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1. Introduction and notation. Let (Q,%,P) be a probability space. A
stochastic basis (?n,n > 1) is a monotonically increasing sequence of ¢g-fields
of measurable sets. A stochastic sequence (yn,ﬁn,n > 1) consists of a stoch-
astic basis (%n,n-z 1) and a sequence of random variables (yn,n >1) such
that Yn is %n-measurable. For a stochastic sequence (xn,ﬁn,n > 1), we put

(here as well as in following sections)

: n .2.1/2
= = = - > = .
x, =0, F_ {3,0}, dy =x-x , for n>1, s (B 6) R
X * 2 = 73
x = sup > =l a = sup > l]dnl, s=lim s,
and I, = indicator function of set A. If (xn,gm,n > 1) is a martingale, then

(d,,F , n>1) is called a martingale difference sequence., For a given stoch-
astic basis (ﬁn, n 3 1), a stopping time t is an extended positive integral
valued measurablé functioh such that [t =n] ¢ %n for each n. For a stopping
time t and a measurable function ' Ety is defined as I[t < m]y d P
(or I[t <] ¥ in short), if it exists.

Let (xn,%n,n‘z 1) be a martingale. Austin [1] recently proves that if
supn > 1 E[xnl <®, s <® a,e,; also Burkholder [2] proves that if E s < »

. . (2]

X, converges a.e. and that if sup > lE!xnl <@, then x_. ¢ 4 converges
a.e. for every stochastic sequence (¢k,3k_l,n > 1) for which sup > ll¢nl <®

a.e.3 Gundy [6] proves that if (dn,n.§ 1) is an orthonormal sequence such that

1 This research was supported by the National Science Foundation under Grant
GP-06073.



each dn assumes at most two nonzero values with positive probability, and if
the og-~field generated by d‘.l.""’ dn consists of exactly n atoms, such that

inf o 4 min(P[dn > 0], P[dn < 0])/ P[dn 0] >0,

then for every sequence a, of real numbers, 2;::1 a - d <o if and only if

2;’:1 a & converges .
Let (&-’n, n > 1) be a stochastic basis if for each n, ?n is generated
by atoms of f’r’n, then (%n,n > 1) is said to be atomic, For a og-field ’%f
of measurable sets and A ¢ &, a % -measurable cover of A is a set C ¢ %—
such that P(A - C) = O and that if B ¢ %, and P(A -~ B) = 0, then P(C - B) = O,
For A e, let Cn(A) be the F -measurable cover of A. If there exists
M > 0 such that P Cn(A) SMPA for every Ae¢ ¥, n=1,2,,.., then
(?n,n >1) is said to be regular.
Let (xn,f’r’n,n > 1) be a submartingale and Elxnl < o for each n, If
("w’n,n >1) is an atomic, regular stochastic basis, then [3] x =~ converges a.e,
on the set [ sup x, < w].. In [5], Doob extends this result to the non-atomic
cases: 1if for K > 0, there exist M>K and § > O such that

bP{[ma‘xk <n %k < K] - <[E(xnﬂ_ et Mlgn) = 0] U [E(xn+l Z Kl%n) > 6])} =0

then X, converges a.e, on the set [sup < K] .

n=>1 %y
In this paper, we will give new proofs of those theorems mentioned above
and in some cases extend them, by method of stopping times., The results of

Gundy, Austin and Burkholder are unified into Theorems 3 and 5. Theorem 5

extends a result of Doob [4; 320] to regular stochastic basis.



2, A proof of Austin's theorem.
Theorem 1 (Austin [1]), If (xn,:zn,n > 1) is a martingale and

supn>lE|xn| =M<ow, then s<o a,e, .

Proof, Iet § >0 and K> 1, Put

g =1, gn=II}r:=l (l+d.kK~l) for n>1,

c+
I}
ct
]

inf {n |gn| >1+6 or |x|>1logk} .

et hn = gmin(t,n)' Then

ol (14 8) Ty o v (v 8)2 + o] &) 1p, <n v

Since
J. d <j‘ ( X + 1x )
B S Y R
-<-logK+E|Xmin(t n)' < log K+ M .
2
Hence Et|d‘t| < log K + M, where Etldtl =J ldtl . Therefore, E h < w

[t < =]

and (hn,?n,n > 1) is a martingale. By Doob's martingale convergence theorem

[4, p.319], hn tends to h_ a.e. and in L.

l=Ehm=J‘[t<c°:| ht+~[[t=m] hm

S(l+6)“[[t< ](l+|dt| K-l)+(l+5)P[t=oo, h_>o0] .

