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INTRODUCTION

If {X(:):t = 0} is a separable stochastic process, the
problem of computing the distribution of Z(t) = sup[X(s)=0<gst]
is of great interest particularly in level crossing (detection)
problems and in queuing theory.

Spitzer (57 used combinatorial methods to find the dis-
tribution of Z(t) in the case of a discrete time random walk.
In (1] Baxter used operator theoretic techniques to give a
characterization of the distribution of Z2(t) and many other
functionals on a discrete time Markov process. In the case
of continuous time processes with stationary independent
increments Baxter and Donsker [27] obtained the double Laplace
transform of the distribution of Z(t). Using a generalization
of the classical ballot theoren, Takécs (6], has computed the
distribution of Z(t) for many interesting cases involving
processes with interchangeable increments.

However, there are many cases in which one must deal with
continuous time Markov processes and semi-Markov processes.

The purpose of this paper is to extend the results of Baxter
[1] by characterizing the distribution of Z(t) for a wide class

of semi-Markov processes.



Define mij(s) to be the Laplace transform of the function
Mij(t) = plz(t)=] | X,= 1] and let m(s) = (mij(s)). The main
result of this paper is in the form of a recﬁrrence relation
for m(s)

m(s) = g(s) + (qa(s) m(s))°’
where g(s) and g(s) are matrices whose elements are Laplace
transforms of distributions which occur in the definition of
the semi-Markov process and ¢ is an operator on matrices.
Moreover, m(s) is the unique solution of the above eqguation
under a condition on the matrices g(s) which guarentees that
the process makes a finite number of transitions in any
finite interval of time.

The main result appears in Section III. 1In Sections
IV and V, continuous and discrete time Markov chains are
considered as special cases of semi-Markov processes, and
specific results are determined for them. For processes
with stationary independent increments, Spitzer's identity
is derived. In Section VI, some other functionals are
characterized by methods similar to those in Section III.
The paper concludes with a class of examples in which the
recurrence relation for m(s) can be solved to give mij(s).

Qur indebtedness to the methods of Baxter [1] will be

apparent.



I PRELIMINARIES

First it is necessary to discuss linear operations de-
fined on a space, £, of bounded sequences, {si} i ¢ I, where
I may be an arbitrary subset of the integers. The exact
nature of £ will depend on the state space of the semi-Markov
process in question. For us, the important properties of £
are that it is a Banach space under the suprerum norm and

that any bounded linear operator, A, on £ into £ is of the

\

form
1.1 A f{s.}1 = {ssa,. s,
(1.1) fs; 1 = (3355 8]
where T \a ,‘ is uniformly bounded in i. Clearly we may

j A3
identify A with the matrix (aij)' and the norm of

a=|[al| = syp(T]a, . ]).
J

DEFINITION 1.1 For any operator A of the form (1.1) we

define an operator a? by

a,, if 3 > 1i
1]

-
k<i i,k
L0 if j < i

a7 = (%)) where a9 = if § o= i
ij ij

We also define AT = A- AO



Let I be the identity operator, then the following

properties hold.

(1) 17 =1 (1) 17 = 0

(1ii) %7 = a% (iv) @7 = AT

(v) (AGBO)U = 28" (vi) a8 = a7 B’
(vii) [1a%]] < [a]l  (viii) [[aT]] < 2]|al]

(1.2) (ix) (oA + 88)? = a 2% + 5 87

(x) 1If Ay + By + =-- is a series of bounded operators
of the form (1l.1) whose partial sums form a Cauchy sequence

in the operator norm, then T = A, + Ay +-°° is a bounded

linear operator of the form (l1.l). Moreover, Ag + A? 4+ e
T T .
and A, + A; + --- converge in the operator norm, also
g _ AT o e T _ AT T .
T = Aj + Ay + and T = Ay + A, + .
(xi) If A = A, + A, where A; = Af and A, = A;, then

A% anda a, =a".

HS“J
it

We prove only (x). Since the space of bounded linear
operators on £ into £ is a Banach space, T is a bounded
linear operatdr oﬁ £ and, therefore, must be of the form
(L.1). Let T =By + A+ o4 A Since
el -2 s flz - llana |2’ -x] |l s2lm-1 |l
the second statement in (x) follows.

Note that properties (i) - (xi) say that any bounded
linear operator A on £ into £ can be split uniquely into the
sum of two operators a7 and AT each of which is an element

in a proper subspace of the Banach algebra of bounded linear

operators on £ into &.

