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0. Summary.

Let 2z(t), t > 0, representing the number of particles alive at time 1,
be a continuous time (temporally homogeneous) Markov branching process as de-
fined in Harris [5]. Let a positive constant b be the associated risk of
death of a particle and let h(s) be the probability generating function of the

. [os]
probabilities pk, k=0,2, 3,¢0v, with Z pk = 1 , where pk is the probabil-
k=0

ity that a particle is replaced on death by k new particles. Iet N(t) de-

note the number of particle deaths occuring during time interval (0, t) and

¥(t) = IZ Z(7)dT . In this paper, results of Puri ([{8], [9]) concerning the
vector process (Z(t), Y(t), N(t)) obtained for the case of simple homogeneous
birth and deoth process, have been generalized to branching processes. Also
some limit theorems have been established concerning the behavior of the vector

process.

1. Introduction.

Let Z(t), t > 0, representing the number of particles present at time t,

be a continuous time Markov branching process, where each particle existing at

¥
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t has a probability bt + o(T), (b > 0) of dying in the interval [t, t + 7).
Given that a particle dies at any time t , the probabilities are Pgr Pos p3,...,

w
that it is replaced by O, 2, 3,..., particles, where X p; = 1, and
i=0

0< Pg <1l . It is essumed that different particles behave independently. Let

[o+]
h(s) = P, * , with |s] <1 . Here we shall be concerned with the temporally
k=0

homogeneous case; consequently b and h are independent of t . Let ht(1l) <= .
Without loss of generality, it is assumed that 2Z(0) =1 . Let N(t) denote the

.t
total number of particle-deaths occuring during (0,t). Also, let ¥(t) = J Z(t)ar .
0

Finally, let Y(sl,se,s3;t) (¥ for short) denote the Laplace quasi-probability
generating function (g.p.g.f., for short) of the process {Z(t), ¥(t), N(t)}
defined by

t t
206) M) epl- ,3(£)1|2(0) = 11, (1)

¥(s t) = E{sl 3

1) 82) S3 H

for

<1, and 8,20,

In two earlier papers (Puri [8], [9]) some limiting results concerning the
joint aistribution of the processes Z(t), Y(t), and N(t) were established in
the case of a simple homogeneous birth and death process. The present paper ex-
tends these results to a branching process characterized by b and h(s). In
particular, the results presented here include those due to Sevast'yanov {13]
(see Harris {51, pages 108-110) as special cases where one is concerned only with
the process Z(t). Following Sevast'yanov we shall be exploiting a great deal

the usual backward differential equation of the process {Z(t), ¥(t), N(t)} .



The integral Y(t) arises in several domains of application. For instance,
in the study of response of host to injection of virulent bacteria, ¥(t) could
be regarded as a measure of the total amount of toxins produced by the bacteris
during time interval (0, t), assuming a constant toxin-excretion rate per bac-
terium. Another problem, closely related to this, is the study of the distribu-
tion of the response time of the host, after infection with a certain dose of
particles. The particles here are assumed to be self-reproducing entities such
as bacteria or viruses. The response which the particles elicit from the host
during the course of time may be death, development of a tumor or a local lesion,
or a bacterial burst caused by the bacteriophages, etc.. (See Puri [11], [12]

and Gani [4] for such applications.) More specifically, let
PriX(t + At) = 0]2(t) = z, X(t) = 1] = v(z,t)at + o(At) , (2)

where

1 if the response has not occurred until time t
X(t) = (3)

0 Otherwise,

and v(z,t) is a nonnegative measurable function of z and t . In particular,
let v(z,t) =0z , with ¢ >0 . Then starting with Z(0} =1 and X(0) =1,
for a given realization w of Z(7) for all 7 with 0<7T <t , it is easy

to establish that the probability of no response during (0, t] is given by

exp {- © It Z(T;w)ar} . | (1)
0
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2(t; ) N(t; w)
1 2

over all the realizations {Z(T;w) ; 0 < T <t} , we have

Multiplying this by s and taking expectation of the product,

E{si(t) sg(t) expl~ o ¥Y(t)1}, (5)
which is exactly the q.p.g.f. (1) with Sy replaced by o . Thus the integrals
such as Y(t) are of great practical importance particularly for the study of
response time distribution arising in various live situations. Integrals more
sophisticated than Y(t) will naturally arise by varying the function v(z,t)
.above. The distribution problems concerning such random variables as integrals
of certain stochastic processes have been studied elsewhere by Bartlett [2]
and by the author (see [8], [9]). One of the problems that we shall be concerned
with here is that of obtaining the asymptotic expression of the ¢.p.g.f. (1) for
large t . This, in turn, will exhibit the asymptotic behaviour of the probabil-
ity of no response, namely Pr(X(t) = 1), for the simple case with v(z,t) =oz .
(See theorem 8, and lemma 3.)

