish.. Hence -ng < 0. |
To show that Jegjj(o) £ 1, put i=j, j=f, k=j and s=0 in (6)

cand i=4, k=j and s=0 in (7). We obtain

1
!

= 3830(0) + 48;,(0)

l"ngz(o? = 585,00 zmﬁj(o?'

But by (iii) 'jgjﬂ(o) >0, so that 1> ﬁgjj(o). This proves (iv) for
o ny >0 | |
Clearly (iii) and (iv) imply (i) by (18), and (ii) follows since
the (ii)-part of the proof of lemma 2.3 shows that gkﬂ(s) converges
in the same halfplane as gzz(s). This proves the lemma.
Ve observe that if 1-£gjj(é)+o for -53 <s <0, one can take

62 > ﬁj. If there is a solution s = s, with -Bj < "8, S O ‘then

‘we take Bﬂ = =85 Another way of defining Bz is obtained from the

relations (5) and (6):

. -1

which is even more intuitive: The real point of the abscissa of con-
vergence of m..(s is the first zero of 1- g..(s).
ergence £5(8) 2855(8)

We prove the solidarity theorem in the positive recurrent case.
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Theorem 2.2.

Let the M.R.P. be irreducible and regular. Suppose that for some
fixed pair of states i and J (E) holds. Then for any pair of states

k and £ there exist constants 0 < Kkz < o, Bg >0, 0< ) <o

and |, | <« such that for t 2 by, 20
| | - e o
(21) L A LT

Moreover there exists a common £ such that (21) holds with B£ re-

placed by B.

The constant Lkﬂ is given by

’ 2 -1 1!
(22) g = D2 d ™ Hugpm 2y gl

where W,, is the second moment of Ggﬁ(t)'

Proof:
By (16),.(E) and lemma 2.3, nkj(s) converges in the same half-
plane as nij(s). so that (21) follows for ﬂ:g.
By lemma 2;4. gkﬂ(s) ié convergent in P(BE) and [l—gzz(s)]-l
has only a simple pole wiﬁh residue u;i in P(Bﬁ), so that (21) is |
proved for arbitrary k and 4.

The common value can be taken as B = inf 8 and (21) still holds.

P) £

The value Lkﬂ can be obtained from the equality

o L Eyls) 1
(=) = i (0) = iigl {l'gm(s? ) “MS}
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_ by a standard dominated convergence argument in P[Bﬂ]. This finishes

the proof.
The value B of the theorem is not necessarily best-possible for
all pairs of states.

Combining the above theorem with Cor. 1.1 we obtain immediately

Corollary 2.1.

Let the conditions of theorem 2.2 be satisfied. Assume that for

all i,jeX Rij(t) is a function on [0,»], nonnegative, nondecreas-

ing and such that there exists pj > 0 for which

@ p.t '

j e’ a R,.(t) <®  for all iel.

o : J
.Then there exist appropriate constants such that for + > tkz >0
' t 1 -cﬂt

t-u) d - ——— J C(t)at]| < .

(23) IJO R, (t-u) am (u) i} Rey(t)at] <k, e

As a special case of the above corollary, we derive an asymptotic de-
cay for Pij(t).

It follows easily from (9) and (&) that

(24) - ﬂij(s) = [l-hj(s)] mij(s) + éij[l—hj(s)].
Lemma 2.5.

If (E) holds, then hz(s) converges in P(Tz) for T, >0.
Proof :

We prove the lemma only for f=j, since lemma 2.4 implies it then

for arbitrary gel.
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Since Hj(t) is a distribution function, A. Thm 3 shows that we
‘only have to prove that |n(s)| < for |s| < T for T > 0.
By lemma 2.3 gkj(s) converges in P(Bj). Choose a real s in
(8) with i=j such that “33 <s <0 and gkj(s) > 1. Since also
..(8) <h.(s for all s obtain ..(8) > [2-g..(s h.{(s) for
qJJ()-J() » we obtain g, (s) > [2-g,;(s)] h,(s) |
-gj <s < 0. By continuity of gjj(s) in 'P(Bj) there exists T >0
such that 2-gjj(s) 0 for =T <s <0 and hence hj(s) is bounded
for -Tj < s. This proves the lemma.

Corollary 2.2.

Let the conditions of theorem 2.2 be satisfied. Then there exist
appropriate constants such that for t > tij >0

. nj -cjt
(25) lPij(t) - | <k, .e

. i
Jd J
for every pair of states 1i,jel.
Proof':

Put R ,(t) = 1-H,(t) in Cor. 2.1. Then by lemma 2.5

o T.t
f e Y dRij(t) <o for all i.
(o) .

If i # J then the proof is immediate from (24k); if i=] ‘then

P 1.
|P..(t) - = < |p..(t)-24m, (£)- —2|+|1-H,(¢)].
Jd po.t - Jd J Mo J
' Jdd : Jd
The corollary applies to the first term and lemma 2.5 to the second.
‘Hehce the proof is finished.
We indicate briefly how analogous results can be proved for the

second moments of Nj(t). Introduce
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Vij(t)b= E[N? (t?]ZO=

Then it is easy to show [38] that

Temma, 2.6.

(26) o Vis(t) =6y % ij(t) -2 Gij(t) + 2Mij(t)'

In the transient case (EO) implies that for appropriate constants

L2 oy 12 "o
(27) [Vieg(8) - g, (0) [1-g,,(0)17] <K, e *.

‘Similarly (E) implies in the positive case that

-0t
<
z“zﬁ kz“zzl Ky ©
where
_ ",_ _ 2
g T Par T Mg PagT Mg
and

tt

12 Bkz_‘9“zz 6“zﬂ[“£z “kz] Mg, by, lg“kz“zz[“zz My g0 -

5. Some Results on a Finite M.R.P.

Let us consider a finite irreducible M.R.P. with m different

states. An obvious consequence of lemma 2.1 is

Lemma 2.7.'

If max ﬂj < «, then the M.R.P. is positive.
JeI

It is well-known [35, p. 272] that a finite irreducible Markov
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.\E\chain_is geometrically ergodic. .By uging skeletoq chains, as J.F.C.
kingman did in [25], this property extends to conservative irreducible
continuous Markov chains over a finite statespace. A M.R.P. does not
Possess this property in general. For example define a two state N;R.P.
by qij(s) = % £(s) for i=1,2,3=1,2. Iet |£'(0)|<w. But if £(s)
does not converge in P(n) for some A >0 then the M.R.P. is not :
exponentially ergodic. |

For brevity let R(t) = {Rij(t)} i,jel where Rij(t) is Qij(t),.

Jd L

8 4 H.(t), Gij(t? or Pij(t). Let also r(s? = {rij(s)} be the ma-
trix of L.S.T.'s of Rij(t).

Definition 1. R(t) is said to be exponentially bounded (written R%),
i and only if inf{x > O] [Ry(¢)-R (=)< Ke™,0 <K <o, all i,jeI} >0.

Definition 2. r(s) is said to be analytic (written r®), if and only if

inf{p > Olrij(s) converges in P(p) for all i,jeI} > O.
The two definitions are equivalent by an obvious generalization
of A. Thm 4. Introduce
Condition (i): Qij(t) is strongly non-lattice
Condition (ii): max nj <o
_ J
We intend to show that under (i) and (ii)

qeﬁheﬁgeﬂﬁe.

Iemma 2.8.

a. g ¢>h€
b, g°=q°
Proof
a. This is agbvious since hi(s) = I qij(s) and I is finite.

jeI
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b. This implication was proved in lemma 2.5 for fixed second
index. Since m is finite, it folléws for all states.
Temma é.9.
If (i) holds, then g% = =&
Proof:
'By‘the irreducibility of the M.R.P. ij(t) is nondegenerate at

t

0. ©Since ge holds, lemma 1.1 together with (i) implies that

i

s = 0 is the only zero of l-gjj(s) in P(B) for some B >0 and

that this zero is simple. From the previous lemma we obtain that

: l-hj(s) is analytic in P(y) for some vy > O and has a simple zero

at S=O'
Hence [J.--hj(s)][l-gjj(s)]"l is convergent in P[min(B,vy)]. By

(9.a) then, =° holds for the diagonal elements. However (9.b) and

€

g dimply n*

for the off-diagonal elements. This proves the lemma.
The next lemma is slightly more complicated.

