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1. Summary. In continuation of the authors' paper [12], selection pro-

cedures based on ranks for ranking c populations witn regard to scale parameters

and for selecting a subset containing populations "better than a'standard" are
proposed nere and tneir properties studied.

2. Introduction. Multiple decision procedures for ranking c populations ac-

cording to their means, variances, etc. have been extensively studied by several
authors notably by Bahadur [1], Bechhofer [3], Bechhofer and Sobel [4], Gupta
and Sobel ([57, [61), Paulson {9] and Lehmann t?}, among others, (See Barr and
Rizvi [2] for references). Most of these procedures are based on statistics

not dependent on the ranks of the observations but directly on the observed
values themselves. Unfortunately.not much work has been done so far, in de-
veloping procedures based on ranks even thougn in several practical situations
one would prefer such procedures because of their invulnerability to gross
errors. Only recently work in this direction has been initiated by Lehmdnn [8]
followed by Puri and Puri [12]. Lehmann [8] considers a class of selection

procedures based on ranks for selecting the "best" population, that is, the
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one naving the largest locdtion parameter. In [12], tne authors consider
tue problems of selecting out of ¢ populations (a) the "t pest" ones witi-
out regard to order (b) tune "t best" ones-ﬂigg regard to order and (e¢) find-
ing a subset which contains all populations "better" tian a standard one.

In these procedures the bestness of a population is characterized by its
location parameter; the best being tne one with the largest location para-
metér, and so on,

In the present paper, however, tne procedures based on ranks are con-
sidered for the problems (a), (b) and (c) with the difference that tie best-
ness of a population is characterized instead by its scale parameter. (For
the general backgrouhd and motivation for sucn problems the reader is referred
to interesting papers by Becimofer and Sobel [4] and Gupta and Sobel ([5],
[6]).) The asymptotic efficiencies (cf. [8] and [12]) of these procedures
felative to the normal theory procedures developed in [4] and [5] are ob-
tained and discussed.

3. The Matnematical Model. Let Xij’ J=X2,.0.50n3 1 =1,2,...,c

be independent samples from populations Hl, ﬂ2,..., Hc with cumalative

distribution functions F(x/oi)g i=1,2,...,¢c, wnich are assumed to be

continuous but othnerwise unknown. (One might start instead with
p.

F(—= ); i=1,2,...,c, and assume tuat the location parameters wy's

g.
1

are known and consider tie random variables xij - ui.) Let

c[l]'f 0[2] <... 5:c[c] be the ranked o's; of course itfis not known
wnicn population is associated with o[i]. Also, let eij = GEiJ/GEJJ;

i,j = 1,2,...,c. We assume that a population is characterized by its para-
meter value. Thus tie "best” population is tie one whicih has the smallest
value; tihe second being tne one wnicn nas the second smallest parameter
value, and so on. Our aim is to develop selection procedures Eased on

ranks for tihe problems (a) - (c) mentioned in tine introduction.



n
We snall denote the sample mean square I Xij/n by S? ;5 the
J=1

sample mean square associated with tiie population naving tne scale para-

meter U[i] by S%i) and tne ranked S?, i=1,2,...,¢ by
2 2 2
S <SS <...<8
(11 = "fa] Lel
k. Problem (a).

4.1 Bechnofer - Sobel (B-S) Procedure.

For this problem it is assumed that the experimenter can specify a
*
smallest value of et+l £ Say 8 > 1, that he desires to detect. The ex~
2
perimenter must also specify tie smallest acceptable probability
e ) *
y (L>v>1/(])) of correct selection when © >0 . When F
t t+l,t =~

is normal Bechhofer and Sobel [4] have proposed the following procedure:

Select tne t populations associated witn

2 2
(1) s[l],..., s(t]

The usual problem is to determine the smallest sample size n required

to guarantee the desirable property tnat
(2) P (correct selection of t best populations) >y,
subject to the condition

- *
(3) et+l,t >0 .

If we do not wish to rely on the assumption of normality, we can find
a large - sample solution wiiich depends only on tue kurtosis A of F .
To this end, we reformulate the problem by considering a sequence of situ-
ations for increasing n wnere we replace e* by e(“) and determine tne
large sample solution for n required to guarantee (2) subject to the

condition



() 41,6 2 o) .

. o , %
It may be remarked (see also [8], [12]) that even though © is shown
to depend upon n wnicn would imply that the set of acceptable values of

) are cnanging witn n, yet in practice tinis will not be the case. To

(n)

t+1,t

consider © as a sequence depending upon n is only a mathematical device

to approximate the éctual gituation and in practice e(n) will be identified
*

with the given value of 8 .

