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Abstract

The M|G|1 queue is treated as a sequence of branching processes, the
duration of which constitutes a busy period. The first generation in each
branching process consists of the customers present at the beginning of the
busy period, the second generation consists of all customers, who arrive during
the service time of the first generation, etc, When the queue becomes idle, the
branching process becomes extinct.,

This approach permits a more elementary treatment of the M]G}l queve,
without use of Rouché’s theorem, It provides & natural sequence of approxXi-
mants to the distributions, which we consider and it provides a sgimple deriva-

. tion of the virtual waitingtime,

The paper also consider; two random variables of{intefest, which haye:not
been considered hitherto, One is the total nmumber of customers, served in
(o,t], the other is the virtual age or the time already spenfxin the queue,
by the customer is service at time t,

We further consider & new imbedded semi-Markov process and study its

. asymptotic behavior,

This research was supported in part by the Office of Naval Research Contract
NONR 1100(26) at Purdue University. Reproduction in whole or in part is permitted
for any purpose of the United States Government. Distribution of this document
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I. Introduction

This paper presents a alternate apprbach to the study of the single server
queuve with Poisson input and independent, identically distributed service times,
the MIG|1 queue., The basic structure of the M|G|1 queue is the following:
There is a Seqpence of alternating bﬁsy and idle periods, all of which are inde;
pendent random variables. Each busy period has the structure of a type of
branching process, described as follows, At the beginning of a busy period
there are i customers present, (i is equal to one, except for the initial
busy period) and one of these customers enters service,. These customers form
the first genmeration. The second geneiation consists of all those, who arrive
during the i service times of the first generation, The third generation con-
sists of all arrivals during the service time of a generation, then at the end of
-its service time the gqueue becomes empty and there is a negative exponential idle
period, until a new customer arrives, who initiates a new such branching process,

This approach explains the similarity between the.functional equations of
the theory of branching processes and Tekécs? functional equation in Queuveing
theory. We also obtain through it, a natural sequence of approximants to the
L.S. transform vy(s) of the busy period. In fact, throughout this paper v(s)
will be defined as the 1imi£ of this sequence and Rouéhé's theorem will not be
needed, except to show the uniqueness of the solution in Takics® equation,

We will further obtain easy derivations of the usual related stochastic ‘
processes, such as the queuelength in continuous time, the virtual waitingtime
etc, by relating them to this imbedded sequence of branching processes,

Finally, the distribution of N(t), the total number of customeys, sérved
in (o,tj is obtained uging Van Dantzig's method of collective marks for facil;

ity of derivation and presentation.



We will now prove some prdperties, which will bé'needed in the sequel.
In all that follows, we will make the following convention: All generating
function’in z or w are considered for z, or w, in[0,1] or [0,1)
and all Laplace and Laplace-Stieltjes transforms are considered on [O,W) or
(0,2), It will ususlly be obvious thét such functions are transforms or gener-
ating functions, so that the extensions to the unit-disk or to the half-plane
can be made uniquely through analytic continuation.

Let H(c) be the distribution of a nondegenerate, nonnegative random vari-
able.and let n(s) be its L.S. transform, Let ) be a positive number and let
o be the mean of H(-), assumed finite. We define the sequence of functions

hn(s,z), n>1, as follows:

it

(1)  my(s2) = B(s +A-de)

il

hn+1(s,z) Wls + A - Ah (s,2)], n>1 .

Lemma l

The sequence hn(s,O), converges increasingly to a function wy(s), which

is the L.S. transform of a probability mass-function,

Proof:

We will show below, that the function hn(s,O) is the L.S. transform of a
mass~function Gn(-) on [0,#), with the property that for all n and x,

we have:
G(x)<e ,(x)<1

This implies that hn(s,o) is increasing in n., This also follows from the

fact that h(s+\-Az) is strictly increasing in z on [0,1] for every s.



It follows therefore that

(2) - lim hn(S,O) = Y(S) ’

n-=w

exists and is the L.S. transform of a mass-function on [0,»), which is the

limit in distribution of the functions Gn(x) .

Lemma, 2,
The functicn y(s) 4is the L.S, transform of a probability distribution if

and only if 1 - ok >0, y(0) is the smallest positive root of the equation
(3) 8 = h(A - A6)
in (0,1] .

Proof: If we consider the graphs y = h(h - Ax) and y = x and consider
the points, whose abcissae are the iterates hn(0,0), then it is clear that
Y(O) is the emallest positive rcot of equation (3).
Also, equation (3) has a root 6 €1 if and only if 1 -~ oA <0 and it
has only the root 6 =1 if and only if 1 ~ @) >0, If 1 -eh =0 then

Yy=x and y =h(A -~ Ax) dre tangent at x = 1,

Lemma 3
We have:
(%) v'(0) = -a(l-ah)'l, if 1 -0 >0
= ®, if 1 «-cA =0 .,
Proof:

From (1) it follows that:

I

(5) hx'1+1(s’°) + Ahﬂ(s,o) h'[s + A - Ahn(s,o)] h's + A - hhn(s,o)] }.