Temma 2.10.

Proof:
Assume that & is real. It follows from (8) that g satisfies

the equation
& = o(T-0)™ {[(T-)" 7t

where dA denotes the diagonal part of A.

Tet = {(1-0)™)

5 and vji be the adjoint of the element

iJ
ﬁij~ qij in |I-g|. Then clearly
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S u, . = V..
' 1d II'QI Ji

and

[l p;} < [l
: 1J Jd

Hence for i,jel,

~

(29) g3(3) = ) a,08) vyle) [vy ()T
‘ Lel )

Assume now that q° is satisfied. Since ng(s) is a finite
linear combination of products of elemeﬁts of the analytic matrix
as), £§I qiﬁ(s? VJL(S? is analytic in the same domain as q(s?.
At s =0, [1-q(0)| = |1-P| where P is the transition matrix
of the C.M.C. The Perfon—Frobenius theorem for stochastic matrices
[15, p.50] implies that vij(o) >0 for all i,jeI. By analyticity
of vbj(s) at s =0, (29) is well defined in a neighborhood of s=0.

But Gij(t) is a diséribution function. Hence by A. Thm 3 the
first singulariéy of gij(s) lies on the real axis. Hence g° holds,
which proves the lemma. |

By a combination of the last four lemmas, we obtain
Theorem 2.3.

Consider a finite irreducible M.R.P. that satisfies (i) and (ii).
Assume that any one of the conditions qe,he,ge,Qe,He,G€ is satisfiéd.
Then there exist constants 0 S»Ki < o, Xi >0 1i=1,2, such that _

a. for t >t >0

1

- Ty
(30? | [ 5(6) - = < e 7

1
Jd



b. for t>%,>0

— > t,
‘ Tt -t
_ Mae:s=20, oMy -\
(31) M, () - S - L AT o T2,
: ijh, B 2 -2
: S N 2ujj

Proof:

. The proof of (30) is immediate from the lemmas.

L1

Relation (31) follows for example from g° and the R-basic renewal

theorem of chapter I.

Note that (29) implies that My ———(——- v, (o) M,
ier *

It might

be of interest to compare this relation with [40, p. 14567 where R.

Pyke obtains u,, = Z (m) T, -
dd iel J Jl

Definition 3: An irreducible M.R.P. is called\aoubly stochastic if

2 Q. (=)= = Q (oo = 1 for all i,jel .
. 1J
iel . Jjel .

Corollary 2.3.

If an irreducible M.R.P. is positive and doubly stochastic, and

if X ﬂj < o, then for all i,jel

JeI
(1) P..(w =50 =, 1™ and .
N +d J€I J
‘ M, .(t)
(ii) 1im ~-={ Z 1. }
o e JeI J
Proof: -

We know from the limit theorem for P, (t) that P, (co

From (8) we obtain that

Z My Page ¥ T 7 Mgy Pyye

-1
= MyHsse
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~

. Summation over i yields p,, = I ni which proves the corol-

iel

)

lary.

6. An Application to the M|G|1 Queue

Iet H(t) be the distribution function of a nonnegative random
variable with’finite positive mean . Assume that h(s) converges
in P(1) for some T > O.

Coﬁsider a single server queue with Poisson input at rate A > 0,
and service times, distributed according to H(t). We define the ran-
dom times To’Ti"'°’ as follows:

(i? T, =0 a.s.
(11) T_,, is the time instant in which all customers, if any,

present at Tn complete service. If there are no custo-

mers at 1T, then T ,; 18 the instant in which the first

1

customer to arrive after Tn completes service.

If €(t) denotes the queue length at t+, then the process

_{g(Tn),Tn+l—Tn, n >0} is a S.M.P. on the nonnegative integers. The

transition matrix Q(t) defined in §1 can be evaluated:

,fx ™™ L%%Ji antt) (y) if£1>0, §>0
Q .
(32) Q; 5(%) =
. . i} |
| f [l-e"’“(""y? J aqy(y) if 1=0, j >0,
0 .

in which H(l?(y) is the i-fold convolution of H(y).
It is easy to verify that this S.M.P. is irreducible and regular.

This approach to M[{G[1 is due to M.F. Neuts in [33].
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Define the mass function

G(t) = P{T <t, §(T) =0, &T) 0o m=1,2,...,n-1

for some nlg(TO) = 0}.

Then G(t) gives the mass distribution of the length of the busy
period. If +vy(s) is the L.S.T. of G(t) then +(s) is the unique

solution in P(0) to the equation
(33) z = hls + ) - 22]

which lies in |z| <1 for all s in P(0), [46, p. AT].
Iet Mij(t) be the expected number of visits to state Jj in

(0,t], given that g(To) =i, then for i =3 =0

(34) moo(s) = m(s) = = y(s)[1- 2= y(s)17"

Assume that +v(s) converges in P(8) for € > 0. The next lemma
gives information about +v(s).
Temma 2.11.
A. If 1l-oh >0 then:
(1) «y(s) is the L.8.T. of a probability distribuﬁion;
(11) -v'(0) = o[l-aa]™;
(iii) if n'> A then & >[/1 - /‘x]2 > 0;

(iv) the S.M.P. is positive recurrent.
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B. If 1l-0) =0 then:

(1) y(s) is the L.S.T. of a probability distribution;
(11) -y'(0) = =;
(iii) e = o,;

(iv) the S.M.P. is null recurrent.

Cc. If l1-a. <0 then:

(1) +v(s) 1is not the L.S.T. of a probability distribution;
(ii) if 'b<n<m then © > 0;
(iii) the S.M.P. is transient.
Proof':

Except for -<A(iii), B(iii) and C(ii) all parts of the lemma are
well-known. For example [33,46]. If 1l-an = O, then -~v'(0) = » so
that € = O. '

“Assume 1T > 0. In proving A(iii) and C{ii) we note that
1-H(t) < Ke T by A. Thm. 4. Iet K be such that this inequality

holds for all +t > 0. Then

n(s) > {s[1-k] + 1} {s+M}™  if s >0

(35)

h(s) < {s[1-K] + M) {s+M}™ a2 -7 <s <O

Let

(36) f[s;y(s)] = XY2(S)~Sy(S)-[X+ﬂ+K(l-K)]y(s)+s(l-K)+K(l-K)+ﬂ .
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Then from (33), (35) and (36) we obtain

£(s,v(s)) >0 it -1 < s+#-wy(s) £0;

f(s,y(sjj_s 0 if s + A 2> ay(s).

A consideration of the graph of the hyperbola f(s,y(s)) =0 in

the prescribed regions yields:

. | 2
(a) if M >K. then 6 > V1 - /g% .
(b) if N <KL then 6 > 0.
This proves the lemma.

Since « is the mean of the distribution H(t) we have by (35)

- = h'(0) = lim Eﬂi&:& > - % ’
=0+
and hence ol <K. If additionallyv N> Ky then 1-op > 0. This sim-

plifies the statement of

Theorem 2.k,
The S.M.P. defined above is:
(i) transient and exponentially ergodic if 1-Q < 0;

(1i) positive and exponentially ergodic if N > AK.
Proof':

(ij By Thm. 2.1 and (34) we have to show that m(s) converges
in P(B ) for some B, > 0. For then (E)) of §3 is satisfied for
i=j=o0.

If 1-0A <O then the S.M.P. is tramsient. Moreover by C(ii) of the
lemma +v{s) converges in P(8) for some .e >0; v(0) £ 1 vy C(i),

and hence y(s) + 1 in a neighborhood of s = 0. By A. Thm. 3 ms).
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~ converges then in P(Bo) where B = min(n,8) > O.

(ii) By Thm. 2.2 we need to prove that. (E) holds for i=j=0,
or that m(s) - x[l-ax]s'l converges in P(BO) for some B, > O-
This follows from Thm. 1.1 since i§§ v(s) converges in P{min(1,8)} =
P(e) where e > [/7 - /Kl]g >0, and is the L.S.T. of a strongly non-
lattice distribution. This proves the theorem. |
The above theorem together with lemma 2.11 should be compared w%th
a result obtained by S. Karlin and J. McGregor in [21, p. 102].
Remark. )

C.K. Cheong, a student of D. Vere-Jones, independently obtained

- several of the results in this chaptervas discussed in his preliminary

report [5].
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CHAPTER IIIX
RENEWAL THEOREMS WHEN THE FIRST OR THE

SECOND MOMENT IS INFINITE

~

The glassical renewval theorems do ﬁot tell much about the renewal
function if the mean renewal lifetime is infinite. |

To obtain more accurate results we prove a theorem that can be
considered as the analogue of Smith's key, renewal theorem [L41] if
i-F(t)va-t_aL(t) for t — = where L(t) is slowly varying and 0 < o < 1.

in sectioﬁ.3 we consider 1l <o <2. An application of the main

theorem yields precise estimates for the renewal function in that case.

i

1. Regularly Varying Functions

In this section we collect a number of results that will be gpplied
throughout the entire chapter. "For a general discussion, see W. Feller
[x23.