Following the standard approach which utilizes the property of a Markov
process that every epoch t is a point of regeneration (see for instance, Bartlett
and Kendall [3]), ¥ can be shown to satisfy the integral equation (6)lby con-
sidering whether or not a particle-death oceurs in (0, t) ; the epoch T of the
first death, if there is ane; and the contribution to Y of what subsequently
happens .

t

Y(sl,-s2,53;t) =5, expl- (b +s,)t] + b 55 J; exp[- (b + SE)T]h(‘Y(sl,SE,SB;t-T))d'T. (6)
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Equation (6) can be easily transformed into Kolmogorov differential equation

Yt =D 83 h(y) - (v + 52) Y, (1)

where Yt denotes the partial derivative of VY with respect to t , and where

the equation (7) is subject to the initial condition

¥(s 0) = 5y - (8)

l) 521 533
It may be remarked that ¥ of (1) is defined and the equations (6) and (7) hold
for all complex values of S, and s3 with lsll <1 and [s3| < 1. How-

ever, unless otherwise mentioned we shall restrict ourselves to the real values

of s, s; with 0<s,, 5, £ 1. With 85 =0, from (6) it follows that

: = - + .
Y(Sll Sg) OJ t) Sl exp [ (b Sa)t] (9)
This being of no interest, we shall henceforth restrict ourselves to the case
with s3 =~ 0 , unless otherwise stated. As such we may define the function

b+s
£(x) = n(x) - ( 5-33 ) x (10)

for 0 <x <1, so that (3) may be rewritten as

Y. =D 55 £(¥) . (11)



It may be remarked here that solution of (11) subject to (8) is unique with
¥(1,0,1; t) =1 + This follows from the fact that h'(l) <® and that the right
side of (11) satisfies & Lipschitz condition in the appropriate region for Y.
For details reader may refer to Harris [5].

Néxt section deals with the moments of order one and two of the process
{2(t),;¥(t),N(t)}, and section 3 with certain elementary results which will be
needed in later sections: Section 4 is concerned with certain interconnections
between the limiting distributions of 2Z(t), ¥Y(t) and N(t). Section 5 deals with
theorems concerning a derived process {(R(t), S(%), T(t)} defined by (42) and
its limiting behaviour as %= . Finally in section 6 we are concerned with cer-
tain asymptotic results for the process {Z(t), Y(t), N(t)} when hi(1) <1
end also with those of a derived process {&(t), C(t), M(t)} defined by (91),
for the case when h'(1) =1 .

Before the cldsing of this section, we wish to add that the results of
this paper have been in existence for sometimes in the form of a Mimeo-Series
(see Puri [10])« After the paper was submitted for publication, the author's
attention was drawn by the referee to a recent paper of Athreya and Karlin [1],
where the reader may find some further results concerning the process N(t)
based on the exploitation of the relation (45). For this, the author is grate=
ful to the referees He is also grateful to Professor Karlin [6] for the argument;
simpler than my original one, used in proving the a.s: convergence of the random
variables S(t) and T(t) of section 5; Finally the reader mey find very minor
overlap between this paper and [1] concerning only the process N(t), for ex-
ample; the a:s: convergence of T(t) (theorem 6) and the fact‘ R=T aess
(theorem 7): This, of course, is only accidental and is retained here as such

for the sake of completeness.



2. Moments of the Process {Z(t), ¥(t), N(t)};
WMWWWVW

While moments of 2Z(t) are well known (see Harris [5]), we give in the
followihg the moments of order one and two connected with the process
{Z(t),'Y(t), N(t)} , where a and A respectively stand for b(h'(1) - 1) and

(h"(1) = nt(1) + l]/[h'(l) - 1] . These moments can be easily derived from (7). .

E z(f) =2, B y(t) = i—(eat-l) ; E N(t) = -E(eat-l) . (12)
(,A eat(eat41) » a % 0
Ver Z(t) = (13)
h"(1)bt , a=0
ég [(eEat-l) - 2 at eat] ;4 % 0
Var Y(t) = & _ (14)
3
n"(1) %—— , a=0
4 -
e®o2at ¥1 | 142at gat;ezat PRI (ot o4 162 4 ko
| 1-n'(1)  (1-n'(1)) (1-nt(1))°
Var N(t) = < (15)
3
bt+h"(1)-(—§°-2- , a=0
\ 3
.
2 et (e®°- 1 - at), ato
Cov (2(t), ¥(t)) = d - (16)
n"(1) 2~ , a =0




gt
E;tu-gwu»uw“wumwnmhwnn,a+o

Cov(z(t), N(t)) = (17)

2
" bt
() A

2 av
1 -l n
(h'(1))°-1-2 n (1)] b 2b. e LA 2at

(n*(1) - 1)° n(1)-1 &
. 2 11
Cov(¥(t), N(t)) = P I(AN7T-RW-RYA)T Lo (18)
ov ) ! ;E[ h'(1) - 1 ] '
2.3
h'(1) 9—%— , a=0

