A Martingale Version of a Theorem of Marcinkiewicz and Zygmund*

bу

Y. S. Chow

Department of Statistics

Division of Mathematical Sciences

Mimeograph Series Number 104

March, 1967

This research was supported by the National Science Foundation under Grant GP-06073.

A Martingale Version of a Theorem of Marcinkiewicz and Zygmund*

bу

Y. S. Chow

Purdue University

1. Introduction. Suppose that $(x_n, n \ge 1)$ is an orthonormal sequence of independent random variables and $(a_n, n \ge 1)$ is a sequence of real numbers. Marcinkiewicz and Zygmund [5] proved that if $P[\Sigma \ a_k x_k \ converges] = 1$, $\Sigma \ a_k^2 < \infty$. Recently, Gundy [3] extends their theorem to martingales as follows: Let $(d_n, \mathcal{F}_n, n \ge 1)$ be a sequence of martingale differences with $E(d_n^2 | \mathcal{F}_{n-1}) = 1$ a.e. and $P(|d_n| > \lambda | \mathcal{F}_{n-1}) \ge \gamma$ a.e. for some positive constants λ and γ , and let $(v_n, \mathcal{F}_{n-1}, n \ge 1)$ be a stochastic sequence, i.e., v_n is an \mathcal{F}_n -measurable random variable for each n. Then $\Sigma \ v_k^2 < \infty$ a.e. on the set $[\Sigma \ v_k d_k \ converges]$.

Let x_1, x_2, \ldots be independent, identically distributed random variables and $(a_{m,n}, m \ge 1, n \ge 1)$ be a double sequence of real numbers such that $\lim_{m \to \infty} a_{m,n} = a_n$ for each n. In [6], Zygmund proved that if $\sum_{k=1}^{\infty} a_{m,k} x_k = T_m$ a.e. and $P[\sup_{m} |T_m| < \infty] = 1$, then $\sum a_k^2 < \infty$.

In this note, by stopping rules, we will extend Marcinkiewicz and Zygmund's theorem in a different direction and at the same time generalize Zygmund's theorem.

2. Main theorem. In this section, as well as in the following one, we will assume that $(d_k, \mathcal{F}_k, \ k \geq 1)$ is a sequence of martingale differences with $E(d_k^2|\mathcal{F}_{k-1}) = 1$ $(\mathcal{F}_0 = \{\phi, \Omega\})$, $(a_{m,n}, \ m \geq 1, \ n \geq 1)$ is a double sequence

^{*} This research was supported by the National Science Foundation under Grant GP-06073.

of real numbers with $\lim_{m \to m, n} a_m = a_n$ for each $n \ge 1$, and that $s_{m,n} = \sum_{k=1}^n a_{m,k} d_k$. Theorem 1. Let

(1)
$$\inf_{n} E|d_{n}| \geq \delta > 0,$$

(2)
$$\lim_{K\to\infty} P[\sup_{n} |S_{m,n}| \ge K] = 0 \quad \text{uniformly in } m,$$

(3)
$$\sup_{m,n} |a_{m,n}| \leq M < \infty.$$

Then $\sum a_k^2 < \infty$.

Proof. For $K > \max(M, 2\delta^{-1})$ and $m = 1, 2, ..., \text{ put } b_n = b_n(m) = a_{m,n}$, $S_n = S_{m,n} = \sum_{k=1}^n b_k x_k$, and

(4)
$$t = t(m) = \inf \{n \ge 1 | S_n^2 > K^2 \}.$$

For j = 1, 2, ..., put $\tau = min(t, j)$. It is easy to see that (for example, see [1])

(5)
$$\mathbb{E} S_{\tau}^{2} = \mathbb{E} \Sigma_{k=1}^{T} b_{k}^{2} \mathbb{E}(d_{k}^{2} | \mathcal{I}_{k-1}) \ge P[t=\infty] \Sigma_{k=1}^{j} b_{k}^{2}.$$