Definition 1: A function L{t) is called slowly varying if IL{(t) is

L{xt)
I{t

defined for t > 0, positive, continuous and if lim =1 for

too
all x > 0. We write L(t) is s.v.

Definition 2: A distribution function F(t) ¢ Va for o >0 if

there exists a slowly varying function L(t) such that

(1) - 1-F(t) ~t Y L(t) as t oo

The real number ¢ is the exponent of F(t), and F(t) is said to



an

418

~\mmbe a regularly varying distribution with exponent «. It is easy to
show that if (1) holds for some o > 0, then this « is unique. More-
over. if FeV , then 1-F(t) = c(t-a+€) for every e > 0, and if
1-F(t) = 0(t™%) but 1-F(+) =|=.o(t_a/) “then Fev,.

The class. Vd is a subciass of.the family of regularly varying
functions as defined by Feller [12], K. Knopp [26] and others. If ¢ = O
then we assume that F(t) <1 for everj t > 0. V0 redqces to a class
of slowly varying functions. A paper by S. Aljandid, RjiBojaniE and
M. Tomid [l] (later on referred to as A.B}T.) contains a number of im-

.portant results, that will be used later. |

Temma 3.1.

Let L(t) be slowly varying. Then

(i) I—“Qll)-—»l as

(%) t = o uniformly in every finite interval;
(i1) For every v, tYL(t) o if v >0 and tYL(t) - O if y < 0;
(iii) 1f Il(t) and Ié(ﬁ) are slowly varying, so are Ll(t) Lé(t)
o Ll(t)
and i;(ET-'.
Also the next lemma is stated without proof. The first part is
due to Parameswaran [34] and VW.L. Smith [42]; the second part was proved
by J. Lawperti [27] and W. Feller [12].

Lemma 3.2.

t
a. If L(t) is s.v. for t >a, 50 is M(t) = f -Ii_}%c-_ldx
. a

b. Let f£(x) >0, and suppose that f£'(x) exists for large X.

oy .
If lim 5%(&%% = @, then f£(x) = x¥ L(x) where L(x) is s.v.
X0 . -
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.. Corollary 3.1.

19

If F(t) has a derivative for large t, and if for some o > 0,

1im £ F'(t) = c($0, $=), then Fev .

tco
Proof:
For a fixed e > 0 choose t > to such that
-o-1 ' ~a;l
(2) (c-e)t 7 7 <F(t) < (eve) T 7,

and since « > 0 +this implies

(3? | (c-E? t—; < l—F(t? < (c+€? %ﬁ .

From (2) and (3) we get that for + > b

c-¢ _ tF'(t) cte
@ ore S 1-F(t) S« c-¢

The result follows now immediately from lemma 3.2.b.

One of the main properties of s.v. funetions is expressed in the

following lemma, which combines an Abelian and Tauberian theorem. An

elementary proof is given by Feller in [12, p. L4217,

Temma 3.3.

If L(t) is s.v. and G(t) is a positive, monotone and right

hand continuous function on [0,»] and if O <o <, then each of the

relations

g(s) ~s % L(%) s = O+

and
o

G(t? ~ﬂ—Z;EL(t) £ = o
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“~-_implies the other.

Although slowly varying functions have important applications in
limit theorems of sums of independent random variables, we do not need
them here. We refer to the standard treatises on the subject [12,16,31].

An application similar to those contained herein is given in Lamperti,

',[28].

(

Next we derive a number of lemmas involving integrals of regularly
varying distributions. We assume that if FEV&, then 1-F(t) = + %L(t)

for all t >0, and that as t - O+ L(t) is so defined that £ 7L (t )1,

Moreover if FéVl then we define

‘ t \
(%) I*¥(t) = f [1-P(x)] ax.
. ' ' - . [e} .

Temma 3.4,

(1). ILet FeV , O <o <1. Then

f e'St[l-F(t)]dt A,s“'l'r(l—a) L(s) as s = O+

(ii) ILet FeV,. Then

o]

J e 5t *(t) at N,é L*(%) as s - O+

(o] - -
Proof:
(i). f e %% [1-F(t)Jat = ¥ j ety L(=) au.

o) o

Now o < 1. Hence A.B.T. Thm. 5 is applicable. There results that

~c

(se]
the integral on the right is asymptotically equal to sa~lL(§) j e %%y
. Ty

as s = 0O+,
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. (ii) By lemma 3.2.a I#(t) of (4) is s.v. and part (i) appiies

for « = O.
The next lemma evaluates some integrals asymptotically. The first

part follows directly from A.B.T. Thm. 2, while in the second part A,B.T..

o

Thm. 1 applies.

Lemma 3.5.
(1) Let FeV . Then for all k <e -1
® 1 o Gmotl
jtx [l-F(x?] X~ T L(t? as t oo

(ii) ILet FeV,, p >0 and q >o. Then

t ,
I (t-x)P_l x4t [1-F(x) Jax ~ tPFa-1- B(p,q-o) L(t) as t » =
o - : .

2. Renewal Theorems for the Case Where

No First Moment Exists

In this section we prove analogues of renewal theorems that are
classical in the case where a finite first moment exists.

An elementary renewal theorem was proved by Feller.[13] in con-
nection with fluctuation theory of recurrent events. He considered
1-F(t) ~t ¢ where 0<o <1, W. L. Smith proved a result for the
two béundary cases o =0, o =1, [k2].

Assume from now on that FeV , 0 So < 1. Since n(s) = i%%%%y 5
vhere h(s) is the L.S.T. of the renewal function H(t), and

&

(5) ‘ Cf(s) = 1-s J e 5% [1-F(¢)] at
. . o .

it follows from lemma 3.4 that
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t sin on
L{t) ox

H(t) ~ if 0<ae<1

if o=1

Proof:

Take first O <o < 1. Since L(t) ¢ 0, — s s.v.

L(5)
By (6) and lemma 3.3

o
M(1-¢)T(1+a)L(t)

H(t)rv as t = o,

52

A . ) -y
(6) if 0<o <1 then h(s) ~——2—— as s = O
I(1-o) L(3)
s-l
(7) and if ¢ = 1 then h(s) ~ as s = O+
1
I*(=)
s
Theorem 3.1.
It FeVU, then as t —»
1 o
m) ifo=0

But I(l-o) I'(l+a) = ol(e)T(1-¢) = ax[sin an]-l hence the theorem

follows for 0 <o < 1.

If o= 0, again (6) and lemma 3.3 give the result.
If o =1, then (7) and lemma 3.3 yield that

8 - t _ t

® R O ~

J [1-F(x)Jax

o)

as 8 = O+,
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which finishes the proof.

Formula (8) shows that if the first moment should be finite, then
H(t) NIE as t.ﬂ © vwhich is the elementary renewal theorem.

Besides the above theorem, two othef renewal theorems are also
useful: Blackwell's theorem and Smith's key renewal theorem. Since
FeVQ, where o < 1 neither one of them gives more information then '
a o(1l) relatione

From Thm. 3.1 we always can find a s.v. function Lé(t) such

that
(9) H(t) ~ t% L(t) .

To indicate the dependence of H(t) on o, we write Ha(t) = talé(t)
as before.
If y <o +then the key renewal theorem essentially states that

a function Q(t), which has the same growth properties as 1-F(t) may

be used to obtain a Finite limit for the convolution Q¥H(t) as t = .

If FeVa, then an appropriate choice of Q(t) could be Q(t) m»t-BLl(t)
where 0<pB <1 and Ll(t) slowly varying.as t -~ \m. |

| We know from (1) and (9) that both L(t) and Le(t) are of bounded

variation. By Jordan's theorem there exist two functions I, (t) ‘and

2

Eé(t)’ which are nondecreasing and such that

(10} L2(t) = Le(t) - _I_,e(t).
Assume now that

L (t) + L,(t)

| . 2 2
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. Lemma 3.6.