A Y



II DEFINITION OF A SEMI-MARKOV PROCESS

Following Yackel [7], we take {xt, t 2 0} to be a
separable process with a countable state space I. Let

Yt - { t if Xs = Xt for all 0 £ s < t

s

t - sup(s:0 s s < t; X_7 xt] otherwise

If the two dimensional process {(Xt, Yt): t 2 0} is a strong
Markov process with stationary Borel measurable transition
probabilities, then we say that {Xt, t 2 0} is a semi-Markov
process (S.M.P.).

DEFINITION 2.1. Let

inf s: s 2 t;X # X 1 if X =X, _for 0 su <t
w = ’ S t u t

W

i S ’ - 1 - rS: < ,f, 2
inf T s 2 t, X, # X 1 - supls:s £, X Yt]

otherwise

F. (t) P {wy, st | (X, Y) = (i, 0)]

For convenience we shall denote w, by w and

[$1 where S is a Borel subset

P [S|(x,, Y,) = (i, 0)] by D, f:

of the state space of {(Xt, Yt): t =z 0}.

For this paper we shall require that Fi(t) - 0 as
t - O+ for all i ¢ I. In this case, once the process enters
a state it stayé there for a positive length of time with

probability one. That is, the process is a step process.



DEFINITION 2.2. If {Xt: t 2 0} is a S.M.P. for which
Fi(t) - 0 as t - 0+ for all i in I, then we call {Xt, t =2 0}

a semi-Markov step process (S.M.S.P.)

DEFINITION 2.3. Let

il

Q. . ()
]

Q,,(t) =0

P J s = 47 1f i # 3
i,O[w t and Xw i) if 1 # J

Z(t) = sup[XS: 0 £s8 5 t]

Mij(t) =Py o[Z(t) = 37.

In this paper we take the point of view that the Qij(t)
are the known and that the distributions of certain func-
tionals on {Xt, t =2 0} are to be solved in terms of them.
This is an a;ceptable point of view even for a continuous
parameter Markov chain since the Qij(t) may be easily calcu-
lated from the transition probabilities pij(t). In fact, in‘

[3] p. 246 it is shown that

- p l . )
0 . t L. - e
o ( ) (

and c. . = lim .. () /.
n P tim, pyg(E)/



III SEMI-~-MARKOV PROCESSES

If for each t, A(t) and B(t) are matrices, then let

k(S))

A(t) *B(t) = (E f: Bkj(t~s) d A,
when this makes sense. In the context of this paper Aij(t)
will be a non-decreasing function, and Bij(t) will be a
Borel function. The above integrals are to be understood as
Lebesgue-Stieltjes integrals with respect to the measures

induced by the Ai (s)'s.

k
The next theorem is one of the main results of this
paper. There is given an equation involving the known
functions Qij(t) which is satisfied by the distribution
Mij(t) of z(t). This is the generalization to semi~Markov
processes of Baxter's results in 1] for discrete Markov

processes, N

THEOREM 3.1. For a S.M.S.P,, let M(t) = (Mij(t)) and

Q(t) = (Qij(t)). Then for all t > 0

(3.1) H(t) = (6, (1-F, (£))) + (@(&) * n(e)?

and M..(t) - §.., as t - 0O+,
1] 1]



Proof We consider three cases.

Case 1 j < 1 Clearly Mij(t) = 0

Case 2 j > i If the process starts at i and has maximum

j > 1 over the interval [0, t], then there must have been a
transition in [0, t7. Since we are dealing with a step
process we can suppose that the first jump is to k = Xw,
where obviously k = j.

Partitioning on the first jump, we have

Mo (8) = py ol =33 55 Py ol2 =30 X, = k]

Let Ek denote expectations taken over {Xw = k7. Then

P, ol2, = 35 X, =kl =E (P, gz =3l Y) = ( 07

By the strong Markov property and the stationarity of (Xt, Yt)’

the process regenerates itself at jump times. Thus for k s j,

r = 7 = A = 171 = -
Py ofZy = 31K, Y ) = (k, O = (T2, =31 =M (W),

= . = -, = t -
Py olZ = 37 X, = k] = E (1 (t-m) jo M (E=8) @ 04 (s)

by a transformation theorem p. 342 {4].

Finally,

t t
M (8) =T fo M (e=s) @0, (s) = % j; M (E=s) d 0, (s).

