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1. Introduction. Suppose that (xn, n >1) is an orthonormal sequence
of independent random variables and (an, n >1) is a sequence of real num-
bers. Marcinkiewicz and Zygmund 5] proved that if P[Z a X, converges] = 1,

z ai < . Recently, Gundy [3] extends their theorem to martingales as follows:

Let (dn,ﬁn, n > 1) be a sequence of martingale differences with E(dﬁl%n_l)=l

a.e. and P(ldnl > xl?n-l) > vy a.e. for some positive constants )\ and v,

> n>1) be a stochastic sequence, i.e., v, is an F -

and let (v _,%
n’“n- n

1
measurable random variable for each n. Then X vi <® g.e. on the set
5
[= v, &, converges ].
Let XqsKyyeee

and (am n O >1, n>1) be a double sequence of real numbers such that
)

be independent, identically distributed random variables

limm.am,n= a, for each vn. In [5], Zygmund proved that if Zi:lam,kxk= Tm
a.e. and P[supm[‘I‘m|< o] =1, then % ai < o,

In this note, by stopping rules, we will extend Marcinkiewicz and Zygmund's
theorem in a different direction and at the same time generalize Zygmund's
rtheorem.

2. Main theorem. In this section, as well as in the following one,
we will assume that (dk’gk’ k > 1) is a sequence of martingale differences
with E(dil?k_l) =1 (ﬁo = {9,93), (am,n’ m>1, n>1) is a double sequence
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of real numbers with llmm.?m,n= &, for each n > 1, and that Sm,n=2i=l%m,kdk'

Theorem 1. Let

(1) inf Eldnl >8>0,
(2) limK_mP[supnISm’nl >K]=0 wniformly in m,
(3? sup lam’nl <M<,

m,n

Then X ai < o,

Proof. For K > max(M, 25‘1) and m=1,2,..., put b_= bn(m) = g

Sn= Sm,n= Zi=l bkxk’ and

(1) t = t(m) = inf {n > 1|55 > &}

For J = 1,2,ee., put 7T = min(t,j). It is easy to see that (for example,

see [1])

I 2 Lralle J 2
E % _q b B(dkluk_l? > P[t=~] % _; by.

-1 o

(5) E S

On the other hand,

v



E 52 = f 52 +J » 52 +
[t >3] 7 “[< 3, p2a2 <4

5
+ fal
f oo b (85.q% 2 tltdt+b )
[t <3, bod- >K']

< (k)2 + (25 d+b a2) (
[ 22 £-1 Pt )

[t <30 & >K']

< (¥ + K2)2 + (l+2K—l) J bi as.
' [t < Jsby

Hence

(6) (k + )2 257 ) vf {P[6 = =] - (1K) | at}.
- | ©[bek, bR > K]

Since E di =1 and K > max (M, 2 6-1), we have

[ Lol < vl k2 | & < o/2,

[b2aZ > K" (222 > x*3

. a = 1- 2 < 1-(zle, |- la,1)?
J[bidf{ > K*] J[biﬂ.ﬁ <& J[bkdk >kt

<1-6%/4.



Choose K so large that (l+2K-l)(l-62/§) < 1—62/8. Then

(7) (0)? > 12 [PLe=e]- (142K ) (2-67/4)]
> | vE(p[t==] - 1+ 67/8).

The condition (2) implies that P[t = «] > 1-62/16 for all m = 1,2,..., if

K> Ko for some Kb. Iet K = Kb. Then

(&) (i) > (6%/26) ) vf = (67/16) ) oF .

Therefore (KHK?)g > (62/16) j:zl aﬁ, which completes the proof.

3. Some corollaries.

Corollary 1. If there exist positive constants A and v such that

(9) P(la. ] >al5 ) >y a.e.,

then z|a§ < o, provided that (2) is satisfied.
Proof. Obviously (9) implies (1). To prove (3), assume that there exists

a subsequence km such that |a K | >m for m=1,2,... . By Lévy's
. J m
m

martingale version (for example, see [2], p. 324) of the Borel-Cantelli lemma,

(9) implies that



(10) P[la, | > 1.0.] = 1.

Hence

P[lan % >m A i.00] = 1,
km mom

which contradicts (2). Therefore (2) and (9) imply (3).

Corcollary 2. let & n= an forall m>1 and n>1. If
>

(11) P[® a, 4 converges ] = 1,

then ¥ ai < », provided that (1) is satisfied.
Proof. Obviously (11) implies (2). We will prove that (1) and (11)
imply that limn a = 0. Assume that there exist € > 0 and a subsequence

k ~ such that la, | >e¢ for m=1,2,.... Then (11) implies that

km )
P[J.J.m.m dkmf 0] = 1. B8ince E 4

integrable, we obtain lim.m Eldk | = 0, which contradicts (1), Thus the proof
m .

1 implies that (dk, k >1) is uniformly

is completed.
Corollary 2 reduces Gundy's condition (9) to condition (1), when the

stochastic sequence (vn,5‘=n 10 B > 1) is a sequence of constants.

Corollary 3. Let dl’dg"" be orthonormal, independent random variables

with zero median. If

(12) , P[lim_§ =7 ]=1,



(13) Plsup |T | <=]=1,

and if (1) holds, then I ai < o,

Proof. By Lévy's inequality (see, for example, [2], p. 106), (12) and
(13) imply (2). Since d ~ are independent and uniformly integrable, (1) im-
plies (9) immediately. Therefore Corollary 3 follows from Corollary l.

When P[dn =+ 1] = 1/2, Corollary 3 was proved by Zygmund [6].

4. Extension of a theorem of Kac and Steinhaus. ILet (dk,ﬁk, k> 1)

be an orthonormal sequence of martingale differences such that (di, k2> 1)

is uniformly integrable and let a n

and S be defined as in section 2.
) m,n

)

Theorem 2. Under the conditions (2) and (3),

(1k) 5 ai E(dﬁ]?

k-l) <o a.e.

Proof. For K >0 and m,j = 1,2,..., define bn,_'r and T as in

section 2. Then, as before,

2 T2 .2 d) .2 2
(15) BS. =B Iy g by Ay 255 Py f d >

2 2 -1 } 2 2
(16) ES_ < (K+K2) + (1+2K ) ZIi:l bk J‘[tqk] dk .

By (2) and the uniformly integrability of (di, k >1), for all K > K and



a2 >1/2 and f a® < 1/4. Hence, as § - ®,

k >k _, we have I

[t==]
2

Zf“:'ko by = 0(1). Therefore

el o T 2 2 g ' J 2 2o
0(1) = BS” = E &, by E(ap|F, ;) > f[tzm] 1 P B(OC[Ty 1)

Hence for all K > KO,

® a® 5(d)F, ) <.
J[tzw] =1 % By

Since (2) implies that lim P[t==] = 1, (14) follows immediately.

When d.,d.,..., are independent random variables and a_ _= a_ for
1’2 m,n n

m,n = 1,2,..., Theorem 2 was proved by Kac and Steinhaus [4].
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