If (S8) holds then fz(t) and Le(t) are S.v.

Proof: -
- Le(xt)- _
The only requirement we have to check is 1im = =1 for all
: t Lz(t)

x > 0.
I (t)
It follows from (S) that 11m _T_) = ¢ <. Moreover c > 1

since L2(t) > 0. Hence"

fg(xt) L (xt) Le(xt) L2(t) 1
lim — - = 1lim (xt) L(t)"—— .=c'l'-c-=l.
too L(8) e Lo 2077 Iy(t)

If 11m L%(i)— > 0, then the same argument shows that Le(t) is s.v.
We state an analogue of Smith's renewal theorem. The proof is
based on a number of lemmas.
Theorem 3.2. _
Iet 0<a <1, FeV . Assume that Le(t) satisfies (3).
For 0<B <1, let QB(t) =P L (t) where LJ:(t)- is s.v. and
QB(t) is nonincreasing. |

Then as € — o
t

.t jOQB(x?dX
(12) f Qp(t-x) A (x) ~ C(eyB) =
| rer (o) 0
(o]

where [C{o.B) ]..1 = (2-8) B{o-p+l,2-0) for 0 <o < 1.



Proof:
We first prove the theorem for.-Lz(t) nondecreasing (Part A); then

we discuss the case when I, ‘satisfies condition (8), (Part B).

2

Part A: Ib(t) nondecreasing.

=

Let € be a fixed positive real number, 0 < ¢ <= . Then

t | et t-et ot

JO Qﬁ(t—x? dHa(x? = {jo + IEt + J;

I(t) _et} Qp(t-x) a (x)

Hi]

Il(t? + Iz(t? + Is(t). .

Since Ha(x) = xgi?(x) we can break up Ie(t) and I3(t) into
two parts

t-ect

: t-et . :
: \Ie(t) = O Jet QB(t-x) L Lz(x)dx+ f _Qﬁ(t-x)xasz(x)EIgl(t?+122(t)

et
Similarly 13(t) = I3l(t) + 132(1:).

We show that I(t) is approximated by 121(t) for large values
of . t. For this reason, we first estimate Iel(t)' »
Lemma 3.7.

FPor t - o

l-¢g

i l-¢
L (l-u?-ﬁ ua"lLl[t(l-u)] Ly [ut Jau ~ Ll(t? L2(t) Je (1-u) " Bu® 1qu. |

~-Proof':

Consider (compare lemma 3.1 (iii))
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. l-¢ l-g .
1 -8 -1 -B. Q-1
Ii&zgjf;zzj'je (l—u? u Ll[t(l-u?]Lz(ut?du— Je (1~u) W dul
1-€ L [t(1~u)JL,(ut)
-8 «a-1;"1 2
S Je (l'u? u I L_]_(t) Lg(t) . — - l’ du.

Since Ii(t) and Lg(t) are s.v. there exists a constant &,

independent of u (lemma 3.1 (i)), such that for i=1,2, and % 2t

L. (ut)
—— - 1] <8 for all u e (e,1-¢).
L, (t) - .

Hence the above integral is majorized by

l-¢
5(1+5) j (1-u) P ¥ qu.
- Ye

- It t - », then 6§ = 0, and hence the lemma follows.

For brevity, let us write

1-
B(e) = J ) (l-u)-B o>t du.
: €

Lemms 3.7 shows that

Iel(t? ~ 0B(e) t&P Ll(t? Lg(t)

~ 0B(e) QB(t) Ha(t).

We have to compare the integrals I and I with I_.:

1’122’I31 732 21
this is done in the next four lemmas.
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I (t)

" Iemma 3.8. cq < 11m -—-7—7-< c ea, where ¢, and ¢, are constants
21

independent of t and e.
Proof: Since QB(t) is noninéreasing we obtain from the definition

of I,(t) that

%(t) Bylet) <1, (8) < Qplt(1-)] Ky (et)

 Now as t =

N

Qe (t)E (et) eoib(et) R -
Igl(t) ' N'QB(e)Ib(t) ~ oB(€)

and .

Qe (1) Hfet) (3 )b

€
) 08 )

~ 3

But B(e) > B(%) since 0<¢< %u Hence for some constants. ey

independent of e the lemma will follow.
Lem@a 3.9. Ige(t?’= o(Iel(t?) as t = o,
Proof':

I (t) -€ _
Clearly: Iii(t) “’aB(e)Ll%t)Le(t) ji (1-0) Buaii[t(l-u)]sz(ut)

which by the fact that L.

1 is s.v. is majorized by

1+6

) i (t) f (l u) B¢ ar, (ut)

since I?(t) is nondecreasing.
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‘To estimate the latter integral, we apply a mean Va;ue theorem:

there exists c¢ e [e,1-¢] such that

Ié[t(l-e)] Ié[et]
L2(t)' B Lg(t)

-€
1 - a -8 O
T E) jl (1-u) P v dLE(ut) (1-¢) P ¢
€ .
But Ié(t) is s.v. So the expression on the right tends to zero
as t — ®. This proves the lemma.

Lemma 3.10. There exists a constant c¢. independent of e and t

3.
such that
I 1 (t) 1-p
0 < llm ———(—— < c € .
21
Proof:

Obviously as t — o

1
Iel(t) “’OB(e?Ll(t?Ié(t?

ESl(t) 1

(1-u)’B Wt Li[t(l-u)] L2(ut) du
-c , _

l+6 -B a 1
- aB(e) I (l u) du

where & was defined similarly as in lemma 3.7. The latter integral

is mgjorized by

2 ' 1 :
1+6 01 _\-B 1-8
B (1 e? jl-él u? < ey €

This proves the lemma.

Finally
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Lemma 3.11. 132(t? = o(IEl(t)? as t - o,

Proof':

As before

I,.(t) '
32 (1+8) 1 -8«
0= Iy () = aB(e) L (%) E_gl'u) u anp(ut)

-B

dLg[t(l-v?].

<1t 1 [“:v
~ oB(e) Lgit) 4
But the last integral is an improper integral. Since Lg(t) is

nondecreasing, the existence of this integral is proved as follows:

let 0 <N < e, then

j BdL [6(1-v)] = lim j P ar [t(l—v)]
o . O

= lim {—-— L. [t(l e)] - —l— L, [t(1-~ n 1+ ajeLe[t(J_-v)]v'B'ldv} |
o &P n N

and since in (7,¢€) Ié[t(l-v)]'f Lg[t(l”ﬂ)]

(1~
o< Iplt) a4 _%{Lz[ (1-e)1 1

21(t <otB(e:) . Lz[t]'

which tends to zero as t = «, This proves the lemma.

Combining the last five lemmas, we obtain that for every e >0

l+c ea < lim —lt%ly < l+c €a + c el-B.
1 - 121’0— 2 3

G0

Hence for + — « by lemma 3.7
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.'c<t)~on(t)H(t)fl(lv)f”‘l

or
(12) I(t) ~ aB(1-8,0) Qﬂ(t) Ha(t)'
To finish the proof of part A, we have to show that (12) and (ll)

are asymptotically equal. This is proved by using

Iemma 3.12. For t — «

t | .
| (i) fo [l-F(x?] dx ~ | a?i‘fa‘)"g H;(t) if 0<a<l
4 .
L Hl(t) if =1
(12) | ot @~ gy o).

Proof
Let @ = 0, then by lemma 3.5 (ii) with p=l1 and gq=1 >0, and

Thm. 3.1
t £
Io[l-F(X)] dx ~ tL(‘t? ~ Im-t_)— .

A similar proof using (4) gives the relation for «a = 1.

If 0 <o <1, then by putting p=l, g=1 >a in (ii) of lemma 3.5

t
I [1-F(x)] dx ~ ;17 B(1,1-a) L(t).
o .
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But by Thrii. 3.1 we also know that

Q.
t sin Ox

L(t) ~ ax Hait)

which proves (i) of the lemma.
Part (ii) is proved similarly.

An elementary computation shows then that

sin Ox 1-

as t — @

[a

Q. (x)dx

Bo®
T

[1-F(x) Jax
o]

OB(1-p,@) Qq(t) Hy(t) ~ B(1-8,a)

which agrees with (11).
This finishes the proéf of part A.