Case 3 1 = 3 If Zt = i and Xy = i, there are two possi-
Cy s . r - i1 = - 1-F (t
bilities (i) w > t. pi'0hw > t and Zt i] pi'o[w > t] 1 Fl( )
(1i) w £ t. Since 2, = i, X < i, and 2 < i.

t w t-w



So by an argument similar to that given before

Q0

e~ L t. '
pi'o[w <tand 2 =i] = j§i Z; jn Mkj(t—s) Q.. (s)

Since Qii(t) = 0, and Mkj(t) = 0 for k > i, we may write
lod — S — t —
pi,O[w < t and z, = i) j§i k?i fﬁ Mkj(t s) ink(s)
It follows that

t
Mo (E) =1 -F (t) + 5% kPr j'a M (t-s) 0y, (s).

ik
By checking the definition of the ¢ operator we see

that

_ _ o
(Mij(t)) = (Gij(l Fi(t))) + (Q(t) * M(t))

To show that Mij(t) - 5ij as t - 0+ we observe that

) sMij(t) Spilo[w < t] =Fi(t) -~ 0 as t - O+ (i # 3)

and

Z - » — — —
1 Mii(t) = pi’OEw >t 1 Fi(t) .l as t 0.

This completes the proof.

The convolutions appearing in Theorem 1 suggest that it
might be convenient to work with Laplace transformsf

Define

_ -st
m (s) = ‘Y[O,w)e M, (€) dt

_ " -st

(3.2) g,(s) = 'FEO,m)e (1 - F, (£)) at
-3t ,

9508 = gm0 (E)

where the integrals above are to be understood as Lebesque-
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Sti jes int . > = .. . = (6., g.(s)),
ieltjes integrals Let q(s) (qu(s)) g(s) ( i3 gl( ))
and m(s) = (mij(s)). We may now write Theorem 3.1 in the

following convenient form.

COROLLARY 3.,l. For 2 S.M.S.P.

(3.3) m(s) = g(s) + (q(s) m(s))’
Notice that we are now using a simple matrix product when
we write g(s) n(s).

With no restrictions on Mij(t), mij(s) defines Mij(t)
only almost surely. 1f, however, Mij(t) is continuous then
we know that there is only one continuous furiction whose
transform is mij(s). In this case one may apply the standard
inversion formula to recocver Mij(t) from mij(s). BRelow we
give a condition on the Qij(t)'s which assures that Mij(t)

will be continuous.

THEOREM 3.2. If Q'ij(t) = @ij(t) is continuous for all 1 and
j then Mij(t) is continuous for all i and j.

Proof Fix i and j. Let

n

lt ,‘t
f t = bg . {t—s dn\? S = i v‘] t~s (D' S (1._ .
k( ) Ja ij\ ) lk( ) ue, I:(j( ) lk( ) s

l£, (t) - £ (t+h)|=
o] S - flt N - . - Y
Mkj(t+h—s) uik(s)da Jy Mkj(t s) oik(g) ds |
. t - ' i} . ]
eMkj(t+h’s) oik(s) asl+lJ°Mkj(t s) (Oik(°+h) gik(s))QSl

The first term goes to zero as nh = O. The second term

is less than
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t . t
falej(t—s)\ |¢ik(s+h) - @ik(s)| ds s Io \¢ik(s+h) - aik(s)[ ds
- 0O as h - 0. Thus fk(t) is continuous,

If i > j, then M. (t) = O.
ij

If 3 » i, then

= T
Ml] (t) ké—lI fk(t)
t
. - . o = "l - - ™ =

Since |f (t)] < jo 0, (5) dt w s t:; X, =k]<plx, k7
and

L plx = k] =1, we have that T £, (t) converges uniformly

K w k K

to Mij(t) and that Mij(t) is continuous.

If j = i, then

— — t —
M () = (L -F (t) + . T fo M (E-s) o4 (s) ds.

Since Q.  (t) is continuous, and I Q., (t) converges uniformly
ik k ik

to Fi(t), 1 - Fi(t) is continuous.

t t
Y, - =7 5 -
% Io My (£79) 05, () ds = B [ %1 Mgy (678) @y (s) ds.
By an argument similar to that which showed fk(t) to be

continuous we can show f: jgi Mkj(t—s) wik(s) ds to be con-
. . t
tinuous. The continuity of b .(t-s) ., (s) then
o E fo jei Mkj . ik

follows by uniform convergence, and we have that Mii(t) is

continuous. This ends the proof.
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Although we have shown that m(s) satisfies equation (3.3)
in Corollary 3.1, we have no quarantee that m(s) is the only
family of matrices satisfying equation (3.3). The aim of
the next theorem is to give conditions under which equation
(3.3) uniquely determines m(s). Note that m(s) is a bounded

operator on £ into £ for every s > 0.

THEOREM 3.3. 1If for some s, > 0, || a(s,) || < 1, then
m(s) = g(s) + (g(s) m(s))c has a unique bounded solution for
SZS,).