The limiting behavior (as t — @) of various correlation coefficients p's are

given as below:

é 0 a <o
ifpayu)=$3p&Nﬁﬁ=4~5/a a=0 (19)
1 a >0
~
-~ _ :
t/h"(l) sR()ERNA) o
n"(1) + (1-n*(1))
smpLN&)=< (20)
1 a2l

N

Also wvhen a =0, Py Y(t) = /§/2
>



3. Some Elementary Results.

P e o e  aa a v oW W W S Y

It is easy to establish the folloWing properties of the function f£(x) of
(10).
(a) There exists exactly one root of the equation f{x) = O 1lying between zero

and one. This root treated as a function of s and s is continuous in its

2 3
arguments for all 55 >0 and 0 < 5 < 1 . Denote this root by q(s2,s3) ,

which is taken to be zero when s, = 0 . Also when Py = 0 , this root is zero

3

5 and 53 . In all other cases, this is positive.

(v) Let 0< Py <1, then q(s2,s3) 1 q(se,l) as sg t 1, and q(s2,1) t q

for all values of s

as s,} 0, so that 0 < q(s2,53) < q(sa,l) <a <1, where q is the well known
probability of extinction of the process Z(t) and 1is the smallest nonnegative
root of the equation h(x) =x . (g equals one if h'(l) <1 and is strictly
less than one if ‘h'(l) > 1.)

> <
(¢) For 0<x<1, f(x) = 0 according as x 3 q(s2,s3) . Again,

b+s

2
1 4 = 1 - —————
£ (q(s2,53)) h (q(sg,s3)) b, (21)
is strictly negative for all S5 -0, 0<% s3 < 1, except when S, = 0, 53 =1
and h'(l) = 1, where it is equal to zero.
(a) q(sg,s3) is the smallest nonnegative root for x of the equation
Y(X,SE,SS;t) =x ;0<x<1, | (22)

vhere t may have any positive value and s
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Proof of (d) follows from (31) and the argument used for proving theorem 1

below. Again it follows easily from (6) that the q.p.g.f. V¥ satisfies the

inequality
bls,| bls.|
[¥(s,,5,,8,5t) < — + (s, | - —3) exp [-(b*s,)t] (23)
3 1 2
b+52 b+52

where 51 and s3 are allowed to take complex values with isll <1, and

lS3| _<.l M

Let for k =0, 1, 2,...,

@ @

alapeyt) =T o3[ & o Bz =k, Xe) £v, ) =n] (21)

We then have the identity

it

e

s

k
Y(Sl)52,33,t) l

g (5p0553%) + (25)

In particular it follows from (6) that ¢, satisfies

v - (s, )T
¥(0,8,,855) = 9os ,545t) = b s J e h(ey(sp,855 t=1))aT (26)

which yields d @o/dt =D 55 h(mo) - (b+s2) 9y » With ¢0(52,53;O) =0 .
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From (26) we immediately have

bp,S -(b+s2)t bs -(b+s2)t
bggu-e ) < yp845t) < -5-—3-2- (1-e ) . (27)

Finally we have

Theorem 1. For every fixed (52,s3), qb(se,SB;t) t q(sz,s3) as tt .

Proof. We first note that for t,7 >0,

Y(sl,s2,53; tir) = ¥ (Y(sl,s2,53; T), Spr833 t) . (28)

Putting sy = 0, it follows that

¢O(SE:S35 t4r) = Y(qb(s2)s35 T): 52)533 t) s (29)
so that
Polspssgs t41) 2 ¥(0,8,,8,5 ) = @y(sy,855 ©) o (30)

Thus ¢b(s2,s3;t), for every given 32 and s3 , 1s a monotone increasing
function of t and being bounded between O and 1 heas a limit as ©t 2 < ,

say n(SE’SS) . Letting T - in (28) we have for all t

n(se)SS) = Y(n(52153): 52:535 t) ’ (31)
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Again from (11) we have

-+ - .
Y(sl,sg,s t4+7) Y(sl,se,s3, t) o(T)

3’ _ . :
= b 5 f(f(sl,sg,s3,t)) + . ,

T

where on replacing s

1 by ﬂ(52,33) and using (31) we find for any T > O

0 =5 5. f(n(se,s3)) + 057)

Letting T - 0, we find that n(52’83) satisfies the equation f(x) = 0, which
by virtue of property (a) of f(x) establishes that ﬂ(se,s3) = q(sg,s3) .

b b

P0%3 53

< alsy,sg) < : (32)

2 bis,

Corollary 1.

bts

Corollary follows from theorem 1 and (27). Again, it can be seen that the
right side equality of,(32) holds only when po = 1 , a case which we have ex-

cluded by assumption.