Let e > 0, Since Etldt| < log K + M, Etldtl < e K for all large K and

(1 +5) P[’t:K ©, h <0] <6+ (1L+8)es Since X~ converges a.e., Wwe have

that lim g =g = exists a.e., lim Pty =] =1, and that g > 0



for all large K if and only if s < ». Hence P[gm < 0] <5 +2¢ and

P[s =o] <§ + 3¢, if K is large enough. Therefore s = o] = 0,

3¢« A proof of Burkholder®s theorem.
Theorem 2 (Burkholder [2]), If (xn,?n,n > 1) is a margingale and

E s <o, then X, converges a.e. .

_ -1
Proof. If d + 0, then dn(sn - Sn-l) =s, +s, ,<2, For K>1,
let
. 2
t=tg=inf{n0<a >kK(s -s )} .
Since s <o a,e,, liqumP[tK=oo] = 1, Put & = &I and

[t>% & <1]
n . .
z, = Zk=l(ek - E(ekl&’k_l))._ Then (zn,fin,n > 1) is a martingale, and

ERES =5, ( G+ | - ] Il )

[t > k] [t

n
=1 E(S = Sy) +f gl < (®+1)Es .

<Kx
- [t <]

Hence zn converges a.e. o Now

]E(ekl"}k_l” = |E(T

e [Fy1)]

[t>k, & > 1]

SE(Ty gy (8] Fg) + BTy > i df:'gk-l)

< E(I[,G - x] |dt|5ﬂk_l) + K E(s, - S Fp) o

<O [sn]
Hence E %, IE(eklgk__l) | < Et]dtl *KEs<e and 5 E(eklﬁk_l) converges
. & . . .
8e8¢ o« Therefore Zk=l &, converges a.,e. . Since lim dk =0 a.e,., X,

converges a.,e, on [tk = o], Hence X =~ converges a.e, .
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Alternatively, we can also prove Theorem 2 as follows. Put 8 = de[t > k] ¢

Then 2§=l &y is & martingale and

@ 2
Zk=l 2oy I[a 1] " legd I[a§> 1]) ST

2
x =
which can be proved by the same method that was used in the preceding proof,

By a theorem of Ioéve f1o1, Z;=l &, converges a.e, and then X, converges a.e, .

4k, An induced stopping time.

Let (3n,n > 1) be a stochastic basis and t be a stopping time, Iet
(Bn,n > 1) be a sequence of measurable sets such that B, ¢ ¥, for each n,
Let An+l = Bn[t =n + 1] and c, = Cn(An+l) be the # -measurable cover of

A For m=1,2,..,, define

n+1°®

T='rm=inf{nzmlwecn} s
and

¥ *
(1) £ =t =min (t,7) .

*
Then the stopping time %  is said to be induced by {t,(Bn,n > 1), m} .

Lemma 1., TLet t be a stopping time and (Bn,n > 1) Dbe a sequence of
*
measurable sets such that B,eF . For m=1,2,.,,, define t by (1).

t=Xk]ct=k] -3B

* *
Then t is a stopping time, +t <t a,e,, [t* el

for m<k<ow, and if

(2) P[C , i.0.] = lim P(kU C
=11

il
(@]
.

)

then

- M
(3) Vm L, Bt <t=o]=0 ,



¥ *
Proof. Obviously t is a stopping time and t <t a.e. . Since

*
[t>n]DCnCBn’T<t if 7<®, For m<k<e, if t (w) = t{w) =k ,

then w¢u_m J,wéfckl By [t =X%] and oe[t=X]-B_,. If (2)
holds, then
- * ) 3 L]
llmm_'mP[tm<t=oo]§llmP[frm<t]=11mP(Uk= C) =0 ,

which yields (3).

In most applications, in Lemma 1, we either put Bn = @ for every n or
put B =0Q for every n. In the former case, (2) is automatically satisfied;
in the latter case, if C?n,n > 1) is regular, (2) is always satisfied, since

for some M >0,

© o =]
(1) P(U,_, Cy) sz k=nP C, = Mzk=nP A SMPn<t<o] ,

5« Main results,
Theorem 3, Let (xn,?n,n > 1) be a martingale, Elxn| < o and for

K> 0, put
(5) t = inf {n}x >K} .