Part B: Ié(t) satisfies condition (S).

Let Le(t) = fé(t) - Lb(t) and put J(t) = j Qﬁ(t—x) d{xa fé(x)}
: o
, + ’
J(t) = | Q.(t-x) afx> 1, (x)}.
1) = [ g(e-x  1(0)

Since both fé(t) and Lb(t) are nondecreasing and s.v. by lemma

3.6
(1) F(t) ~ aB(1-B,a) Qy(t) £ L(t) as t-e
(2) 3(t) ~ 0B(1-8,0) Qg(t) t7 Ly(8) as - e

If we denote the right hand side of (1) and (2) by K(t) and
E(t) respectively, then there exists a § > 0 such that for all:

t >t
- 0
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1-6 <8 <
K (t)

J (t)
1-8Sgrrystte

Hence

1(t) T, ) L) L, (¢)
om(1-8,0) Q)67 (8) K (b)) T () E(E) L, (8)

or for t >t
-0

L (t)+L,(t) T (t) + 1(t)
2 = I(t) ) =D
1-6{ T,(6) = GBI, @) (RLE) = 1+ I (%) 1.
By (8) we obtain that for t — «
(13) I(t) ~ oB(1-,0) Qq(t) Hy(t).

However l\emma 3.12 was not based on the assumption that La(t)
was nondecreasing. Henceforth it implies the asymptotic equality of
(11) end (13).

This finishes the proof of Theorem 3.2.

In the next theorem we derive an asymptotic result for
E[N°(t)]. Let Var N(t) = V(t).

Theorem 3.3.

If FeVy,, 0SO®<1 thenas t-w
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21 if @ =0

L°(t)

.2 1-20,., . 20

V(t) ~ | SR /x 2 (O‘l) }-———-—-; iFo<a<l
VBT Y e ;

2

ol Z if @ =1

L ()

Proof:

. It is well-known [41], that

E[N°(t)] = H(t) + 2H * H(t)

-

.

50 that the L.S.T. of the left hand side equals h(s) + 2h°(s). The

proof for O=0 is obvious by an appeal to Thm. 3.1 and lemma 3.3.
Also o=l follows quickly from the same statements.
If 0<a<1 then we obtain that
20

(k) E[NO(4) ] ~ 2t = 88 t ~ @ .
r(ea+1)[r(1-a)]” 15(t)

Combining (1) with Thm. 3.1 the given result is immediate in view of

the identities F(a) r(l-a) =

1l 2 1
o om and I‘(2a+1?= 72 I’(O!-l-é-?l"(a+l?.

This finishes the proof.
The above theorem complements a result of Feller [13] where F('L)
is supposed to satisfy the relation l-F(t) ~ 7% as t o for

0<a<1l.
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3+ Renewal Theorems for the Case Where Only

the First Moment Exists

Assume that F(t) has finite first moment p§ To apply theofem

3.2 we assume that FeVd for 1 <a<2, sothat p <o but My < @,

Define
L
(15) Fp(t) = & f_o [1-F(x) Jax
- ‘ %
- (16) - o G(t) = H(t) - " + F2(t)
(17) B(t) = = E(¢)

1

The importance of the above functions is illustrated in
Lemms 3.13.
(i) Fz(t) is the distribution function of a nonnegative ran-
dom variaﬁle. Iés L.S.T. f2(s) is given by fe(s) = [ps]—l [1-r(s)]
(ii) 1 F(t) € Vo for 1<a <2, then Fg(t) €Vyq |
(iii) a(t) = (1-1«"2) * H(t)
(iv) f(tj is sloﬁl& varying.
Proof:
The first part of the lemma is well-known [41], and (ii) is a
consequence of lemma 3.5 (i) with k=0. Let. g(s) be the L.S.T. of
G(t) then (16) implies that g(s) = h(s)-a%— {1-ps fa(s)}=h(s)-;%(§—))wff(s)
by égplying (ij twice. From the last eqﬁality (iii) follows immediaﬁ?ly.- \
To prove (iv) %e recall that the elementary renewal theorem applies: ;

H{t 1

P t » o, Hence H(t) ~=TIL(t) for some s.v. L(t). This

S

proves the lemma.
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>\Theorem 3.k,

Let L(t) satisfy (S). If FeV, for 1<0 <2 thenas t~o

2-0

H(t) -t b

L(t).
KB (a-1) (2-q)

Proof:
From (16) and (iii) of the lemma we obtain
T

(18) [ [1-F2(t-x)] aH(x) = H(t)- E+ Fg(t)

(o]

c’.

Let Q (x) = 1-F (x) with p=0-1 and H (t) = T(t); then

Thm. 3 2 ylelds

t :
J [l-Fg(x)]dx

f [l-F(x) Jax

By (i) of the lemms, F (t) O(l) as t —» o and I [1-F(x)]Jax - p

a8 t = . By lemma 3.5 (ii) for p= q—l and « replaced by @¢-1 we

2-a
obtain J [1-F, (x Jax ~ ?a T B(1, 2-a) L(t)

Using t7~se expressions in (19) the stated result follows.

The the.icem complements another result of Feller [13]. From

lemma 3.1 (ii) we see that under the given conditions H(t) - E

still tends to infinity as t - «.

Corollary 3.2.

Let L(t) satisfy (5). If FeV, for 1<a<2 thenast—o

o3¢

1 (3-a) (2-01)

V(t) ~ L(t)
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We outline a possible generalization of the above procedure to

the case where the mth moment of F exists (m <2) but not the

mtlst moment.

Define a sequence of distribution functions {Fk(t),k=l,2,...,m}
as follows

Fl(t) = F(t) k=21

- ot
R (t) = 4 f [2-F, _,(x)Jax 1<k <ml
. [e) .

'm
~ where ail = I [l—Fk(x)]dx, k=1,2,.4,m
o : :

The mass function Fm+l(t) is not necessarily finite for t —» =

- since Pl = ©, By using L.S.T.'s it is easy to show that

. k“
QK = k-l k = 1,2,.-.,m.

P

In addition to the functions Fk(t), we define
t
»Hj(t) = j [l-Fj(t-X)] dH(X) j=lz2,-n-,m+l
) . o] . .

The analogue of lemma 3.13 (iii) yields that for 1 <k <mtl

k-1

k-1
t : :

(20) Hk(t? = Fk(t? + B3 Jo(t-x?J’l dﬁ(x)+ 2: By 541 %
. J=1 J=1

where

.

A .=

-1 k-1, Pk-3 .
K, 3 ("l)J ('—l) =) J = 2,300,k

o Hxaa
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The system (20) can be solved recursively for the functions
b X
[ x)?™ an(x)
o .

An asymptotic value Tor Hk(t) is obtainable from Smith's theorem
for k=2,3,...,m and from Thm. 3.2. for k = m+l, Moreover precise
bounds are known for the distributions Fk(t) in termg of the moments .
Ve refer to papers by R. Barlow, A. Marshall.and F. Proschan [2,3]. ‘
For another approach when m‘é 2 we refer the reader to the im-
portant papers by Ch. Stone [43,4h4,45]. There precise bounds are
given on the renewal functipn and in Blackwell's theorem, even for thg
generalized renewal process of the Chung?Pollard type [T]. His métho@s
however are completely different from thoéevoutlined above. :
Another way of obtaining estimates on the error term in the limiﬁ
theorems is to apply Tauberian remainder theorems of'S. Freud and
A.E. Ingham. Ve refer to [19] vhere a very general version of such
a theorem is given. Tauberian reméinder theorems of a different na- f
ture are obtained by T. Ganelius, A. Beurling, S. Lyttkens and L.

Frennemo, [1k].
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CHAPTER IV

- ERGODICITY IN DERIVED MARKOV CHAINS

A general theorem is proved stating that the érgodicity of a sta~
tionary Markov chain is preserved for derived Markov chains as defineﬁ
by J.W. Cohen, [&,9].

The four possible combinagtions that occur are discussed in separ-
ate sections.

In section 9 we apply the thecrem to a certain type of continuoug

time Markov chains by using theorems of H. Miller, [32].

l. Definition of a Derived Markov Chain

In {8,9] J.U. Cohen describes a method to derive a new Markov

chain 2M from a given Markov chain lM. Both chains have the same

state space I and the Markov chain 2M is derived from lM by using

a deriving function b(s,t) of two variables.