It may be noted that the procedure (1) depends on lxij" j=1,2,...,n0;

i=1,2,...,c, with G(x/ci) as tie distribution function of ‘Xij" whnere

,
F(x/o.) - F(-x/o,), for 0
. o - o) - F(xfa), for x

0 , Otherwise.
As such, for all P the left side of (2) subject to (L) takes on its

minimum value when

- -1 . _ aln)
(6) et,l - et+1,c =1 et+1,t =8 ’

Tnis follows from tine stocnastic increasing property of tue family of
distributions G(x/ci) . We refer to the condition (6) as the least favour-

able configuration of 8's . The sample size n is determined by

(7) P(max(s%l),..., S%t)) < min(S%t+l),---,S%c))) =y

under the assumption that (6) nolds. In tne rest of tiis section it is
assumed tnat mean and variance c¢f F are zero and unity respectively,
wnicn in turn implies that S%i) is an unbiased estimator of G?i] for

each i .



Tne following lemma gives the large sample solution of tne sample size

problem.
Lemma 1. For fixed v, and under the condition (4), let n be 50 determined
that (6) and (7) hold. Then as n=~ o , '

+ 2
(8) G(n) =1+ A Yo — + o(n'%) s

where A is determined by the condition

A
(O, O: e 0 b Jeesy 7 ) )
7/

2ot E A

(t~1) times {ec-t) times

‘l>

(9) Y=1tQ ;

N

wnere Qc-l is tne cumulative distribution funetion of a normally distributed

vector (Ul,...Ut_l,'Wt+l,..., wc) with
= = . R : = l-_ R | = .l.
10) E(U,) = E(wj) 05 Cov(U,,U,,) = 3 (8,50% 1); Cov(wj,wj.) 2(6jj+l),

COV(Ui,Wj) = '%3 i, i' =1, 2, .e.y tel; j; J' = ttl,..05C

wiere §'s are the kronecker deltas,

The proof follows by ﬁaking the logaritmmic transformation of S%i) and
proceeding essentially as in lemma 1 of [8]. For a given 9*, it follows
from the above lemma that a large sample size solution for whicn (2) nolds
subject to (3) is given by

(v, + 2) A%

2

11 =t
(11) n Y

4,2 Procedure based on ranks. Let Zélg =1 4if jth smallest of N = cn
. 2
absolute values lxijl’ J=1,2,...,0n; 1 =1,2,...,¢ is from the ith.sample

and otherwise zélg = 0, Denote
-3



N

=1 (1) , ;
(12> Ti - n .§ EN’J. ZN,j E) 1= 1,235--,0,
j=1
where E is the expected value of the square of the jth order statistic

N,

of a sample of size N from a given continuous distribution function Fo .

Furthermore, denote the statistic associated with the population having tne

scale parameter G[i] by Jki) and let the ranked T 's be denoted by
1
T <T <...<T . Then the proposed procedure based on ranks is
[1] [2] [e] ' prop P
as follows:

Select the t populations associated witn

(3) 111> ey 0 e

This procedure will be referred to as F_ - score procedure T(FO).

In sequel, we shall study the relative performance of the procedures
(1) and (13) on the basis of the sample sizes required to guarantee (2),
subject to tne condition that the deviation of ei?) from cne is of the
order m'% wnere m denotes the sample size for the procedure T(FO).

To be precise we assume that
(1) o™ =1 (g q - ) - mE ol E)
1] EEN I ) ‘
where E€'s are some constants satisfying
1 < < ... < .
(15) §[l] < €[2] < hs €[c]

Suppose now that m is the smallest sample size required for tne

procedure (13) if it is to satisfy (2) subject to the conditions (14) and



(m) ~(m)
>
(16) Otii,g 2 O 5
where e(m) is greater than one and is given by (27). Then the following

~

theorem helps ih obtaining the least favourable configuration of ©'s
subject to (14) for the T(Fo) procedure.