L, Limiting Behaviour of the Process {z(t), ¥(t), N(t)} .

Following theorem gives the limiting behaviour of the process {Z(t),Y(t),N(t)}

as t o o,

Theorem 2. Let p, > O, then for every fixed (sl,se,s3) such that 0 <s, <1,
0 < 55 <1, 322_0, as t = @, Y(sl,s2,33;t) 1 q(se,s3) or Y(sl,se,s3; t) | q(s2,s3)

i > i .
according as sl < q(se,s3) or s q(sg,s3) respectlvelx

1

Outlines of Proof. When 5, = 0 , the theorem holds by virtue of theorem 1.

Thus, let us first consider the case when 0 < s

1 < Q(Se,s3). From(1l) we have
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t|t=0"

in the last section. Therefore, there exists an e = O , such that for all

¥ = bst(sl) , which is positive by virtue of property (c) of f£(x) as given

02833 T) > sy ¢ Now for any given %t > O, choose T and a

positive integer n such that 0 < T <€ and t =nT . Then

0<T<e¢, Y(sl,s

H

¥(sy,85,855 t) = ¥(s ;8,855 n1) = ¥(¥(s, ;85,855 T)ysp855 (n-1)7)

> ¥(s 33 (n-1)T) >eees> Y(sl,sz,s3; T) > s .

l) Seﬁs

Thus for all t >0, ¥(s t) > s. . From this and (28) it follows that

1’527 %37 1
Y(sl,se,SB; t) is an increasing function of t . The remaining argument is
similar to the one used in proof of theorem 1. Algso, the proof for the case
with s, > q(s2,s3) follows along similar lines and is therefore omitted.

From theorem 2 follows the convergence in law of the process {Z(t), Y(t),

N(t)} to the random vector {Z,Y,N} , where

-s.Y
E [si e 2 s

} =als,,s,) - (33)

N
3 2’3
However, it is well known that if h'(1) <1, 2(t) * 0 a.s. as t—- . On

the other hand if h'(l) > 1, Z(t) tends to zero with probability q which is
strictly less than one and to <« with probability 1l-~q . Also it may be noted
from property (b) of f{x) that g(0,1) = q is equal to one or strictly less
than one according as h'(l) <lor h'(1) > 1 . Therefore when h'(1) <1,
{2,Y,5} is an honest set of random variables. On the other hand when h'(1) > 1

they are finite only with probability q <1 . Restricting only to the joint dis-

tribution of ¥ and N we have



g1
Sg} = q(SZ’Sf}) P) (3)'1')

and the following theorem.

Theorem 3: For every k = 1,2,..., with P(N =k) >0,

1 2
(YW = k) = 55 %, - (35)
b+52
Proof From the fact that q(sg,SB) is the unigue root of fx) = hix) - (bs ) x =0,
3
lying between Q and 1 , it is easy to show that
ale,,1) = a(0,=) | (36)
2) )b+52 ) 3
which on using (34) with 55 = 1 yields
Ele ) = E{m} = kEl P(N=k) Bfexp[-s, X5, /2b1} » (37)

where 1n the end we have used the fact that P(N=O) =0 . The theorem now easily

follows.

Theorem 4. For k = 1,2,...,

k-1
p(i=k) = = S (n(x))" , (38)
! dxk-l |x=O
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bs
Proof. Let 0 < s3 <1 and s_. >0 be such that <1, so that h(z)

2 - bts

2

treated as a function of a complex variable =z is regular on and inside the

b53
closed contour C = {z: |z]| <
- b+s2

} . Then since [( Yn(z) | <}z | at

b+s
all points 3z on the perimeter of C , by Langrange's theorem (see Wnittaker and

: bS
Watson [14]) the equation x = (b+

Jh(x) has one root in the interior of C
which in our case is denoted by q(sg,s3) + Furthermore by the same theorem we

have

s
k' (b+s2

k-1
a(s,y8,) = ) dk 7 GT (39)

k 1

In this letting 32 = 0 but keeping 53 <1, we Have

> k-1
g) -3 s? i S T, | (40)
k=0 ax™ x=

gnd from this the result follows.

Remark. If h'(1) <1, q(0,1) =1 so that the probabilities of theorem 4 add
up te one. If on the other hand h'(l) > 1, they add up to g which is strictly
less than one, the remaining probability (1-q) being equal to P(N = «) ,
Note that since the random varigbles Y(t) and N(t) are nondecreasing

functions of t, Y(t) + ¥ a.s. and N(t) t N a.s., where g.p.g.f. of Y and

N is given by (34). Also when h'(1) <1 and h"(1) <® , one can easily es-
tablish that both Y(t) and N(t) converge respectively to Y and N in mean
square (m.s.). For instance, in the case of Y(t) , by elementary calculations

2
(see Puri [8]) one can find the expression for E(Y(t+r) - ¥(t))" , where on
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letting T — ® , one can show (we omit the messy algebra here) that with

a = b(h*(1)-1) ,

11 5 (¥(6+1)-¥(8))? = BY-¥())? = iE (M) B 4 2], (41)

which tends to zero as t — © . This establishes convergence of Y(t) to ¥

in mes. .
let
re) = B8 s(e) = K, n(e) - Ry ()

In the next section we shall discuss the limiting behavior of the process

{rR(t), s(t), T(t)} .