Let (yh,?n,n > 1) 7be a stochastic sequence such that v, >0 a.e. « For

>
n>1, let Bn e ?n and

(6) By 2By — gy gy =g [ F)>00

Iet A =B[t=n+1] and C_ be the ¥ -measurable cover of A
n+l n n n

(2) holds and

n+l*® It



(o]

(7) Zk=2 f[t:k]_Bk_lyt=M<m ’

then

(8) Pls =o, sup x, < K] =0

* *
Proof, For m = 1,2,4s., define t =t by (1)e Put

2o =80 G I 4 « Then (zn,?»’n,nzl) is a martingale and
[+* > 1]
* *
anK » if t >n or t>t <n ,
*
=xt>o » 1f m<t =t=k<n ,

. *
<o) +eeer ], if ¢ <m .

Since

N T O ((gmry) + %)

*
k=m+l  “[t =t=k] k=m+1 *[t=k]-B

k=1
<M+

B(Trpayy (5gvg) [F) <M

kem+l 0B, _;

then sup E z:l < o and thus sup E[znl < ® , By Austin's theorem,

feel

Z d—i I < o QaCo .

=1 [t" > K]

*

Therefore P[s = =, t =] =0. By lemma 1, F{s =wo, t =w] =0, Hence

P[s = o, supxn<K]=O.



Theorem 4, ILet (xn,ﬁn,n > 1) be a martingale, E xi < w, and for

K> 0, put
(9) t =inf {n||x | > &} .

Assume that (yn,"w’n,n > 1) is a stochastic sequence such that Y, >0 a.e, .

For n>1, let B_ ¢ & and
- _ n n

2
(10) By 2 [E(I[t=n+l] (- ve)| F) > 0] .
Iet An+l = Bn[t =n+1] and C  De the % -measurable cover of Aq+ If
(2) and (7) hold, then
@
2 *
(11) PL) B, |F)==, <K = o
k=1
® 2
(12) P X, diverges, z E(dk+l | "Jk) <®] = 0 ,
k=1
. * * n
Proof. For m = 1,2,,.., define t = t by (1). Put 2y =% & I .
" [t> x]

Then (zn,?n,n 1) is a martingale and

v

Iznl_<_K » if t >n or t>t*<n,
= =] , if m<t =t=k<n ,
<lagl + e v o], if £ <m

As in the proof of Theorem 3, we have



=<} ©

<)

((Xi - V)t
[t =t=k]

I

k=m+1 k=m+1 *[t=k] "B

2 ®
hence sup E z, <o and E % k=1 dk I . < » , Therefore

® 2
T mp B | Fren) I <o a,e., and

By Lemma 1, (11) holds.
In [6; p.320], Doob stated that if (xn,i’r’n,n > 1) is a martingale and
*2 . . 2 .
E(d )~ < », then X, converges if and if % E(dk+l|3k) <« ., However, his
proof of the "if" part requires only the assumption that E(di +l|gk)< =, Hence

(12) is a special case of Doob's theorem.

Theorem 5. Iet (x ,% ,n > 1) be a martingale, Elxnl <w, and for

K > 0, define
(13) t = inf {n|sn3K} .

Assume (yn,”a’n,n > 1) 1is a stochastic sequence such that I, > 0, a.e. .« For

n>1, let B e "w"n and
(1) B, 2 [E(I[t=n+l] (sy - ytlfr’n) > 0] .

Let A . = Bn[t=n+l] and C, be the F -measurable cover of A If

+1 °
(2) and (7) hold, then
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(15) P[Xn diverges, s < K] =0 ,

*
Proof, For m = 1,2,,.., define t=t by (1)e Put e =d T

*
‘ [t > K]
n . .
and z =%, ;€. . Then (zn,‘w’n,n > 1) is a martingale, and
n o
E(Z eil/efj sn+j‘ Sm+>_. y 8y
k=1 [t n] [6'< m] Bl Treta k< 4
[oo]
<K+E sm +Z f Sy .
k=m+1 [t =t = k]

As before, we have

Z f Sk fz

[t'=t = X]
Hence E(% .