Let lM be determined by the stationary transition matrix
lP(t) = (lpij('t)) and the initial distribution {pi, ieI}, which is
irreievant for éﬁr purposes. The time parameter +t takes values in
[0,%] or in [nt_, n=0,1,... for some t_ >07.

The deriving function b(s,t) satisfies the following conditions:

(i) For every fixed s, > o; b(so,t) is a probability distribu;-

tion of a nonnegative random variable;

(ii) For every fixed + and all $1s85 20
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(1) b(sl,t) * b(se,t) = b(sl+32,t).

(iii) a. For s=0, b(0,t) = U(t)
b. If s varies continuously, then b(s,t) converges
completely to U(t) if s ¢ O.
We define a new matrix 2P(s') = (Epij(s?? by

(=]

(2) P(s) = j 1B(t) 4 b(s,t).
. . o) . .

The properties of the deriving function imply +that 2P(s) is a sta-
tionary transition matrix. Since the statespace I remaiﬁé unchanged
as well as the initial distribution {pi, ieI}, there exists a sta-
tionary Markov chsain 2M that has 2P(s) as transition matrix and
fpi,iel} as initial distribution. Mbreéver, if s varies continu-
ously then 2P(s) is standard [6].

Depending oﬁ the range of s and t, four different cases can
arise:

a. lM is a continuous chain, 2M is a discrete chain;

b.

M 1is a continuous chain M 1is a continuous chaing
1 2 9 »

c. lM is a discrete chain, ,M is a discrete chain;

2
d. lM is a discrete chain, 2M is a continuous chain.
In the case that 2M is discrete,s takes values in the set

'[ﬁso, 0=0,1,2;... for some s_ > 0] and (2) reduces to a sum.
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2. Properties of the Deriving Function

Much more can be said about b(s,t) if we consider the cases of
discrete and continuous s separately.
a. s discrete

Since s = ns_ = for some n, (1) implies that

Ii

*
b(s,t) b(nso,t) = a% (t) forn >1

(3)

It

b(0,t) aof(t) = U(t) ) for n = O

where anf(t) is the n-fold convolution of the distribution function
a(t) = b(s_,t).
| b. s coﬁtinuous
By (1), b(s,t) is an infinitely divisible distribution of a non-
negative random va¥iable for every fixed s. Denoting by B(s,\) the
1.S.T. of b(s,t) with respect to t, a theorem by Phillips [18;p. 560]

yields that for real A =0

(%) log B(s,) = s[-mn + f (™17 (4)]
. O

where m is a nonnegative constant and ¢(t) is defined Dby

<o

. , 2
(5) u(t) = ~[ 1+Z ace(x) for t > 0.
. . “t x .

Here G(x) is a real bounded nondecreasing function, which vanishes
for negativé argument. Moreover, b(s,t) is completely determined by
m and P(t). |

If in éddition to the fact that s varies continuously, t takés

on only discrete values, one can apply a theorem by Blum and Rosenblatt
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“[4] to obtain that m=0 and ¢(0+) > -, Using these conditions,

Cohen inverts the L.S.T. B(s,\):

(6) b(s,1) = SHON T LatlonT pox

n=0

where

(7) b(t) = 1- oY)

is again the distribution function of a nonnegative random variable.

3. Ergodicity Conditions

Iet M (i=1,2) be either one of the Markov chains under consid-

eration.

-Definition 1l: Let iM be a continuous stationary Markov chain on I.

A state JjeI 1is said to be exponentially ergodic if there exist con-

steats A, >0 and 0 <K, <e such that for all t >0

-2.t
(8) |ip55(8) - Lin o ()] <K e 7

iP5 o 1043

Usually, (8) is only required for t > t,> 0 for some t+ By

changing Kj however the above relation holds everywhere.

Definition 2: ILet iM be a discrete stationary Markov chain on 1I.

An aperiodic state JjeI is said to be geometrically ergodic if there

exist constants O < Py <1l and 00X Kj < such that for all n >0

(9) |ip§?) - lin ipgfjl)l <K (p)"™
n—e .
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If state JjeI is periodic with period ivj’ then J is said to be
geometrically ergodic if there exist constants O < pj <1l and

0 SKJ. < ® such that for all n >0

(n iv.) (n iv.) n v,
i3 - lim .p., J-I < K.(pi) J.

(10) l lingpyy Ol <Ky

.ip

The constant xj (pj) will be called the decay parameter of state j;

Since it will bé clear from the context, we usually will drop the
terms '‘geometrically'' and ''exponentially'' when we talk about ergo-
dicity. An ergodic state should not be confused with a positive re-
awrrent state. To simplify the notation even more, we always drop the
index referring to the state.

Throughout we assume that for all s > 0, b(s,t) { U(t) since

it

otherwise 2P(s) I for all s, which is an uwninteresting case.

The theorem we prove essentially states that if jelM is ergodic,
then _jeéM is also ergodic. We can restrict our attention to trans?
ient and positive recurrent states, aé was indicated by D.G. Kendall
[22]. The constants involved in tﬁe ergodicity condition for.the
first chain determine the constants for the ergodicity condition in
the second chain.

It is clear from (2) that some proofs might depend on a mean
value theorem on [0,»]. We mention one that will suffice; the proof
is analogous to Th. 10b. [48, p. 17].

Lemma L.1.

Let F(x) be the distribution function of a nonnegative random

variable. Iet m(x) be a positive, bounded function continuously
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O
- decreasing to zero as x tends to infinity. Assume that I m(x)ar(x)< o.
0

Then there exists a constant §; neither zero nor infinity, such
that
0

J n(x) arF(x) < m(0) F(E).
o . _

. We now state our

‘Main Theorem k.1,

Let lM be a stationary Markov chain with state space I. ILet

M Dbe a stationary Markov chain derived from .M by the deriving

e 1

function b(s,t) § U(t) for all s > 0.

If the state JeI is ergodic in .M, then J is also ergodic

1

in 2M.

We prove the theorem by establishing it for each of the four

cases indicated in $81.

M Continuous and _M Discrete

k., Proof for 1 o

Iet j be a fixed (exponentially) ergodic state in I, i.e. by
(8)

, -\t
(11) ]lp(t) - elﬂl < Ke

vhere € =0 if j is transient in .M and e=1 if § is positive.
In the latter case {lﬂj5 jeI*} is the stationary distribufion over
the positive states I¥ C I.

Since M is discrete, (3) implies that

(2ed

(12) 2p(n) = [ o) aa™(v).

From (12) and the fact that lpjj(t) >0 [6, p. 121] we see that je M

is aperiodic.
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Moreover, it can be shown (Thm. 5.1 in [9]) that
(1) 1im p(s) = im .p(t);
. g~ 2P 10 L .’

M, then J is positive in

1 M;

(A) 4 (ii) If § is positive in M

M, then j is transient in M.

(1i1) If j is trensient in 7 o

Hence, by (A), (12) and (11)

‘t
lzp(n) € lj lp(t) da” (t)-e J da” (t)l <K j Mg P¥ (t).
An application of lemma k.1l yields a finite € » 0 such that

(13) |- epnl sk 2™ (8),

If weput O <alf) = p, then p <1 since bfs,t) + U(t) for s >0.

Hence finally

| > ’*-enl<Ka (§)<K[a£§)3 Ko" for n >0,

which proves the theorem in this case,
We remark that we did not need the exponential ergedicity in (11).

Suppose indeed that
(1) [p(t) - egn] < x £(t)

where 0 < £(0) <o and f(t) decreases continuously to zero. Then

exactly the same argument shows that for some p' <1 and all n,
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- (15) |2p<n? - en| < [k£(0)] 0"

Cases where (14) applies are given by S. Karlin, [25].

5. Proof for lM Continuous and 2M Continuous

M such that (11) holds.

By Thm. 6.1 in [9] the conditions (A) are still valid.