5, Convergence of the Process {R(t), S(t), T(x)} .

For w, v, w=>0, let

8(w,v,w; t) = E{exp(-ur(t) ~ v 8(t) - w T(£))} . (43)

On using (1) this becomes equal to

W(GXP(' ;Z(t))’ EY(t) 3 exp(- %ﬁ({j‘); t)
We then have

Theorem 5. If h'(1) <1, h"(1) <=, then

1im @(u,v,w; t) = q(ov(1-h'(1)), exp [-w(1-h'(1))]) . / (1)

+—
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Proof is omitted as it follows along the lines of proof of theorem 9 of section

6.2 and the facts that

lim B ¥(t) = [b(l—h'(l))]'l, lim E N(t) = (:L-h'(l))"l .

e fea

Whereas the behavior of R(t) is already well known (see Harris [5]), we give

in the following those of S(t) and T(t) .

Theorem 6. S(t) and T(t) tend to S and T respectively as t — « , both

with probability one. Furthermore, if h'(1) La and h"(1) < ® , then both

these convergences are in m.s.. More specifically, both E(S(t) - S)2 and

B(T(t) - T)° are O(exp[-|1-n'(1)|pt]) as t - = .

Proof. The a.s. convergence of S(t) is an immediate consequence of the fact

-at
that 2(t) e ®" Ybeing & nonnegative martingale converges with probability one.
Regarding the a.s. convergence of T(t) , we note that
N(t)

a(t) =1+ % e, (b5)
1=1

where (6i+ 1) denotes the number of particles replacing the ith particle-death.
Now the a.s. convergence of T(t) follows immediately from (45) by invoking the
strong law and using the a.s. convergence of Z(t)e-at . (See Athreya and Karlin
{11, for further exploitation of relation (45)). For the case of convergence

in m.s., we shall consider only the case of S(t), the case of T(t) being

analogous. After elementary computation, one first finds an expression for

E(S(t+r) - S(t))e. This expression being somewhat lengthy is not reproduced here.
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However in this for fixed T > 0, letting t — @ it is easy to verify that
2

when h'(1) £ 1, B(s(t+7) - 8(t))° » O uniformly in T , from which follows

that S(t) - 5 in m.s.. In the same expression, if instead we let 7 - @,

one obtains

/%_‘:';’5")'2— [(e7% 1) - at ®®], n*(1) <1

B(s(t)-8)? =4 (46)
2h e::: 5 [1.-—e-a't - at e—at] , h'(1)> 1,
\(l-e )

where A and a are as defined in section 2. From (46) it is clear that

E(5(t) - 8)°= 0(expl-|1-h'(1)|b £1) , (t - =) . (57)

This completes the proof.

Again, when h'(1) > 1 and h"(1l) <= , it is well known (see Harris [5])
that R(t) converges in m.s. and with probability one to a random variable R .
If ¢(u) is the moment-generating function (m.g.f.) of R,
op(u) = E[exp(-uR)) , we have its functional inverse given by )

s

9 (s) = (1-s) expf [ [h;l&g:; + i_x] dx}; e <s <1, (48)
1

This result is due to Sevast'yanov [13]« It is also known that the distribution
function corresponding to ¢ has a density except for a possible discontinuity

at zero. Following theorem connects these results with those of S(t) and T(t).
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Theorem 7» If h'(1) > 1, h"(1l) <« , then

R=85=T, a.s. , (49)

where the functional inverse of m.g.f. of the caommon distribution is given by (48).

Proof. Easy calculations yield that

Lim E(R(t+7) - S(t))°= B(R-5(t))%= Fo—x (e®F-1-at) (50)
at .42
T—10 (e -l)
which tends to zero as t— . Thus S(t) R in m.s.. From this and theorem

6, it follows that R =S a.s.. Proof of T =R a.s. is analogous.

Remark. It is not surprising to find under the conditions of the theorem T that
R =8 a.s., keeping in mind the facts that Z2(t) tends to a constant (zero with
probability ¢ and © with probability 1 - g) and both E Z(t) and EY(t) tend

to ® as t — *, so that as % — @ one would expect

R(t) ~ S(t) a.s. ' (51)

6. Some Asymptotic Results:
Whereas asymptotic resuwlts for the case with h'(1) > 1 have already been
given along with others in theorems 6 and 7, in the following subsections we shall

deal with results corresponding to the cases with (i) h'(1) < 1 and (ii) h'(1) = 1.