@« [o+]

f (sg= ¥+ vp) <M .
k=m+l “[t=k-B, boTe T -

k=m+1

k=1 k)l/2 < o and by Burkholder’s theorem, zn CONVEIZES 244 o

*
Hence P[xn diverges, t =] =0, By Lemma 1, we have (15),

6. Application and Corollaries,

In order to apply Theorems 3, 4 and 5, we need some identification of a
measurable cover, which is furnished by the following lemma.

Lemma 2, Let % be a g-field of measurable sets and let C be the
% -measurable cover of a measurable set A. Then ¢ = [P(A] %) > 0] .

Proof, First, P(A=C) = PA - P(AC) = PA - [ p(a| % = PA - E(P(a] 7))
Now, let B ¢ (} and P(A - B) = O, Then P(A - ABC) 0 and P(A(C - B)) =
Hence f P(AI %) P(A(C - B)) = O. sgince P(4] ?) >0 a.e., on C,

P(C - B)
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)

Theorem 6, Let (xn,"ﬁn,n > 1) be a martingale with E[an < o,
(i) 1t (?n,n > 1) is a regular stochastic basis, then except on a

null set, the following statements are equivalent:
(16) s < o

(17) X =~ converges,,

(18) >

(ii) zIf Et di < @ for every stopping time t of the form

o]

7
E( F)<wo
1 Gean | %

t = inf{n]| ]xnl > K}, then, except on a null set, (17) and (18) are equivalent.
(iii) Por K> 0, put t = inf{n[xn > K} and T = inf{n[sn > K} .

f E, X, <o, then P[s = o, sup x < K] =0, andif E_ s, <, then

P[xI1 diverges, s < K] = O, In particular, if Ecldc] < o for every stopping

time o, then, except on a null set, (16) and (17) are equivalent.

(iv) For K> 0, put t = inf{nlxn > K} and 1 = inf{n[sn > K} .

Iet M>K and § >0, If

(19) P{[t >n] - ([P(x,,, > M[F ) =0]U [P(x,, > KF ) >8]} =0
then P[s = @, sup x, < K] =0, and if
(20) P{ls 2 n] - ([P(s,; > M%) = 0] U [P(s ,, > K|F ) >81)} =0 ,
then P[xn diverges, s < K] =0 ,

Proof, (i) Put Y, =0 and B =Q for each n. Then A =[t=n]

and for some M >0 ,
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=]

[+2]
P(UCIZ:an)SZ PCkiMZ PAk=MP[n<t<co] .
n .

k= k=n+1

Hence (2) holds. The equivalence of (16), (17) and (18) follows immediately

from Theorems 3,4,5 and Lemma 1,

(ii) Por K> 0, put ¥, = 2K + 2di « On the set [t = n+l] ,

2 2
< =
+ dt) 2K + 24, Yy e

2 2
X, < 2(x%_ +

1

Let B =¢ for each n in (10). Theorem 4 implies that (17) and (18) are
equivalent.
* s ® = <
(iii) Assume that E, x, < . Put ¥, = mex (O,xn). Then E_y, <.

Iet B = ¢ for each n in (6). By Theorem 3, Fs = w, sup x <Kl =0,

Assume that E s <w, Put y =8, Then E y <w, Jet B = ¢

T T n n T T n

for each n in (1%). By Theorem 5, P[xn diverges, s < K] =0 .

It Eoldbl < o for every stopping time o, then for every K > 0,
By X, SK+E |4 ]| <o and Es <K+ E_|d | <. Hence (16) and (17) are
equivalent,

iv) For the first part, we will apply Theorem 3, Put y =M for
2 n

each n and B = EE(I[t=n+l](xt - M)[?n) > 0], From Lemma 2,

|

PcC

n P [P(An+llgn) > 0]

- M)|F ) > 0]

\
P[t>n, P(xn+1 > K|ffn, >0, E(I[Xn+l > K (xn+l

- M)|F >o0] .

<P ([t>n, E(T (x
- [Xn+l > M] Vn+l

Since Elxn+ < ®, by monotone convergence theorem for conditional expectations,

<

[E(I[Xn'l'l ..>- M] (xn'l'l - M)!g"n)> O] < [P(Xn+l Z Mlajn) > O] .



Hence
PC,<P[t>n, P(xn+l > M|&’n) > 0]
<P[t>n, P(xn+l > Kl?n) > 5]
<57t j P(x,, > K|F ) = §71 P [t = n+1] .
[t > n]
Therefore

P(U,_, ck)fzoo Pckf_s'lP[n<t<oo]—~o
k=n

as n- o, and by Theorem 3, F[s = », sup x <Kl =0 .