Proof Let m(s) be a bounded solution of (3.3). Iter-
ating equation (3.3) n times one obtains

m(s) = my(s) + my (s) + --° + mn(s) + Ln(s)
where

m, (s) =a(s), m_ . (s) = (a(s) m_ (s)7

\

and L_(s) = (a(s) (+++ (a(s) m(s))? --- )7
n+l times
S0, by properties (1.2) ||m || = Has) 1™ Llgs) 1]
and e () 1] s Haes) | |1 mes) )]
since |lg(s)|| <= and l|la(s) || < lla(s,) || <1 for s = s,

(5]
the series EO mn(s) converges in the strong operator sense,
n=

and !‘Ln\! - 0 as n » «». Thus,
m(s) = Lym (s)

is the unigue bounded solution of equation (3.3).
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COROLLARY 3.3. If for a S.M.S.P., % Qik(t) < B for all i,
then m(s) in (3.2) is the unifue bounded solution of eguation
(3.3).

Proof If % Qik(t) < B, then lla(s)]|| < B/s. So for
s > B, |la(s)]] < 1 and Theorem 3.3 applies.

In the next theorem we prove an analog of Spitzer's
identity for semi-Markov processes under assumptions which
are very strong and are satisfied only in special cases.
Yet, the method of proof suggests an approach to solving
the general case in (3.3). This will be discussed after
the next theorem is stated and proved.

THEOREM 3.4. For a 5,M.S.P. suppose that Fi(t) = F(t) for

all i and that {qk(s)]3 a(s) = g(s) [qk(s)]cfor all k =2 0.

1f |]a(s,) || < 1 for some s,, then for s = s, let
k
29 (s
L = log(I-q(s)) = - }E-k( )

and 7(s) = Im e_St(l - F(t)) dt.
s}

Then for s = s,,

[CROIN
k

m(s) = n(s) exp(‘ll% )

Proof The condition [qk(s)]g q(s) = gl(s) [qk(s)'v](J
guarantees that exp(L) = exp(LU) exp(LT). By Theorem 3.3
we know that for s 2 s_, m(s) is the unique bounded solution

of m(s) = g(s) + (q(s) m(s))?
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which in this case has the form
n(s) T = [(I- q(s)) m(s)1’ = [exp(L) n(s)1Y.

By verifying that [exp(LT)]c = I, it is easily seen that for
s 2 s, 7(s) exp(—LU) is a bounded, and hence the unique,

bounded solution of the above equation. Thus

2 (gk(S))CT
m(s) = n(s) exp( &~

COROLLARY 3.4. Let the S.M.S.P. have the integers for its

state space and be spacially homogeneous (i. e. Qik(t) =
Q(k-1i, t). If the Q.. (t)'s are continuous and if lla(sg) 1] <1

for some s,, then for s 2z s,

m(s) = n(s) exp (? (@ (s) /1) %)

4 1 — E O - ’ 1 1
Proof Fi(t) k?I Qik(t) kT 0(k-i, t) which is
independent of i.
: k o k ag
We need only show that g(s) (g (s)) = (g (s)) q((s), and
we may apply Theorem 3.4 to get the result. We shall show

this by proving that

(Qk(t)>° * Q(t) = Q(t) * <o.k(t)>°

l(t) = Q(t) * Qn(t)-

where, Q, (t) = (Qij(t)),'and Q.
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Denote the elements of (Qk(t))cr by Qi (-1, t).
\

a(e) * () ) = (g [7 of 5k, £s) do(k-is )

By making the change of variable Z2 = j + 1 - k we obtain

e t o . .
‘\zgi 'fa 0, (-1, t-s) dQ(j-z, S)>~

Integration by parts gives
e t . _ T . - 4]
(2 [ 262, t=s) aof@-i, &) = (o (1)) * a(r).

The construction in Theorem- 3.4 is based on a Wiener-
Hopf factorization. That is, we write (uniquely)
{3.5) | I -qg(s) = exp(LT) exp(LG)
where (exp(LT))O = I and (exp(Lc))o = exp(LU). That this
factorization is the unique one of the tvpe I - g(s)
= exp(A) exp(B) where AT = 2 and B0 = B may be seen by
taking logarithms in (3.5) and using property (xi) of (1.2).
The solution of Eguation (3.3) given in Theorem 3.4 is
then a multiple of the invef;e of the right factor matrix on
the right hand side of (3.5). 1If g{(s) is not a multiple of
the identity the situation becomes more complicated. 1In

fact, we then want to find matrices A(s) and B(s) satisfying

the conditions



(1) I - q(s) = (1 + B(s)) <1 + A(s)>.
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(2) (I + A(s)) has a bounded right inverse, (I + A(s)>—l.