6.1. Case with h'(1l) <1 .

Following theorem gives an asymptotic expression for the q.p.g.f. Y(s t)

l) 52, S3 5
for large ©t . With regards to the response-time distribution problem discussed in

section 1, one can easily obtain the asymptotic expression for the probability of

no response by simply putting s, = s3= 1 and s,= 0 , in expression (52) velow.
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It is clear that for large t , the theoretical no-response curve is approximately

exponential in its behaviour.

Theorem 8. If h'(l) <1, h"(1) <® , then for s, >0, 0<s, <1, as t—°

2 3

¥(s,,85,855t) = alsy,s5) * expla(s, ) J{1+0(explAls ), t) 1)) (52)

where + or - signs are taken according as sl is greater or less than q(se,s3)

and

A(s ,t) = £'(a(sp,55))(K(s ) + bst) (53)

and where for s § q(sg,s3), 0<s <1,

1 ( b )"
K(s) = js B(x)dx + oslaleg5)-c| (5%)
q(s2,33) f'(Q(SE;S3))
with
1 1
R O R Clown)l = ) B 2
In particular, when sl = q(sg,ss) R
Y(Sl; 32) 333 t) = Q(Sg) 33) . (56)

The proof follows along standard lines (see Karlin [7]) and is therefore omitted.

An eager reader may, however, find its details in the Mimeo-Series (Puri [10]).

Corollary 2. If h'(l) <1, h"(1) <=, then

alspssg) - @glspssgs t)
lim exp [A(O,t)] =1 s (57)

o

vhere A(O,t) is defined by (53)_with s; =0 .

Proof follows from theorem 8 taking s,= 0 and the fact that f'(q(32,33)) <0 .
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Corollary 3. Under the conditions of the theorem 8, for 0 < 81 <1,

~-s.Y(t
%im E(si(t) e 2 : sg(t) |z(t) >0) =0, (58)
- Y(t) .
un e 2 55 (2 = 0) = alepsy) (59)

and for sl < q(82’83) s

¥(s,,85,855 t) - ¢O(sg,53; t)

1im

R k ) Tl ~%§7] (60)
=1 - explf'{a(s,,s . 0

The proof of (60) follows from theorem 8; those of (58) and (59) follow from
theorem 8 and the well known asymptotic expression for P(Z(t) = O) for large

t (see Harris [5]), given by

P(Z(t) = 0) = 1-exp[-(1-h'(1))K + at] + O(exp[2 at]) , (61)

]

where a = b(h'(1)-1) , and

1
1 Ll
K=£ T "o &

Finally it may be remarked that (58) and (59) with its right side replaced by

q(se,s3)/q hold even when h'(1) > 1 .

6.2. Case with h'(l) =1 .

Before we prove the main theorem of this section we require lemmas 1-4 given
below. Lemma 1 holds irrespect of whether h'(1l) =1 or not. ILemmas 2 and 3 hold
not only when h'(1) =1 but also when h'(1l) <1 . Lemma 3 is by itself important

" in that the expression (79) of lemma 3 with s.=s_ =1 and s, = o ylelds an improve-

1 73 2

ment over (52) giving an asymptotic expression for the probability of no response

as discussed in section 1 .



22

Lemma 1. If h"(1) < and O < Py < 1, then for every arbitrary but fixed €15,

> o - - .
such that e, > O and 0<e, <1, L(sg,s3, t) q(s2,s3) qb(sg,SS, t)l 0 as

t - ® uniformly for all (32,s3) with 0<s, <e, and ¢, <s

1 5 <1l.

3
Proof. Taking partial Taylor expansion of right side of dwo/dt = bth(@O)—(b+s2)mo ,
around point q,= q(sg,s3) , it is eésy to show that L(sg,s3; t) satisfies the
differential equation,

bs
aL _y 5 f'(q(s2,s3)) L - —-2—3— h"(*)L2 , (62)

at -~ o 73
where g, < * < q(SE’S3) . Also, since @0(52,3330) = 0 , we have L(s2,s3;0)

= Q(sg,s3) . Let for an arbitrarily given 0 <e¢e < 1, to be such that for

t > to , exp(-bt)< e . Then using (27) we find that @0(52’535 t) > 6, uniformly

) . >
for all (S2’53) satisfying 0 <s, <€, , €, <s; <1 and for 2t , where
bp. €
§ = =22 (1-¢) > 0 . (63)
bte
1
Hence for t = tO
r"(¥) > n"(qy) 2 n"(8) > 0 . (64)

Now since f'(q(s2,s3)) is negative (property (¢) of function f(x)) we have from

(62)
b s

_d_.é 3 H* 2
@S-~z n) L.
Using (64) this implies that
be
Lo Eae) (65)
L dt 2

i > < < < < .
uniformly for all t > to , 0< 5, < € and €, < s3 <1l
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Integrating (65) on both sides from t to t , we have

0
be
E — > —2 n(s)(t - b)) (66)
L(sg,s3; t) L(sg,s3; to) 2
which yields
2 .
L{sy,s55 1) < 3 (8> 5) - (67)

be,, h”(é)(t—to)

Since the right side of (67) does not depend upon 85 and s3 and it tends to

zero as t — © , the lemma follows in view of theorem 1.