On the other hand,

$$\begin{split} & \text{E S}_{\text{T}}^2 = \int_{\left[\text{t} > \text{j}\right]} \text{S}_{\text{j}}^2 + \int_{\left[\text{t} \leq \text{j}, \ b_{\text{t}}^2 \text{d}_{\text{t}}^2 \leq \text{K}^{\text{l}_{\text{t}}}\right]} \text{S}_{\text{t}}^2 + \\ & + \int_{\left[\text{t} \leq \text{j}, \ b_{\text{t}}^2 \text{d}_{\text{t}}^2 > \text{K}^{\text{l}_{\text{t}}}\right]} (\text{S}_{\text{t-1}}^2 + 2 \, \text{S}_{\text{t-1}} \text{b}_{\text{t}} \text{d}_{\text{t}} + \, \text{b}_{\text{t}}^2 \, \text{d}_{\text{t}}^2) \\ & = \left(\text{K+K}^2\right)^2 + \int_{\left[\text{t} \leq \text{j}, \text{b}_{\text{t}}^2 \, \text{d}_{\text{t}}^2 > \text{K}^{\text{l}_{\text{t}}}\right]} (2\text{S}_{\text{t-1}} \, \, \text{b}_{\text{t}} \text{d}_{\text{t}} + \, \text{b}_{\text{t}}^2 \, \text{d}_{\text{t}}^2) \\ & \leq \left(\text{K+K}^2\right)^2 + \left(1 + 2\text{K}^{-1}\right) \int_{\left[\text{t} \leq \text{j}, \text{b}_{\text{t}}^2 \, \text{d}_{\text{t}}^2 > \text{K}^{\text{l}_{\text{t}}}\right]} \text{b}_{\text{t}}^2 \, \text{d}_{\text{t}}^2. \end{split}$$

Hence

(6)
$$(K + K^2)^2 \ge \sum_{k=1}^{j} b_k^2 \{ P[t = \infty] - (1+2K^{-1}) \int_{[t=k, b_k^2 d_k^2 > K^4]} d_k^2 \}.$$

Since $E d_k^2 = 1$ and $K > max (M, 2 \delta^{-1})$, we have

$$\int_{\left[b_{k}^{2}d_{k}^{2} > \kappa^{4}\right]} |d_{k}| \leq |b_{k}| \kappa^{-2} \int_{\left[b_{k}^{2}d_{k}^{2} > \kappa^{4}\right]} d_{k}^{2} \leq \delta/2,$$

$$\int_{\left[b_{k}^{2}d_{k}^{2} > \kappa^{4}\right]} d_{k}^{2} = 1 - \int_{\left[b_{k}^{2}d_{k}^{2} \leq \kappa^{4}\right]} d_{k}^{2} \leq 1 - (E|d_{k}| - \int_{\left[b_{k}^{2}d_{k}^{2} > \kappa^{4}\right]} |d_{k}|)^{2}$$

$$\leq 1 - \delta^{2}/4.$$

Choose K so large that $(1+2K^{-1})(1-\delta^2/4) \le 1-\delta^2/8$. Then

(7)
$$(K+K^2)^2 \ge \Sigma_{k=1}^j b_k^2 \{P[t=\infty] - (1+2K^{-1})(1-\delta^2/4)\}$$

$$\ge \Sigma_{k=1}^j b_k^2 (P[t=\infty] - 1 + \delta^2/8).$$

The condition (2) implies that $P[t=\infty] > 1-\delta^2/16$ for all $m=1,2,\ldots$, if $K \ge K_O$ for some K_O . Let $K=K_O$. Then

(8)
$$(K+K^2)^2 \ge (\delta^2/16) \sum_{k=1}^{j} b_k^2 = (\delta^2/16) \sum_{k=1}^{j} a_{m,k}^2.$$

Therefore $(K+K^2)^2 \ge (\delta^2/16) \sum_{k=1}^{\infty} a_k^2$, which completes the proof.

3. Some corollaries.

Corollary 1. If there exist positive constants λ and γ such that

(9)
$$P(|d_{k}| > \lambda | \pi_{k-1}) \geq \gamma \quad \text{a.e.,}$$

then $\sum a_k^2 < \infty$, provided that (2) is satisfied.

Proof. Obviously (9) implies (1). To prove (3), assume that there exists a subsequence k_m such that $|a_{n_{k_m},k_m}| > m$ for m = 1,2,... By Lévy's martingale version (for example, see [2], p. 324) of the Borel-Cantelli lemma, (9) implies that

(10)
$$P[|d_{k_m}| > \lambda \text{ i.o.}] = 1.$$

Hence

$$P[|a_{n_{k_m},k_m}d_{k_m}| > m \lambda i.o.] = 1,$$

which contradicts (2). Therefore (2) and (9) imply (3). Corollary 2. Let $a_{m,n} = a_n$ for all $m \ge 1$ and $n \ge 1$. If

(11)
$$P[\Sigma a_k d_k \text{ converges}] = 1,$$

then $\sum a_k^2 < \infty$, provided that (1) is satisfied.