Tueorem 1. For m = 1,2,..., let xij (3 = 1,2,...,m§:4 = 1,2,...,c)

be independently distributed according to Fi(x) = F(x/cgm)) with the

. m m m C s
sequence of parameter points c( ) - (c§ ),..., ci )) satisfying (14) and

~

suppose that tine assumptions of theorem 6.1 and lemma 7.2 of [10] are

gsatisfied. Tnen the limiting distribution of the random vector

(";f'é)% [T(i.) - T(J) - ui(g(m)) + UJ(S(m)), i=1,2,...,8; J = t+l:'-':c]’

wnere
(m) a S 1,2
. m -
1) uy @™ = [ JlaGOlac (), HG) = £ 6 (x)/e; 5 = (77
~ o) i=1
is the distribution of a t(c-t) dimensional normal vector
(vij; i=1,2,0..,%5 § = t+l,...,¢) with
(1g)f _ E(Vij) = 0, Var(Vij) =1, Cov(Vij, Vij,) = Cov(Vij, vi,j) = 1/2
@OV(Vij’ Vi'j') = 03 i+i', J +j'§ i,i' = 1,2,...,t5 3,3 =t+l,._..,C'
where
2 oo 1 2
(19) 2= Pwa- (P swm)? .
(o] (o]

Tne proof of this theorem follows immediately from the results of Puri 11
and is therefore omitted.
Tie probability of éorrect selection of t best populations is given

by



(20) P[maX(T(l),...,T(t)) < min(T(t+l),...,T(c)]

= P[T(i) - T(j) < O; i = l,2,...,t3 j = t+l,...,C]

- m - - (m) (m)
= P[(gza) (T(i) T(j) u(i)(g my)*‘ﬂ(j)(g ))
1
m \2 () (m) .
< (—2;\"2') (“'(j)(g n ) - p’(i)(f, ))’
i=1,2,...,t; J=t+l,...,c] .

On the other hand, for large m (c.f. Lemma 7.2 [10])

(21) fﬁ(u(j)(g(m)) - H(i)(g(m)))~ 3 /m I(J,G)(egrﬁ) - 1)
where
(22) 1(5,6) = f x & {aTe(x)]lac(x) .

o}

Hence using theorem 1 tue right nand side of (20) is asymptotically

equivalent to

1
2

(23) BV, <3-Z)

m . .
I(J,G)(B(.) - 1); i=1,2,...,t; J = t+l,...,c]
= 2A I

(m)

Again, in view of (16), o satisfies
1
(24) cég:’:)‘ < céz;]) <...< cé’;‘% < oé%) (g(m)) < Géﬂl'l <,.. < Gér:% .

The least favourable configuration among o's satisfying (24) and (14),

for whicin (20) and hnence (23) takes on the minimum value, is given by

@ e o, T



Tmus for large samples, tne sample size m is determined by tne condition

(26) P[max(T(l),...,T(t)) < min(T(t+l),...,T(c)] =y

where the left hand side is derived subject to (25). The following
lemma is analogue of lemma 1.

Lemma 2. For fixed v, let m be determined so tnat (26) nolds and sup-
-1.2
)

pose tnat G and J = (FO satisfy tne regularity conditions of tieorem

2.1 of [11] and of lemma 7.2 of [10]. Then as m~— =

(27) g _ gy /:-?1 3:?(3'% + o(w?) |

where A, I(J,G) and A are given by (19), (22) and (9) respectively.

Outline of tne proof. It is easily observable tnat tihe left side of (26)

depends on c[i]'s only througn ©'s. As sucn, in view of 8's satis-

fying (25), let

(28) 6, (x) = alx/o™)
wnere the ordered c§m)'s are giVen by

G[t]; 1= l,...,t;
(29) Gé?% = 5 . G[t]5 i=t+l,...,c

(cm)*
1
Then from [10] it follows that the random variables ma(Ti - ui(o(m))),
i=1,2,... »C, where the ui's are given by (17), have asymptotically

a joint normal distribution with zero means and covariance matrix
(30) o, = (8., -%) A%,

where Bii' are the kronecker deltas, A2 is given by (19) and where
oim) = (o£m),...,c§m)). The result now follows by proceeding precisely as

in lemma 4B.1 of [2].
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~

*
As before equating G(m) with © and using the above lemma, tne

large sample solution for m for wnich (2) holds subject to (16) is given

by

(31) m = 2 A A* ]2 ]

1(J,6)(8 -1)

Since tne sample sizes n and m as given in (11) and (31) are found for
the two procedures so as to satisfy the same requirements for 8's of
tne form (14), namely (2) subject to (3), the relative efficiency
eT(FO)’BS(F) (see Lenmann [8], Puri and Puri [12]) of T(F_) pro-

cedure is given by tne ratio

(v, +2) IE(J,G
(32) 1im ﬁ . e :

oo i A2

It may be noted that if F is tne standard normal distribution and
Fo is the cni-distribution witn one degree of freedom tine above efficiency
is one. 1In general, for all distributions F wiich are symmetrical witu

respect to the origin, tie efficiency (32) is one wnenever FO =G .