3) (a) ) = a(s).

i
(4) B(s) is subdiagonal, and Fz;wB = 0.

ik Jx

Then the (unique) bounded solution of (3.3) is

m(s) = (I + A(s))-l g(s). Of course if g(s) is a constant

multiple of I, condition (4) bhecomes (B(s))T = B(s), and
(1) is the familiar Wiener-Hopf factorization.
A simple example will serve to illustrate the above

method and its difficulties. Suppose that we have a two

state semi-Markov process in which Qij(t) = f: Qij(s) ds.
Then
0 Ugq (8)
q(s) =
dy(s) 0
and
(1 - gy, (s))/s 0
g(s) = _
0 (1 = q,4(8))/s

Of course, one can easily write down m(s) from probabilistic

considerations. Namely,



(L - q01(5))/s qu(s)/s
m(s) =

0 1/s

However, it is instructive to carry out the factorization

described in (1) - (4). We have

I - q(s) = (1 + B(s)> (z + A(s)>

where
0 0
B(s) =
~q; ¢ qlo(l—qu)/(l~qlo)
and
0 ~dgq ()
A(s) =
0 —qu(S)
Also,
1 qu(S) 1
(1 + A(s)>"l = /! ﬁqu(S))
\

0. l/(l—qlo(S))

One can easily check that properties (1) - (4) hold and

that

17

(1—qu(S))/s qu(S)/s

n(s) = {1+ 2(5))7 g(s) =
G 1/s
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IV CONTINUOUS PARAMETER MARKOV CHAINS

We now consider a continuous parameter Markov chain with
stationary transition probabilities, pij(t), as a special case
of a S.M.P.

If a S.M.P. is in state i at time t, the probability that
there will be a change of state by time t + s depends, in
general, on the length of time that the process has been in
state i at time t. If, however, the probability of a change
of state by time t + s is independent of the length of time
the process has been in sgtate i at time t, then we have the
special case of a Markov process. In short, the semi-Markov
process remembers the past (up to the time of the last jump)
and the Markov process does not,

If oﬁr S.M.P. process is a stationary Markov process,
we have a continuous parameter Markov chain (M.C.) with

stationary transition probabilities. In this case (See [3]

p. 246)
S 1 - eCit - - it
Fi(t) = 1 e and Qij {(t) = pij(l e )
where
c. 20, p 20, p = 0, and .L_ p = 1.
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Our assumption that we are dealing with a step process
amounts to saying Ci < @ for all i, which means that there
are no instantaneous states.

If a M.C. has a standard transition matrix {(i.e.
pij(t) - 5ij as t = 0+) and no instantaneous states then it

has an infinitesimal generator A = (aij) where
' (0) = Q). (0) = p,.c, if 1 j
Plj( ) Qlj( ) p;4¢; if 1 £ 3

1] -c, if =1

We now state for M.C.'s the analogs of the theorems of
Section III. 1In spite of its simplicity, the following
theorem appears not to be in the literature.

THEOREM 4.1l. For a stationary M.C. with a standard transition

matrix and nc instantaneous states,

(A M(t)>c

<¥ij(t)>

(4.1) M'(t)

where M'(t)

1

Proof Again we consider three cases.
Case 1 If j < i, then Mij(t) = 0.
Case 2 If j > i, then by Theorem 3.1.

rt
= M . t"s .
Mij(t) }23 4 k]( ) Pix

Letting vy = t - s we have

- o Cit p ot . JCiY
M () = e THUE U om (y) pyy eioe Y dy).
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By the usual theorem allowing termwise differentiation,

it
1

M. (t)

. —cit T t Ciy
i3 c; e (k ,fo Mkj(y) PiyC; © dy)

cit

-3t -
+ 1L
© % My (8 Py ©5 ¢ 7)

= - o, M(t) + Tc, pyy M)

T % ik My

Case 3 i = j

_ _—c;t «~ « rt _
M,.(t) = e + L, £ jo Mkj(t s) Py G ©

-C S
ii 3%i

ds

_=cit et - _ -C ;S
= e + S, 5% Mkj(t s) c, Py © ds

~1

In 2 manner similar to the above we get

: =- E . 3 .‘-\. .
Mg (6) =-oy My (0) + Loy Piy 53 Mg ()

= - oy My (8 4 gy £ Oy Py My (t)e
Since Mij(t) = 0 for j < i, we may write
] — A A
MU0 = g 2y My ()
It follows that M'(t) = <A M(t))c

COROLLARY 4.l.. For a stationary M.C. with standard transition

matrix and no instantaneous states

(4.2) sm(s) = I + (5 m(s)>°‘
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Proof

t
M,.{(t) = M! (xr) dr + 6. .
35 08) IO 15 i3

Let Lf(t) denote the Laplace transform of a function f(t).