ILet JjeI Dbe a fixed ergodic state in

Going through the same operations as before, (2) and (11) give
(16? : |2p(s) - eaarl <K B(s,\)

where B(s,\) is defined by (4). Since B(s,\) 4is the L.S.T. of a
nonnegative random variable, B(s,\.) converges for all )\ =2 0. If we

define

(a7) e - r[e')‘t 17 au(t)
- o _

then A* >0 since b(s,t) ¢ U(t) for s >0, Hence for s >0

(18) Izp(s) - €2°T| <K eV |

In the case that ¢(0+) > ~», lemma 4.1 applies again: there

exists a £ ¢ (0,®) such tfxat
(19) a* = man- [§(8) + y(o+)]

and (18) holds for this value of ¥,
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6. Proof for lM Discrete and 2M Discrete

The proofs becomes slightly more complicated since periodicities
méy occur in both chains. Since the speriodic case is the most impor-
fant, we discuss it first. Iet again j be a fixed ergodic state in
b

A. State je lM is transient or aperiodic and positive.

Since J is ergodic, (9) implies that

(20) ¢ - epnl <xo?

where € has the same meaning as before.

We obtain from (2) and (3) that

(o]

(21) | zp(m? = f 42(t) damf(t).

But t takes on values in the set {nto, n=0,1,2,...} for some

to'> 0. Hence

<

_a(t) = z a, U(t-nto)

n=0

vhere 0 <a <1 (since b(s,t) + U(t)), 0 < a <1 forn >0 and
- .

Zg a, = l. We introduce the constants {aim?, n=0,1,2,.00,m=1,2,44.}
n=

by the equation

(22) am.)f(t) = z ar(lm? U(t-nt, )
. . .

so that (21) becomes
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: |

<

(23) 2 Y alm) (),

n=0

Since the conditions (A) of §4 are still valid the proof is now

easy. For

@) 1™ -epl = 1) ol p®cie T < Jal o
n=0 n=0 n=0

Introduce the generating function

(25) £f(\) = }:an Al for le‘< 1
» ' " n=0

then (22) implies

(26) o) = ) &),
. n=0

By assumption, p <1 so that Abel's theorem yields that p* = f(p) < 1.

Combining (24) and (26) we obtain that
(27) |2p(m_> - €1l sK(p*}m

which proves the theorem in this case.

B. SBtate Je 1M is periodic but gperiodic in 2M.

lM has period 1V and is ergodic. Hence.by

(10) and a well-known theorem [6, p. 27]

We assume that Jje

(n lv) n v

(28) |2 =¥ gl ke T
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The conditions (A) change into (Thm. 7.2 [9])

- (m) 5 (n lv)
(1) lim P == lim .p - where s is defined below;
A 1 noe :
)
(a)
| (ii) If § is ppsitive in lM,.then J is positive in 2M.
Since J is periodic, (25) may be rewritten as
‘1V~l e n.v
i 1
(29) £0) = ) W) e L, T
. . . 1
i=0 n=0

Let ko denote the smallest value of the integers i e{O,l,...,lv-l}

[oo]

for which % a, v+i> C. The integers kl,k

yesesk, all belonging:
n=0 1

2

to the set {O,l,...,lv-l~k } are defined in such a way that

8o

k) <k, <... <k and a >0 for all he{l,2,...,7}

n=0 n lv+ko+kh

where r 1is the number of values taken on by i. We denote by d

the highest common divisor of 1V and kl’kz""’kr and by s tha?
of d and k .
o]

It follows easily from the periodicity of J +that

o

(n V)
m} - m 1 -
(30) LD G
, -0 1
so that we have to introduce
' i n.v
~ 1
(32) ) =) o

n=0
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Using (A)' and (30) we obtain

(n .v) (n v
(52) | 2™ -llm2p (m)) | Voam f‘;lim T
| n=0 1
< i (m) l (1’1 _]_v) I . I © (ﬂl) - _E_I - T+
= 8 viaP =V gl 4 vl ) an v Th L
=0 . n=0

From (28) and (31) it immediately follows that
(33) I, SKT°(p)e

To estimate I, we use a well-known property of the roots of unity

2
lv-l
(34) Z Moed Y e,
o voe v
n=0 h=0

There are exactly s terms in the sum on the right of (34) that are

one, namely those that correspond to the s roots of the equation

2= 1. ILet Q.= {Ay;+2;0 ] De the set of these roots. Iet

(2“1h), h = 0,1,2,...,,v-1}. Also let B =N N Q. Then if

A is a complex number such that f(x) £ 1, |n] =2, and AeB then
Abel's theorem yields that [f(A)] < 1.

Define

o =max |[F(M)] <1

Then AeB

(35) I, =,v x| Z (m) - 5- = 37l ) £ )] < jalyv-e] P
' \eB -
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If we put p¥ = max{%lp), o} <1 and K¥ > K+ln[lv-s] then (32),

(33) and (35) togeﬁher imply that

(36) lzp(m) - lim 2p(m)l < Kk*(p*)™
oo .
which shows that the result holds also in this case.

C. State J is periodic in .M and periodic in M.

1 2

Since the argument is analogous to the previous case, we only

" outline the result.

The condition (A)' (i) is replaced by

. : ) )
(a)y'r (1) iig ép(m 2" ='£% lim ip(n 1

where v is the period of § in M. (A)' (ii) is still valid.

2
We obtain that

(m V) (m .v) m v
CON g % -um p 2| cxx(er) B
where
p¥ = max [T (p), 6]
5 = mex [£(\) ]
reC
¢c =1N Qg

a
9 = {hpodgseeisdgy (W)= 1 - for k=l,...,d]

* -
K¢ > K + x[,v - @]
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T« Proof for lM Discrete and 2M Continuous

Iet J be a fixed ergodic state in 1M
A. State je lM is transient or aperiodic and positive.

By (6), since t varies discretely

[e0]

(38) b(t) = ) a_ U(t-nt )
n=0
[o2]
where a = 0, 0 < a, <1 for n>0 and X a,= 1. The generating
' n=0 '

functior of the {an} is given by (25). For brevity, let u=-sy(0+) >0
for s > 0.

It is easy to show that
n
(39) @) = ) ) et iam) ),

The procedure employed in §6. Case A leads to

(40) ' lep(s) - ¢ 2nl <Ke™
where
(11) A = -4(0+) [1-£(p)]

That A >0 follows from Abel's theorem and §(0+) 4+ 0O (since b(s,t)+U(t)).
"B. State j is periodic in 1M. '
Since this case is analogous to $6. Case B we only outline the -

result,
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Iet s be the highest common divisor of 1V and those numbers

k for which a, > 0. Let %kx), Q. and N be defined as before.

Then
(k2) [p(s) - lim p(e)]| < k* e
vhere
W* = max{-y(0+)[1-F(p), ~#(0+)[1-7]]
T = max [£(0)]
xeNnog
K* 2K + n(,v-s)

This case finishes the proof of our main theorem. It is inter-
esting to observe that in almost all proofs ipjj(t) or 2pjj(s)
could be replaced by lpkj(t) or 2ij(s) where k Dbelongs to the
same class as Jj. For sake of uniformity we have chosen to take the
states equal since otherwise the periodic cases would have become no-

tationally involved.

8. A Theorem on Solidarity Between a Chain

and Tts Derived Chain

Although easy to prove, the following theorem might be of impor-
tance.
Theorem k.2,

Suppose that lM is an irreducible stationary Markov chain on
I.. Iet oM be the stationary Markov chain derived from 1M by the

deriving function b(s,t)  U(t) for s > 0. Suppose that any state
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je .M is ergodic, then all states of .M and all states of M arei
J€ 1 1 2

- ergodic.

Proof':
The proof follows from Thm. 4.1 and the solidarity theorems of
D.G. Kendall and D. Vere-Jones in the case of géometric ergodicity,

[22,23,47] and of J.F.C. Kingman in the case of exponential ergodicity

[2k,25].

9. An Application

Consider an irreducible conservative continuous time Markov chain

- M with infinitesimal generator @ of the form

ao cl c2 c3 cee
(1_1 Co Cl C2 sae
Q = 01_2 C_l co Cl ev e
0_3 0_2 C_l Co )
o«
Where a"k = - ch for k = 0,1,2,--- .
n=-k+1

Assume that
[¢o]

(1) Z ke <0
00, .

SCA.k for some C >0 and 0 <x <1l.

(i1) for k >0, ¢

We prove that under the sbove conditions M is positive recurrent

and exponentially ergodic.