Remark. P.oceeding as in {117, one may construct a class of tests based
on the statistics E = (Tl,...,TC) for testing the nypotnesis of the e-
Quality of the scale parameters. It can tnen be shown that the asymptotic
Pitman-relative efficiency of tnese tests relative to tne classical
Bartlett's test is identical with (32). 1In particular, for all distri-
butions F with F(0) = O, tne test based on E coincides witn the one
proposed by Puri [11]. It would be of interest to make efficiency com~
parisons of the test based on T with tne one proposed in [11], for tne

~o

cases wiere F(0) >0 .
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Finally, given that the parameter point satisfies (6), we observe
tnat T(FO) and B-S procedures nave asymptotically tine same performance
cnaracteristic provided m = g(n) is determined so as to satisfy (32).

On the otner nand, let

A, \/'Y2+2 1
+—2—=— +0(n" %), 1=1,2,...,c; 14 t+1

n (n)
(33) e,§+i,i =807 =1 =

wiere not all A, =A for i =1,2,...,t and/or not all A, =0 for
i=1t+2,...,c , s0 tnat tne parameter point does not satisfy (6). How-

ever, condition (4) still nholds so that

(0) < . <ofm) coln) (olmy% o o(m) (n)

(n) (5411 < <9e]

(B8 opa] <ofa) < -or <oy <opy
Under tnese conditions, following Lehmann [7] and Puri and Puri [12] it
can be €asily shown that under the usual regularity conditions imposed on
G(x/ci), the two procedu;es have the same asymptotic performance character~
istics, provided m = g(n) is determined so as to satisfy (32).

5. Préblem (b). 1In this section we shall consider tie problem of
selecting out of ¢ populations the "t best" ones witn regard to order,
only briefly as its discussion runs parallel to tunat of problem (a).

5.1 B-S Procedure. Under this procedure, the "t best" populations

with regards to order are selected to be the ones associated with

2
[1]°"°°?

solution for n, such that

S S?t“ respectively. The problem is to find a large sample size
3

(35) P(coxrect selection of t ©best populations with regard to order) >y,

wnere is a preassigned positive number and o's are subject to the
g J

conditions
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n :
(36) ei+l,i'3 6( ); i=1,2,.0.,t , !
and wnere 6(n) is greater than one and is given by (39) below.

Following the argument of section 4.1, it is easy to establish
tnat for all ¥, the least favourable configuration of B8's turns out

to be

o n) L ) _
(37) 91+1,i =87 1i=1,2,...,%; et+l,c =1.

Tnus the sample size n is determined as thne solution of the equation

2

(38) P[s%l) <8y < < s% y < min(S%i); i=1l,...,e)] =v,

t
wiere tne left side of (38) is evaluated subject to (37). The following
lemma provides the large sample solution for n . Its proof being elementary
is omitted.

Lemma 3. For fixed Yy , let n be determined so tuat (37) and (38) hold.

Then as n = o

ol

5,/y2+2
/n

wihere 6 1is determined by tne condition

)

+ ofn”

(39) () _ g

(30) v = (e-t) @, (&, &, &, 0,0,...,0); 1<t <e-1,

). 2
L‘/‘-é ‘/E /2JL'—~\/._~J
\'a
t times (c-t-1)times

where Q is tine cumulative distribution function of a normally distri-

buted vector (Up,...,Ug; W q5...,W ;) satisfying
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= = 0O = L
E([Ii) = E(WJ') = O) Cov(wjﬁw'jl) - 2 (l+6j_i')

(41) Cov(Ui,Wj) = - $if i = t, and zero otherwise.