Then

o
L M (e) =L fc i (x) ar + 6, /s

]

(1/s8) L Mij(t) + Gij/s.

<5 m(s))g.

il

Using (4.1) we have (L Mij(t)>

S0 s m(s) = (A m(s))c + I.

THEOREM 4.3. For a stationary M.C. with a standard transition

matrix and no instantaneous states, || A || = b < ® implies
that for s > b Hquation* (4.2) has a unigue bounded solution
m(s).

Proof For s >b, || A ||/ s <1 and we may apply the
proof of Theorem 3.3 to show that Equation (4.2) has a unique
bounded solution.

THEOREM 4.4. Consider a stationary M.C. with a standard

- . . k.o
transition matrix and no instantaneous states. If (A7) A =

k.0
A(Ak) for all k 21, and if || A || = b < ®, then for s > b

m(s) = (1/s) exp C% (Ak)g/k sk>
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Proof Rewriting equation 4.2 as
O
(1/s) 1 = {(1 - a/s) m(s) f,

it is easily seen by a method similar to that used in Theorem
3.4 that (1/s) exp <u (A /k sk> is the unigue bounded solu-
tion of (4.2).

The corollary below follows from Theorem 4.4 in same
manner as Corollary 3.4 follows from Theorem 3.4.

COROLLARY 4.4. 1In the case of a stationary M.C. with a

standard transition matrix and no instantaneous states which

is homogeneous in space, we have for s > 2c¢
_ ” k, 0O k™
m(s) = (1/s) ex - \
(s) = (1/s) exp (T (a%)%/x ¥

Proof We need only note that || A ||

il
N
oV

ii | = 2 ¢ <=,
In the case described in the preceding corollary we can

go a step farther and deal with Fourier series instead of

matrices. We may think of the process involved as being a

random sum, Xl +..t XN(t)' of independent identically distri-

buted random variables having distribution

PIX = k] = 19 k=01, £2,... (Note Po = 0) where N(t) is

an independent Poisson variable with parameter ¢ < @,

Since m, .(s) = m, ,(s) we may define
ij j-1i

m(s,8)

it

E mn(s) e’

4
-
o}
D

(4.3) p(9) = =
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In analogy with the results in the matrix case we may
prove

THEOREM 4.5. For a process of the type in Corollary 4.4,

\
m(s,8) in (4.3) is the unique solution for s > 2 c of
o
s m(s,8) = 1 + (cp(®) m(s,8))

where p(8) m(s,8) denotes pointwise multiplication and ¢ is

an operator which transforms the Fourier series

ind o i )
b e into £ b elne with
n n
g
b = Db for n > 0,
n n
o
— b
b0 ngO‘bn'
and
bU =0 for n < 0,
n

We may apply the Wiener-~Hopf factorization technique to
obtain

THEOREM 4.6. In the case of a Markov chain of the type in

Corollary 4.4, we have for s > 2 c,

n(s,8) =(1/s)exp ((log(l - cp(8)/s) 1)
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V DISCRETE PARAMETER MARKOV CHAINS

In the case of a discrete parameter M.C. with one ste

transition matrix (pij), our basic distributions become

n
= - < < =
Fi(t) 1 (pii) n t n+1 n o, 1, 2, ...
Qii(t) = 0
and if 1 # 3,
0 0 st <1
Q..(t) =
ij n-1 st < -
pij(pii) n t n+l n 1, 2, ...

THEOREM 5.1. If P = (pij) is the transition matrix of a
M.C. then
M(0) = I
o
M(n+l) = [P M(n)] n=20,1l, 2...

Proof Clearly M(0) = I. Equation (3.1) becomes,

..)n+l

- n x o]
M(n+1) (5ij(pll ) + (k;i rgo(Pii) Piy Mkj(n—r))

1

n - g
(Gij pilpy) )+ (k?i Piy Mkj(n))
5 g s 5
* Py w7 sZo (Pyy) Py Myy(n-1-s))

24
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]

- . o o

i

(Fp Py My ()7 = (2 M(m) 1.

For s < 1, we may define an operator

il
l.-l

M = Eb s™ M(n). since ||P7}} = 1 and ||M(m) || = }127(|"

N\

n§ s” M(n) converges in the strong operator sense. Thus M

is a matrix by (x) section I.