Proof. Obviously (11) implies (2). We will prove that (1) and (11) imply that $\lim_{n \to \infty} a_n = 0$. Assume that there exist $\epsilon > 0$ and a subsequence k_m such that $|a_k| \ge \epsilon$ for $m = 1, 2, \ldots$. Then (11) implies that $P[\lim_{m \to \infty} d_k = 0] = 1$. Since $E d_k^2 = 1$ implies that $(d_k, k \ge 1)$ is uniformly integrable, we obtain $\lim_{m \to \infty} E|d_k| = 0$, which contradicts (1). Thus the proof is completed.

Corollary 2 reduces Gundy's condition (9) to condition (1), when the stochastic sequence $(v_n, \mathcal{F}_{n-1}, n \ge 1)$ is a sequence of constants.

Corollary 3. Let d_1, d_2, \ldots be orthonormal, independent random variables with zero median. If

(12)
$$P[\lim_{n} S_{m,n} = T_{m}] = 1,$$

(13)
$$P[\sup_{m} |T_{m}| < \infty] = 1,$$

and if (1) holds, then $\sum a_k^2 < \infty$.

Proof. By Lévy's inequality (see, for example, [2], p. 106), (12) and (13) imply (2). Since d_n are independent and uniformly integrable, (1) implies (9) immediately. Therefore Corollary 3 follows from Corollary 1. When $P[d_n = \pm 1] = 1/2$, Corollary 3 was proved by Zygmund [6].

4. Extension of a theorem of Kac and Steinhaus. Let $(d_k, \mathcal{T}_k, k \geq 1)$ be an orthonormal sequence of martingale differences such that $(d_k^2, k \geq 1)$ is uniformly integrable and let $a_{m,n}$ and $S_{m,n}$ be defined as in section 2. Theorem 2. Under the conditions (2) and (3),

Proof. For K>0 and $m,j=1,2,\ldots$, define b_n , τ and τ as in section 2. Then, as before,

By (2) and the uniformly integrability of $(d_k^2, k \ge 1)$, for all $K \ge K_0$ and

 $k \ge k_0$, we have $\int_{\left[t=\infty\right]} d_k^2 > 1/2$ and $\int_{\left[t=k\right]} d_k^2 < 1/4$. Hence, as $j \to \infty$, $\Sigma_{k=k_0}^j \ b_k^2 = \text{O(1)}.$ Therefore

$$\mathrm{O}(1) = \mathrm{ES}_{\tau}^2 = \mathrm{E} \ \Sigma_{k=1}^{\tau} \ \mathrm{b}_k^2 \ \mathrm{E}(\mathrm{d}_k^2 \big| \mathcal{T}_{k-1}) \ge \int_{\left[t=\infty\right]} \Sigma_{k=1}^{j} \ \mathrm{b}_k^2 \ \mathrm{E}(\mathrm{d}_k^2 \big| \mathcal{T}_{k-1}).$$

Hence for all $K \geq K_0$,

$$\int_{\lceil t=\infty \rceil} \sum_{k=1}^{\infty} a_k^2 E(d_k^2 | \mathcal{F}_{k-1}) < \infty.$$

Since (2) implies that $\lim_{K\to\infty} P[t=\infty] = 1$, (14) follows immediately.

When d_1, d_2, \ldots , are independent random variables and $a_{m,n} = a_n$ for $m,n = 1,2,\ldots$, Theorem 2 was proved by Kac and Steinhaus [4].

References

- 1. Chow, Y. S., Robbins, H. and Teicher, H. (1965). Moments of randomly stopped sums. Ann. Math. Statist. 36, 789-799.
- 2. Doob, J.L. (1953). Stochastic processes. Wiley, New York.
- 3. Gundy, R.F. (1967). The martingale version of a theorem of Marcinkiewicz and Zygmund. Ann. Math. Statist. 38, 000-000.
- 4. Kac, M. and Steinhaus, H. (1936). Sur les fonctions independantes II, Studia Math. 6, 59-66.
- 5. Marcinkiewicz, J. and Zygmund, A. (1937). Sur les fonctions indepéndantes, Fund. Math. 29, 60-90.
- 6. Zygmund, A. (1930). On the convergence of lacunary trigonometric series. Fund. Math. 16, 90-107.