Cov(Ui,Ui,) =1 or - % according as i = i' or |i'-i‘=l, and O otherwise,

1,4 = 1,2,...,%;5 J,d' = t+1,...,c-1,

5.2 Procedure Based on Ranks and tneir performance characteristic. Witn

Ty» i = 1,2,...,¢ defined as in (12), tne T(FO) procedure for selection of
"t best" populations with regard to order is to select populations associated
witn T[l]""’T[t] in tnat order. As before we restrict ourselves 1o thne

set of Sij's satisfying thelcondition (14). Tuen arguing as in section 4.2-

it can be shown that the left side of (35) subject to the condition

(k2) eifz,i > sm) 1=1,2,...,%

wnen eij's satisfy tne least favourable configuration is given by

~ . . L oalm)

Thus for large samples, the sample size m 1is determined by tne condition

(44) HWU<T@)<”.<% <mm@hyi=tﬂ““mﬂ=v

t)

where the left side is calculated subject to (43). Furtnermore, as in

section 4.2, it can be shown under the conditions of lemma 2 tnat as m = o

(45) pCCONNN j?n ﬂi—Aar +o(mE) .



1k

Finally, if tune large sample solutions for m and n are determined by

(45) and (39) respectively and if the ©'s are subject to the same condition
(36) for both the procedures, so tnat g(m) = 6<n), it is easily seen that
the asymptotic efficiency of procedure T(Fo) relative to B-S procedure witn
regard to order, is same as in (32). Furthermore, it can be shown that if
the ratio of the sample sizes m and n is equal to the efficiency (32)

the two procedures nave the same asymptotic performance characteristic for

the case where for each n, the parameter point satisfies

&, Sy +2 1
(46) AN ORI A Mg
t+1,1 i —
J/n
for i#t+ 1;i=1,2,...,c, and tne condition (37) is not necessarily
satisfied.

6. Problem (c). Let xij; i=0,1,2,...5,¢3 j=1,2,...,0n, be c + 1

independent samples from populations M., II Hc having continuous

O} l"",
cumulative distribution functions F(x/oo), F(x/cl),...,F(x/oc) respectively.
HO is assumed here to represent the standard population. We shall call pop-

ulation Hi as "good or better than the standard" if

(W7) 5. < ol ,

10 -

5(n)

where eio = o?/cg . Here is known to be less than or equal to one
*

and in actual practice is identified as before with a constant 0 <6 <1,

prescribed by the experimenter. We now consider the problem of selecting a

subset of ¢ populations such that the probability that all populations

"better than the standard one" are ineluded in this subset is at least a
given number Y . The reader is referred to Gupta and Sobel [5] for a

similar formulation of this problem.
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6.1 Normal Theory Procedure. Consider the following selection pro-

cedure: Select Hi if and only if S§~5 Si , where Si, i=1,2,...,c

are the sample mean squares as defined in section 3, for HO,Hi, i.=1,2,...,5¢

respectively. Suppose without loss of generality that the only better popu-

lations are I, II e I (s <c), where s is unknown. Then

2)
eio 5 e(n) for i = 1)2,-..’5 and elo > 6<n) for 1= S+l,---ac . We

wish to determine the minimum sample size n such that
(48) P(selected subset includes Hl,...,HS) >y .

We restrict our attention to the case wnen 1 < s <c, since when 5 =0
that is when none of the ¢ populations is better than the standard, (48)
is trivially satisfied. Since s 1is unknown, we find the least favourable
configuration jointly of both o's as well as s , for which the left side
of (48) is minimum. This we attain in two stages. Firstly, for any fixed

8, the least favourable configuration of o¢'s is

(49) ci = cg = ,,, = 02 = e(“) Gi s

the left side of (48) being independent of o »0,- This follows from

s+12°°"

the stochastic increasing property of the family of distributions G(x/ci)

defined in section 4.1; as such

0 3 .
(50) o mE?EBUI) P{selected subset includes Hl,...,HSlH
io —

i=1,2,...,8

l""’ns are good]

2

s n .
o3 1= 1,2,...,8l0, = o ); i=1,2,...,8] .

= P[s? <8
3=

Secondly, since the right side of (50) is a decreasing function of s, the
least favourable value of s is s = ¢. The sample size n is therefore

determined by the condition



(51)
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Y = min min Plselected subset includes I_,..,,0 |l ,...,0_ are good]
1 sl 5
s Qiof e(n)

i=1,24...,8

P[Si < si; i=1,2,...,cl0, = e,

th

i=1,2,...5c] .

The following lemma now provides a large sample size solution for n .