THEOREM 5.2. For s < 1, M is the unique bounded solution of

g
M=1I4%+s [P M]
Proof M 1s a solution because

I+s [puM)’ s [P M(n)1°

f
]
It 48

+ s
n=0

s M(n) = M

Il
—

+

lit48

n=1

Unigueness follows in the same manner as in Theorem 3.3.

THEOREM 5.3. If P is the transition matrix of a M.C. and if

o z
[Pk] P=P [P}]G, then for s <1,

k, k.o
o ~
M = exp Q? E—éELJ-;)
3 ”
= R PL
Proof Let L = (I - s P) = - k=1 *

We know that M is the unique bounded solution of

I =[(x -s p) M]U



C
Since exp(-L ) is a bounded solution for s < 1, the
proof is finished.
. g ¢ T .
If the M.C. is a random walk then [Pk] P = P[PL] is

satisfied and Theorem 5.3 becomes Spitzer's identity.

26
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Vi OTHER FUNCTIONALS

The analysis performed in Section III made use of the
first jump to obtain a recurrence relation involving the
supremum functional. This type of analysis may be used for
other functionals as will be described in this section.

However, there are functionals whose analysis by the
methods\of this paper would involve a last‘jump. For in-
stance, PiﬂO [XS 2 i for O $s $t] is such a functional.

The analysis by last jump presents two problems. First,
there may be no last jump before time t,. Second, even if

we restrict ourselves to processes with only a finite number
of jumps in any finite interval of time, we encounter the
problem that the process {X_, t 2 0} is not stationary. That
is, an arbitrary instant of time need not be a regeneration
point of a semi-Markov proceés, whereas the time of the first
jump is a regeneration point.

In characterizing the functionals below we follow
Baxter [1] and define an operator "+" on matrices as follows.
DEFINITION. If A is a matrix with elements aij' then we

. + . .
define A %to be the matrix with elements
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e i >
aij if 1 3
+3 0 if i = j

It is easy to see that the analogs of properties (1)

through (ix) in Section I hold for the "+" operator where

- +
A =A -5 .
DEFINITICN.
= = 1 i > £ g <t -
Lij(t) P: o (Zt j and j X for 0 s s t Yt]
= < . = i 9 = > s < -
Vij(t) P o w = t; 2, = i: j =X ZX, forw $8 <t - Y.

Note that Lij(t) is the probability that starting at i,
the maximum j is reached on the last jump.

THECOREM 6.1. For a S.M.S.P.

L(t)

(6.1)
v(t)

+
(5ij(1 - F (£))) + (Q(y) = L(t))

it

(QIt) * L(t))

Proof If i > j, then Lij(t) = 0, and if i = j, then
Lii(t) =1 - Fi(t). If j > i, then by a proof similar to

that of Theorem 3.1,

k&

-

t t
Lis(8) = 4 &, IO Ly(es) d Qg () = 8 I° L,;(t-8) @ Q3 (8)

For the proof of the second equality in (6.1) we see that if

j > i, then Vij(t) = 0. If j % i, then

\

t
vise) = Z Io L (t-8) d Qg (s)



29

COROLLARY 4.1. If 4. .(s) = | e %% 1  (t) at
ij o ij

and v, .(s) = f e_St V..(t) d4t, then
1] o) 17

L(s) = g(s) + (a(s) (s))"

(6.2) v(s) = (q(s) t{s))"

We state the following theorems without proof since
their proofs are similar to those in Section III.
THEQOREM 6.2, If , in a S.M.S.P., Qij(t) is continuous for

all i and j then Lij(t) and vij(t) are continuous for all

i and j.
THEOREM 6.3. For a S.M.S.P., \\q(so)\\ < 1 for some s, implies
that

Ls) = gls) + (q(s) &sH”

vis) = (q(s) #(s))”

have unigue bounded solutions for s 2 Sge

COROLLARY 6.3. For a S.M.S.P., E Qik(t) < B for all i implies

that equations 6.2 have 4(s) and v(s) for their unigue bounded
solutions.,

THEQREM 6.4. Suppose that we have a S5.M.S.P. such that

F,(t) = F(t) for all i and that (qk(s))’“ q(s) = q(s) <qk(s)>+

for all k 2 0. 1If \\q(so)\\ < 1 for some s, then for s 2 s,

Ol
let
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N = log(I - a(s)) = - & a"(s)/k

and ns) = [ et - F(t)) at.
Q

Then for s 2 so

tis) = n(s) exp (F (a*(s))* /%)

Again we can derive some special results in the case of
a continuous parameter M.C, For instance,

THEOREM 6.5. For a continuous -parameter stationary M.C. with

a standard transition matrix and no instantaneous states

Ls) = <§ij/s> + (a L(s)/sjﬁ.
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VIiI AN EXAMPLE

Let us consider a class of semi-Markov processes in
which the state space is‘the non negative integers and the
process can only go up or down one step at a time. We
further assume that except for the state 0, the process is
homogeneous in space. A single server queue with Poisson
input and negative exponential service time is an example

of such a process.