For the sgcond part, we only need to replace Theorem 3, X, and t vrespec-
tevely by Theorem 5, S, and T in the preceding proof.

The equivalence of (16) and (17) in Theorem 6(i) extends Gundy's result
(mentioned in the first section) to non-atomic cases, Theorem 6(ii) was due
to Doob [L; p.322~323]., Theorem 6(iii) was due to Burkholder [2, Theorem 47,
Condition (19) was introduced by Doob {57 to ensure a submartingale (xh,gn,n > 1)
converges a.e, on the set [sup X < K]. His method in [5] can not be applied
here,

As an application, we prove the following Burkholder's martingale transform
convergence theorem,

Theorem 7 (Burkholder [2]). ILet (xh,%n,n > 1) be a martingale and

sup EIxnl < w, If (gn,% n > 1) is a stochastic sequence such that

n-12

sup lgnl < ® a.e,, then % ;=l 8y dk CONVEYZEeS 8..€, «
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Proof. By Doob's martingale convergence theorem, X, converges a.e. .

Let T be a stopping time and T, = min (ton), Then [6; p.300]

E x| <lin Ex | <lim | Elx | <~ .

By Theorem 6(iii), s <» a.e, . Note that without loss of generality we
, © 2 2
can assume that Ign| <1 a.e, for each n, Then 3 k=1 S dk <o g,e, .

d and

For X>0, put t =t_ = inf {nllxnl > K}, o = Iy, > k] & I

K

n . . S 2
Z, =% yq €. Then (zn,%n,n > 1) is a martingale and ¥ k=l € S ° 8.8s

Since lek' 5 I[t 2 k] ka - X’k—-ll _<_ 2K + 'X_t| I[_t < m] 2 E(Sup ,ekl) <o,

By Theorem 6(iii) (or [2, Theorem 4]), = §=l e, converges a,e. and
© . : _ . . _ ~
x =1 8 & diverges, t = =] = 0, Since Iime | P[tK =w] =1 ,
> d
z k=1 8 4 converges a.e, .

7. A submartingale convergence theorem,
Theorem 8. Iet (x,5%,,m > 1) be a submartingale, Elxnf <o, and for

K> 0, define
-t — jni‘ n x > K
{ ' N } i

Assume that (yh,gn,n > 1) is a stochastic sequence such that Y, >0 a.e. .,

> 3
For n>1, let Bn e ?n and

B, > [E(I[JG = n+1] (g =y )|F, > 01 .

Let A= Bn[t = n+l] and C, Dbe the F -~measurable cover of AL If

l.
(2) and (7) hold, then Plx = diverges, sup x <K] =0,

* * *
Proof, For m = 1,2,,,., define t = t by (1) Themn t is a stopping

. * n 5
time and t <t a.e. . Put 2, =% g I d, where dl = X, and

*
[t> k]
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= - > i i
d, =%, -x . for n>2, Then (zn,%n,n > 1) is a submartingale and
% *
z <K » 1f t >n or t>t <n,
n = =
) *
=X, s, f m<t =t=k<n,

. * <
< !xll + ees * lxml s, if ' <m ,
Since

o] (o]

J‘*~ i )

J (xt - :Y.t + y.t)

k=m+1 [t=k]-Bk_l

)

k=m+1 \[Q—Bk;l E(I[t=k] (X't - y‘b)lajk_l) =M,

+
sup E z_ <o, Since E 2> =@, sup Elznl < o, By Doob's submartingale
*
convergence theorem, Z, converges a.,e. . Hence P[xn diverges, tm =] = 0,
By Lemma 1, P[xn diverges, t = «] = 0, i,e., P[xn diverges, sup x, < K] = 0,

If condition (19) holds, then the conditions of Theorem 8 are satisfied, as

in the proof of Theorem 6(iv), by letting Y, =M and

B, = [E(I[t - ﬁ+1] (x, - M)]F, ) > 0] .

Hence Theorem 8 includes Doob;s theorem as a special case and the classical
submartingale convergence theorem can be obtained from Theorem 8. If the stoch-
astic basis (?n,n > 1) 1is regular, the conditions of Theorem 8 are satisfied
by letting ¥, = 0 and Bn = Qs Then the preceding proof of Theorem 8 becomes

rather simple,
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