Setting s = O+ and letting n - ®, the result follows, since h(s) is

differentiable at zero.
Lemma, &
The series

o]

(6) Y [Hiez) -nis0)], 11,

n=1

converges -uniformly for all s>0, 0<z<1 if 1 -a\ >0, Moreover:

(7) ) [ries,2) - 1(s,0)] - > [nl, (s,2) - 1i(s,0)] =
n=1 n=1

A"
=

(s + A - Az) - yi(s), 1>

Proof:

The series in (6) is termwise dominated by .the series

[+e]

(8) ' E: [1 - hn(0,0)]
- n=1

which is obtained by setting s=0,2=1 in (6),

If 1 ~ah >0, then all the functions hn(O,z) are convex increasing in
[0,1] and do not intersect the line y =z in [0,1). Their graphs lie entirely
above the tangent at z = 1, which has an intercept 1 - anhn with the ordinatei
axis, This shows that hn(0,0) >1 - mnhn, which implies the convergence of thev

series (8). Formula (7) follows from:



R : ¥ .
) [ -meo] - ) [ - neo] -

n=1 n=1

hi(S,Z) - hlj\i(S,O)

and formula (2) .

Lemna 3

The analytic continvation +(s), Re §>0 of v(s), s > 0 is the unique

solution to the functional equation
(9) z =h(s + XA -~ Az)
vhich lies in the unit disk |z] <1 for all s, Res>0 .

gemark:

This fact is well-known, Takacs [7] p.47, and is usually used to define
y(s). Its proof involves Rouché's theorem, We will not use this property or
equation (9) in the sequel and hence, show that most of the properties of the

M|G{1 queue can be obtained without using Rouch&'s theorem,

II. The TImbedded Branching Processes

We assume that at time t = O, there are i customers in the queue, cne
of who enters service at that time. We will assume i > O throughout, indica-
tine each time how a trivial modification yields the corresponding result in the
case i =0,

We define the random times To’ Tl"" as follows: i) To = 0 and
ii) Tn+1 is the time instant in which all customers, if any, present at Tn

complete service, If there are no customers at Tn’ then Tn+l is the instant



in which the first customer to arrive after Tn completes service,

Let ;g(t) denote‘the gueue~length at + + O, Consider the bivariate
sequence of random variables {g(Tn), Tn+l - Tn, n > 0}. It follows immediately
that this sequence defines a semi-Markov process with the nonnegative integers

as state space. 1Its transition matrix Q('), defined by:

Q) = Ple(m,,,) = 3, T.-1 <x|elm)=1i},
is given by:
x 3
(10) Qg (%) = jo MO an(y), 150, 530,

x 9
Q’Oj(x) = J'o i\l = e-X(X-Y)Jd Q.’l,j(Y)’ rj 2.' 0.

in which Hi(y) denctes the i-fold convolution of H(*) at vy.

The L.S. transforms qij(') of the Qij(-) are given by:

w

[ e 0 ), 150

o}

(11) qij(S)

Gy(8) = 5 qs6)

"

and they satisfy:

o2}
(12) }: qij(s) PR n'(s + A - Az), = >0,0<z2<1,i>0 .
J=0



a, The transition probabilities within a branching process.

We denote by oQgg)(x) the probability that in a branching process ‘of the
type described above the n-th transition occurs before time x, that there are
J customers ﬁresent at the time of the n-th transition and that of course the
population has not become extinct before, given that there are i persons in

the original generation; formally:
T, <% 8(T) =3, E(T) 40, v=1,.., 01 ]gT)=3} .

The L.S. transforms oqi?)(s) of Q(n)(s) satisfy the following recurrence

07ij
relations:
(13) oqg})(S) = g;4(s)
A0 - T D e, waa
v=1
If we set
(1) e = Y ey s, o<zc1, 10
J=

we getb:
(35) = o (5,2) =5l + 4 < ha) = ni(s,2)
and
(15) b, o §n+l)(s,z) = E: Oqgs)(s) hV(s + A = Az) =

' ' v=l

o {n) [s,h(s + A = Az)] - oq§n)(s,0), n>1,



This leads to:

(16) 2 (s,2) = wis,2)
Oq]Sn)(s,z) = hi(s,z) - hi_l(s,o) , n>1 .