<

(k)

Bk

~

Consider an irreducible aperiodic discrete time Markov chain M

: defined by its one step transition matrix

1l + ozo cl c2 c3 ees
a [ BN ]
-~ -1 1+ c, Cl 02
P =
Cz_2 c_l 1 + c0 c:L

A theorem by H. Miller [32] ylelds that M is positive and geo-

:metrically ergodic if the conditions (i) and (ii) are satisfied. More-

" over the common decay parameter is

We show that M is derived from M. Iet M be the continuous

Markov chain derived from 'IT'I' by using as deriving function
b(t) = U(t-1), y(o+) = -1.

It follows from (38) and (39) that

o
(43) P(s) = Z e ® ir—l; (n)
- 2 n! ot
n=0
But - an easy computation shows that the infinitesimdl génerator 2Q of

2M satisfies
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Identifying 2M with M [6, p+ 237] we obtain from Thm. 4.1 that M

" is positive and exponentially ergedic.

since b(t) = U(t-1), ay=1 and a =0 n 1 in (25). Hence

£(A) = A» By (41) the decay parameter of M is

(45) A = - min }ﬂ ¢y ekt, k = 1.
t>0 &

Similarly we can prove that if
-
vy
(1) Z ke <0
-0

(ii)' for k<O, ¢ SDu”k for some D>0 and O0<pu<1

k

then M 1is transient and exponentially ergodic with decay parameter

(o)
kt
A= - min Ej C € s K=1.
t <0 :

We remark here that H. Miller obtains many other interesting re=
sults that can be gpplied along the same lines;

We finish the discussion with a simple example from queueing
theory. Although the matrix @, defined bélow, is not exactly of the
form given above, another theorem in [32] assures that the éame~con;‘
clusions are still volid.

Consider a queuveing model with exponential input at rate n, ex-

ponential service times at rate p, and n servers in parallel. Tt

is easily shown that the infinitesimal generator in this case is of

the form {20, p. 433].



T

A A 0 0 cee 0 0 0 e
7 =“A=p A 0 cas 0 0 0 ses
0 21 “A=2u A cas 0 0 0 vee
0 0 0 0 e “A-npy Y 0 .
0 0 0 0 ... nu T e .
0 0 0 0] ‘oo 0 : ny “A-DlL  ees

i

Here pij(t) is the probability that at time t there are J
customers waiting in line or being served, given that there were i

customers in line at time .O.

o

Clearly I k c

-Q0

fied. Moreover

= Mb, while (ii) and (ii)' are always satis-

ck ekt = =\ -nu + )\,et + ny e-t.

m
g

E(t)

...m

Suppose A > nu, then the procesé is transient and for all i

and j and all t >0

(16) by 3 (t) < exp{-[/ - viul® ¢}

Suppose A < nu, then the process is positive recurrent and for

all i and J and all t >0

(47) |p ;(6)-2im B, ()] < exp{-[/u - vAD® t].

0
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We prove (46). We only have to find the decay parameter. But

~for t <0

E'(t) = 0 if t, = -5 log =
and hence

min E(t) = E[- = log 2] = -\ -nu + 2/F0 .
t <0 2 7 |

The above results (46) and (47) should be compared with [21, p. 102],
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APPENDIX

Theorem 1: If A(t) is a real valued function satisfying A=O[eot]
for t — « and some real number @ , then a(s) éonverges for all s

such that Re s >a. [48, p. 38].

Theorem 2: (i) If a(s) converges for s = Q+is, & > 0, then

At) = o[eat]. as 1t - ®;

(1i) If a(s) converges for s=+i§, & < 0, then A(+=)

exists and A(t) - A(w)‘= o(eom) as t ~ «. [48,p. 40].

Theorem 3: If A(t) >0 is nondecreasing then the real point of the

axis of convergence of a(s) [called the first singularity of a(s)]

is a singularity of af(s). [h8; p. 57]-

Theorem 4: A function F(t) defined on [0,»] is exponentially

bounded if and only if f(s) converges in P(A) for some A > 0.

Theorem 5: A L.S.T. £(s) converges in P()\) for some X\ >0 if
and only if
(i) |f(n?(o)| <o for all n, and

(ii) lim sup'{;}:— If(n)(o)]}l/n < .

n=— ®



Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D

(Securlty claasitication of title, body of abstract and Indexing annatation must be entered when the overall report ie classilied)

t. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY C LASSIFICATION
S Unclassified
Purdue University 2b. GROUP

3. REPORT TITLE

On the Rate of Convergence in Renewal and Markov Renewal Processes

% DESCRIPTIVE NOTES (Typs of report and inclusive datoa) T

Pechnical Report

5. AUTHOR(S) (Last name, firat name, Initial)

Teugels, Jozef L.

6. REPORT DATE ‘ 74. TOTAL NO. OF PAGES 76. NQO. OF REFS
‘June 1967 92 . 48
‘8a. CONTRACT OR GRANT NO. . 9a. ORIGINATOR'S REPORT NUMBER(S)
AFOSR 955-6 » . .
b_PROJEJzézx 2 Mimeograph Series Number 10T
c. 9b. OTHER RfPoRT NO(S) (Any other numbere that may be asaignod
this report. ]
d.

10. AVAIL ABILITY/LIMITATION NOTICES

Distribution of this document is unlimited

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Air Force Office of Scientific Research

13. ABSTRACT
{Xk, k=1,2,+..} 1is a sequence of independent identically distributed random vari

ables with distribution function F(t) and mean y. Two-problems are: (1) Is it pos-
sible to give an estimate on the rate of convergence in the renewal theorems?

(2) What can be said if p = «? In the first problem we assume that for some A > 0,
1-F(t) < e~M for large t. We then prove the classical renewal theorems with a neg-
ative exponential error bound. In the second problem a class of distributions is
formed for which for t = o 1-F(t) ~ t=CL(t) where 0 < @ < 1 and L(t) is a slowly
varying function. A theorem, analogous to Smith's key renewal theorem is obtained
for this case. It gives an accurate estimate on the renewal function if 1L <a < 2.

In Chapter II an irreducible Markov Renewal Process with renewal functions

Mij(t) is studied, and it is shown that all of the functions Mﬁj(t) converge ex-

ponentially to their asymptote if and only if one of then does.

This solidarity theorem extends the results of D.G. Kendall and D. Vere-~Jones
for discrete time Markov chains and thoseof J.F.C. Kingman for continuous parameter
Markov chains. : ‘

The exponential ergodicity for Markov chains (Chapter II) is preserved by the
derived chains of a given Markov chain. The concept of derived chains is due to
J«W. Cohen.

1

[)E) 1525%4 111:723 _ Unélassified

Security Classification




Unclassified

Security Classification

KEY WORDS

Y 2 .

LINK A LINK B LINK C

] RAOLE wT ROLE wT ROLE wWT

renewal process
semi~Markov processes
L 3

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate euthor) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
‘“‘Restricted Data’' is included Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 ‘as author-
ized.

3. REPORT TITLE:; Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered. ’

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information,

7b. NUMUGER OF REFERENCES: Enter the total number of
references cited in the report.

84. CONTRACT OR GRANT NUMBER: If appropriute, enter
the applicable number of the contract or grant under which
the report was written,

8b, 8, & Bd. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

92, ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
und controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been

imposed by security classification, using standard statements
such as:

(1) “‘Qualified requesters may obtain copies of this
report from DDC,"’

(2) ‘Foreign announcement and dissemination of this
report by DDC is not authorized.’’

(3) *“'U. S. Government agencies may obtain copies of
this report directly from DDC, Other qualu’xed bDC
users shall request through

(4) ‘*U. S. military agencies may obtain copies of this
report directly from DDC., Other qualified users
shall request through

(5)’ ‘“All distribution of this report is controlled. Qual-
ified DDC users shall request through

"
L

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

1. SUPPLEMENTARY NOTES: Use for additionel explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-

port.
be attached.

It is highly desirable that the abstract of classified reports

be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-

formation in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation an the length of the abstract.
ever, the sugpested length is from 150 to 225 words.

How -

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be

selected so that no security classification is required. Identi-

fiers, such as equipment model designation, trade name, military

project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-

If additional space is required, a contmuatton sheet shall

wasigned any other report numbers (either by the originator text. The assignment of links, rales, and weigth is optional.
or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
uatmns on furlher dissemination of the report, other than those
FORM R
DD 1 JaN 84 1473 (BACK) n.3s551 Unclassified

Security Classification