Lemma 2. Let H(sl,sg,s3;t) = ¥(s 5t) - q(s2,83) , h'(1) <1, (1) <= .

175253

Then for every arbitrary but fixed such that 0 <e, <1 and el> 0,

€10 €& SuCh Luab 2

as t - ®

1 t
t XOH(31’52’333 T)ar =0, (68)

. . <o < | .
uniformly for all (52,53) with 0<s,<e¢ and ¢ <s;<1

Proof. Note that the condition h'(1) <1 implies that Po >0 . Let

Q(t) =1 - P(Z(t) = 0) , then from (25) we have

IH(51:52:333 t)| = |k§l si mk(s2,s3;t) + @O(sz,s3) - q(sg,s3)‘
<Q(t) * Lsysgs t) (69)
where L(se,s3; t) is as defined in lemma 1. As in (62), it can be easily shown
that
= b sy £(alsys)) L- 32-1 h'(a(s,,8,)) T P—6-3- RGO - (70)
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where @, <% < q(52’53) . Thus we have for t >0,

v bs bs
1 4L 3 3
= = < - — 1n"(a(s,,s,)) +—2n"(als,,s,)) L . (72)
12 at 2 2’73 6 2’3

Again, by virtue of lemma 1, it is possible to find t(el,ee) =t (say), such

> < <
that for all t > tl, 0 < 5, < € and €, < 53 <1,

4) < 3n"(a(e 5¢,)) . (72)
3 - 2 h"'(l)

L(sz,s

On the other hand by virtue of property (b) of f(x) as given in section 2, for

0 < S5 < €y 62.5 s3

3h"(q(s2,s3))/2 h”'(q(sg,SB)) and hence from (71l) we have

< 1, the right side of (72) is less than or equal to

1 4L -be,
- — =
I° at

N | |
- —Zi h"(a(sy,85)) < b”(q(el,€2)) ; (7h)

which holds for all t>t. , 0<s_<e and ¢, <s,<1. Integrating (Th)

1’ -2 1 2 -3

on both sides from tl to t , we have after some simplification

L(sg,855 1) < : » (8>1) . (75)

b e, h"(a(ep,e,))(t-t,)

Again from (69) we have for t, > tl ,

t t t
|jOH(sl,s2,s3; ar| < JOIH(sl,sg,s3;T)|dT <ty + [ (A1) + L(sy,s5m)) A 7. (76)

%2

Now it is well known that

Q(t) ~exp [-(1 - n*(L))K +1bt)], (bt - =), (17)

when h'(1l) <1, and
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2
b h"(1)t

Qt) ~ y (8 =), (78)

when h'(l) = 1. These results are due to Sevast'yanov [13] and can be found in
Harris [5). In particular (77) follows from (61). From (77) and (78) it follows

t

that when h'(l) <1, J Q(t)aT = o(7) . Furthermore it is clear from (75)
t
2

t
that J L(sg,s3; T)aT = o{t) . The lemma now follows from (76) using these facts.

t
2

Lemma 3. Under the conditions of lemma 2,

c(sl-q(52’53)) expl-ct + o(t)]

H(Sl)52)333t) = ) (79)
c-e(s,-a(s,,8,))(1 - expl-ct + o(t)])
1 2773
where as t = @ , o(t)/t tends to zero uniformly for all (81’52’33) with
< . .
0 < 5, < 1,0<s,<6e , 6% 85 < 1, for every fixed (el,e ) with
€ >0, 1>~ €, > 0, and where
b s,3
¢ =-bs, f'(Q(SE;S3))5 e = = h"(q(sg,s3)) . (80)

Proof. We shall prove (79) for the case when 51 > q(se,s3); proof for the case

wheh Sl < q(se,s3) follows in a similar manner and is therefore omitted. We

£ > < < <
are thus given that s, q(sg,s3) » 0<s, <e ,and 0<e,

before, the analogue of (70) for the present case is given by

<s, <1 . As

3

b s
Bt +—2nm(x) B, (81)
at 6
where q(sg,s3)< ¥ < Y(sl,se,ss;t), and H is as defined in lemma 2. Here H

is positive for t > 0, since s > q(sg,s3) . Dividing both sides of (81) by

1

the sum of the first two terms on its right side and integerating we have
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H

f dH 3 j h’”(*)H2 at

H(-c + eH) ( c + el)

(82)
sl-q(sg,s3)