Lemma 4. For fixed vy and with a "goodness" of a population defined by (47)

let n be determined so that (51) holds. Then as n - o

2

(n) §7VY2+2 _L1
(52) 0" =1« ——=— + ofn 2)
/n
Here ‘7 is determined by thne condition
\v4 .
(53) 'Y=QC ('_"" 5-~-:_V"")J
/2 /2

wnere Qc is the c.d.f. of a normally distributed vector (Yl,...,Yc) witn
(54) EY, =0, Cov(Yi,Yi,) = %(1+aii,); i,i' = 1,2,...,¢ .
The proof being straight forward is omitted. Equating e(n) of (52) with
*
the preassigned value 0 , the large sample size solution for n is given by
2
- “(v,*2)
v 2
(55) n o= =
*
(1-07)7
Finally since O < e(n) <1, it is clear from (52) that V >0, so that

from (53) we have

!
(56) Y 2 0,(0,0,...,0) = =% .
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6.2 Procedures based on ranks. Let Z&%ﬁ = 1 4if the rth smallest of
3 .

M = m(c+l) absolute values [Xij\; i=0,1,2,...,e3 j =1,2,...,m is from the
itn sample and otherwise let Z&lz = 0., Denote
3

M
_1 (r)2 (1), . _ .
(57) Ti = n IE]_ ELV ] ZM,I" i=20,1,2,...,c 3

(l) <V(2) < ... <V(M)

wnere V is an ordered sample from a given distribution

'FO and E denotes the expectation. The following distribution-free procedure

is then proposed:
(58) Select ni if and only if T, ST 1=1,2,...50,

we shall propose later an alternative rank procedure which is asymptotically
equi-efficient in Pitman sense to tne procedure (59).

As before, the aim is to find the minimum sample size m = g(n) such that
by using procedure (59), (k8) is satisfied. An argument similar to the one
used in section 4.2, leads to the least favourable configuratiﬁn of o's
(amongst the set of o's satisfying eig) =1 +'O(mf%))and s in the

present case as

i=1,2,...5¢ ,

(59) 5 = C, e](_gl) = 'g(m):

where G(H) of (48) is now identified by e(m) as given by (61l). Tmus the
sample size m = g(n) is the solution for m of the equation
(60) P[Ti ST i=1,2,0.0,e] =y,

L)

where the left side is derived under the condition tnat (Uém),cl
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satisfies (59). Then under tne 'conditions of lemma 2, it is found in a manner

similar to that used in section 4.2, that as m— o ,

(61) o a X_ zero R

where V/ ,A and I(J,G) are given by (53), (19) and (22) respectively. The
~(m)

*
large sample‘size solution for m is then given by equating © and ©6 , as

(62) m=[ 2Av*2.
1(J,6)(1-0")

The asymptotic efficiency of the rank procedure (58) relative to the
normal theory procedure turns out to be same as given by (23). Finally, if
we consider a sequence of parameter pointg (cgm), G{m)"..’cgm)) not satis-
fying (59), it can be shown as in tne previous sections that if the ratio of
the sample sizes n/m is equal to the efficiency (32), the two procedures
nave the same asymptotic performance. The details are omitted to avoid
repitition.

6.3 An Alternative Rank Procedure. Consider an alternative rank pro-

cedure, where we combine each of the c¢ samples Xij; i=1,2,...,c;
Jj=1,2,...,m with the sample Xoj; J=1,2,...,m from the standard popu~-
lation, instead of combining all the (c+l) samples together. Let for
i=1,2,...,c, Zéféo) = 1 if the rth smallest of 2 m absolute values

{!Xijl, |x .15 5 =1,2,...,m} is from the ith sample and zero otherwise.

Denote for i = 1,2,...,c ,

oj
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~ 2m .
(63) T =+ % E[V(r)]2 z(350)
1 m ., m,r
i=1
and
~ 2m .
(61 T =L 5 gl g0y
i,o m _ m,r
r=1
where V(l) < vie < V(2m> is an ordered sample from a given distribution

Fd' The alternative procedure is then to

(65) Select I, if and only if T, < Ti 08 1= 15250050,

wnich is equivalent to Ti < constant.
Again following Puri [lO], it can be snown that under the normal regularity
1~
conditions, the joint limiting distribution of the random variable (2m)2[Tl-ul,

ceey Tc - uc]/A is the distribution of a c-dimensional normal vector (Ul""’Uc)

satisfying (54), where A is given by (19);

(66) "

f J[Hi,o(x)] dG(x/ci)

(67) H, ~hy2

1,0 i [G(x/ci) + G(x/co)]; J = (F,

b4

and G is as defined in (5).

One obtains results parallel to the ranks procedures (58) with regards
to asymptotic performance; the details are omitted. It may be added, however,
that as in [12] the two rank procedures (58) and (65) can be shown to be equi-

efficient, in the sense that tneir large sample solutions are the same.
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