Let

QO(t) = PO, o fw < t and X, = 1]

Ql(t) = Pi;O {w = t and X, = i+ 1] (i 2 1)
Q_l(t) = Pi,O {w 8 t ana Xw =i - 1] (1 2 1)

Let qo(s), ql(s) and q_l(s) be the Laplace Stieltjes trans-
forms of the measures Qo(t), Ql(t} and Q_l(t) respectively.

The matrix g(s) of Corollary 3.1 becomes
0 q,(s) , O 0

q_,(s) 0 9, (s) 0 cee
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\

Since l\q(s)\\ = max {qo(s), q_l(s) + ql(s)}, we see that for
s large enough |lg(s)|| < 1. So we may apply Theorem 3.3 to
assure that m(s) is the unigque solution of equation (3.3)

which we may write in the form

(7.1) (tx - ats)) m(s) )7 = g(s)

We note that g(s) is a diagonal matrix for which goo(s) = go(s)

and gii(s) = g(s) (i 2 1) for some functions go(s) and g(s).
Let B(s) = (I - g(s)}) m(s}), then

- - L2
q_l(s) M1, + m; g ql(s) 1,4 (i 2 1)

m._, - qo(s) m (i = 0)

03 1]

Equation (7.1) becomes, [B(s)]o = g(s), which yields the

following system of simultaneous equations:

9y(8) = my,(s)
0 =myy —dg myy
and for i % 1,
0 = - q_l mi-l,j + mij - gl mi+l,j (when j > 1)

. .+ m. . + m,.
i-1,1 i-1,1-1 ii
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The above equations may be regrouped to obtain

9,(5) = my,(s)
and fcr n 2 1,
0 = mOn qO mln
0 =~-q m m g, m
-1 On i.,n 1 2,n
AY

0= - q—l mn-—2,n * mn~l,n - ql mnn
(s) + : = - +
¢ (s) q-—l nn-—l,n—l q-l mn—l,n mnn

Let An be the {n+l) x {(n+l) matri# one obtains by
deleting all but the first n+l rows and columns of I-g(s).
Let Ajﬂn (0 2 § = n) be the matrix obtained by replacing the
jth column of Ah by

(0, 0, ... 0, g(s) + d_q mn—l,n~l)' For large S

Det (Ah) #Z 0 (see below) So,

m. (s) = Det (Aj'n)/ret (4) 03 =%n

Clearly if j > n, mj n(s) & (), Thus we have a recursive
, ,

method of calculating mij(s). To find the probability

Mij(t) it still remains to invert its Laplace transform

mij(s).



We can solve a difference equation for Det(Ah) = Dn.

and show that for large s, Det(A) ¥ O. Let Det(A) = Dn.'

Then for n 2 O,

Dn+2 - Dn+l -9 9, Dn
Let r, = (1 +-/T:EEI§:1)/2
and r, = (1 - /IiZEIE:I)/z
Then, Dn = a rln + b rzn where
a +b=1

ar, +br, =1-gq.(s)q_(s)

1 2 1

As 58 = *®, qo, q_ and ql approach zero. So,

1

s rl/r2 » 1, and by solving the above equations for a and

b it can be shown that - b/a < 1, Thus Dn # 0 for large s

because D = O implies 1 > -b/a (F*/rs) > 1.

If we fcrmally define D(z)

* n
Y Dn z , then

(- ]
. » : = E
In the same spirit we may define F(z) n=o Dnn z
where
Doo = 90(8)
= 2
Dnn Det(Ah'n) (n 1)

34

for large
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Then for n 2 0,

il

Dn+l,n+1 als) Dn * q—l mn,n Dn

gls) D+ d_y D,

. . . . +
Multiplying both sides of the above relation by z" 1 and
summing we obtain

F(z) = g, (s) = z g(s) D(z) + z q_; F(z)

1
So that

gO(S) + 2z g(s) D(2z)
(1 -2zaq).

F(z) =

Similarly if we define D0 n = Det(AO n) for n 2 1, then

for n 2 0 we obtain

n n+l
Dy pey = (9(8) +ay m ) ay 9y (1)
Dnn n n+1
= (g(s) + q_y 5:—) 5 43 (-1)
So,
Ed _yyntl -1 -n n
nZo ¢ 1) a9y

DnDO,n+1 z = g(s) D(z) + q_l F(z).
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