Note that -c + eH = bs3-[f’(q(s2,s3)) + % h”(q(s2,53)) H] <0 and since h'(1l) <1

and H<1 - q(s2,53) , we have
bs
|-cveli] = (bis,) - Bojh'(als,,s.)) - —2 n"(alsy,s,))E
b
= (bts,) - bs3[h'(l)+h"(q%)(q(82,s3)—l)] - —Zi h"(a(s,,s;) )H
' bs
= b(1-80" (1)), besn"(a%)(1-alsy,5,)) - —2 n"(alsy, s, ))H
bs3 '
> e h"(Q(Se,S3)) (l-q(sg,s3)) ) (83)

where q(s2,é3) <qg¥ <1 . Thus if I denotes the integral on the right side of

(82), then using the fact that H < 1 - q(sz,s3) in (83), we have

t
1] <) H(s.,s,,8,; T) at = o(t) (8k)
il s 3" (alee,)) Jo Hovmpegs ) am =

where the last step follows from lemma 2. (82) now reduces to

[H ai

Heemy -~ ¢ 7 o(t) , (85)
Sl‘Q(SE) 53)

which on solving for H in a straight forward manner yields the desired result (79).

Lemma 4. For fixed w,v,w >0 , if h'(Ll) =1 and h"(l) <« , then

a) 1i (———————— expl—=—=——]) = q(0,1) =1 (86)
( tig : bt21"(1) P betgh”(l)] *
(b) 1lim t{b+——§gx;——-- b exp[—E—ég———— ‘h'(aq( gv , expl—5—5— 2—2w N3

0 bt h"(1) bt h"(1) bt“h"(1) bt 1”(1)

=2 N . (87)
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(¢) Lim t{expl—2%—7 - B yyy o z2lut ) (88)

>
t-oo bt h'"(1) btgh"(l) bt h'"(1) ph'(1)

Proof is elementary and mekes use of the property (b) of f(x) and the fact that

btss )x
ais s 8 ) satisfies the equation h(x) - E——J%l— =
2’73 bs3

We shall assume from here on that h'(l) =1 . Let
My )= B2(6)/QE);5 My y= BY(2)/Q(t)5 My )= EN(t)/A(E) , (89)

where Q(t) = P(Z(t) > 0) . By virtue of (78) and (12) we have for t = =,

bot h"(l)

H MN(t) “_‘Z‘——“— . (90)

bth"(1) . bt h”(l)
Yooy T 5 M) T T o

Finally let

o(e) = 28

X(t) _ N(t)
T n(t)

,uw~%ﬂ T ; (91)

then we have

Theorem 9. If u,v,w 2 0 , h'(1) =1, and n'"t(1) <« , then we have

1im E{exp[-ug(t) - ve(t) - wn(z)l| 2(t) >0 }

00

L(v+w) expl-2 /v+w]

= - (92)
(1-exp(-2 /vywW])[2 /vFr - (VF7r - u)(l-expl-2 /v+w])]
Proof. It is easy to see that the left side of (92) is equal to the limit as
\
t = @ of the expression
[q(sg,s3) - wb(sg,ﬁi; )] - [q(s2,83) - ¥(sy58,,84; t)] (53)
2

Q(t)
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with 31,52 and s3 respectively replaced by exp[—u/MZ(t)], V/MY(t) and
exp[-w/MN(t)] . Since H(O,sa,s3;t) = ¢0(52,s3;t) - q(se,SB), on putting 8= 0

in (79) we have
cq(sz,sg) expl-ct + o(t)]

,8.3t) = S5 - ] . ’
%55 %3’ ) = aleyey) cte a(sy,s;)(L-expl-ct+o(t)]) -

The proof of the theorem follows by substituting (78), (79), (90) and (9%4) in
(93), and taking the limit of (93) as t — @ . While so doihg we use lemma k and
the fact that o(t) of (79) and (9%) is such that of(t)/t tends to zeroc uniformly

for all (s ,53) ranging over an appropriate region.

1%

Remark 1. TFrom theorem 9, it follows that as t = <

(&(t), c(+), n(t) | 2(s) > 0) 5 (g,5,1) , (95)

where the m.g.f. of the vector random variable (g,¢,M)  is given by (92).

Again in (92) since v and w occur as (v+w) it follows that £ =T a.s..

Remark 2. Putting v =w =0 1in (92) we have

Lin {expl-ug(t)]2(t) > 0} - = (96)

This is a well known result and is due to Sevast'yanov [13]. From this it follows
that £ is exponentially distributed. Again, the m.g.f. of the common distribu-

tion of ¢ and T is given by

Efexp(-v C)} = Wy . (97)

exp(a/¥)- exp(-2/v)

Unfortunately the m.g.f. of either (g,g,n) or of the common distribution of

T and 1 appear quite involved and we shall not explore them further here.
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