In particuwlar, we obtain:

N X |
(17) Z oq]g'g)(S) = Z Oq'lg.n)(s’o) = hlj\i(s’o)3 i _>.. 1 .
n=1 n=1

This shows that hN(s,o) is the L.S. transform of the probability that a busy
period consists of at most N generations in the branching process and has &
duration of at most x. If we call this probability GN(x), then it is clear
that GN(x) has the properties used in the proof of lemma 1, It also follows
that v(s) as defined in (2) is the L.S. transform of the distribution of the
length of the busy pericd, It also shows that if the branching process starts
out with 1 individuals, the time till absorption is equidistributed to the

sum of 1 independent busy periods,

Most of the processes of interest to Queueing thégry in the MlGll gueue
?ay Le obtained:and studied by reférence to the imbedded semi-Markov process,
{g(Tn), T, - Tnul}' We will now study this semi-Markov process in its own
righte It is clearly irreducible and aperiodic and is non=lattice,

We denote by Mij(t) the expécted number of visits to state j in
{o,t], given that g(TO) = 1 and we denote by mij(s) the L.S. transform

of Mij(t). Since clearly:

m(s) = s my(e), 3zo0
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we assume 1 > 0 henceforth,

For j = O, we obtain:

(28) mo(s) = yhe) [1- Ayt

since the visits to state 0 form avmodified renewal process consisting of
an initial busy period, starting with i customers, followed by alternating‘
periods of emptiness with a negative exponential distribution and ordinary
busy periods, '

For Jj > 0, we define the following functions:

(19) eyl = ) o), 10
n=1
which may be calculated’as follows:
o A .

(20) Boi(3) = 135 8 5(8)

and for i >0,

(21) 2 g5 @ = ) [0 - qPe0)] =

j=1 n=1

- i i '
E: [hn(s,z) - hn(s,o)] s
n=1

by formulae (1) and (16).

We then have for I >0, j > 0 that:

(22) mg(s) = my (=) e ey () ey (s)
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since a visit to state j can occur either with or withoub intermédiate visit

to state O,

For future reference, we record the following relations:

(23) _ '%réi(s,z) = Zmij(s)zj s
§=1
by definition,
Then also:
(2L) (52 = my(s) g ) [ (552) - 1, (s,0) ]

n=1

z: [hi(s,z) - hi(s,o)]
n=1

by (21) and (22).

Finally, by (7), (10) and (24), we obtain:
(25)  WGy(5,2) - WG [s,n(sHh-ha)]

X%E my. (s) [h(s+h-kz)~y(s)] + [hi(s+h-Az) - Yi(s)]

. ‘ . \h -
hl(s'*'?\"hz) - Yl(s) S+?\SEAS§;K(S§Z) .

ce The Stationary Dlstrlbutlon of the Imbedded Markov Chain:

The imbedded Markov chain g(Tn) is of less importance in itself than the
usual imbedded Markov chain of D. G. Kendall, as it does not follow the fluctu-
ations in queue-length as closely and as regularly, To a transition from state

1 > 0 in our chain there correspond i transitions in the usual chain, However
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we will show, as a matter of academic interest how ﬁhe generating function of
the stationary transition probabilities can be expressed in terms of iterates
of the function h(-) .

Let us denote by Bj the 1imit»as n- o of the probability

P{E(Tn) = j.l g(To) = i}, then we have:

. @ .
® au (Gw)? ® au w)? _
(26) BO Io e L—J’z—- d H(u) + Z Bi IO e '——J-T— d hi(U.) = Bj
i=1
for all J, '
Setting:

‘ «Q

(27) o Bz) = ) B2l , os<zc1i
J=0

we obtain:
(28) Blh(A-Az)] - B(z) = B [1-h(A-hz] .

If L-oN<0, we set 2z =+(0) <1l and obtain By = 0 end hence B(z) =0,
by lemma (2). \ =
If 1 -coh >0, we replace z in (28), successively by hn(o,z), n>1

and add the resulting equations., Since hn(o,z) tends to 1 for every 2 in

[0,1], we obtaing

(29) B(1) - B(z2) =8, ) [1h(02)], O<z<1 .
n=1 o

Since B(1l) = 1, we obtain, when 1 - oA > O, that:

(0 Bz) = 1-8, ) [1-nb(02)]

n=1
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and:

o [l+Z(l-h(oo))_| .

n=1

(31)

w0
]

The series converges by lemma L,

We will show in the next section that B(z) = O when o\ =1 ., By differ-
entiation in (30), we obtain that the limiting expected queune-length at the
points of transition T is given by § oaf?\(l—a?\)-l.

d. The asymptotic behavior of the Seml-Markov Process,

™ v 8 s e m M wm e me 8 @ N ew ta MM ew Em e En e em e e e

We denote by pj, J > 0, the mean recurrence time of the state Jj in the

semi-Merkov process {g(Tn), T If 1-0oA<0 then p ==, since

Tn-»l}'
the expected 1eng£h of the busy period is infinite, This implies pj =« for
all j >0,

Since the recurrence time between visits to state O consists of a negative
exponential idle time followed by an independent busy period, we have

By = AL - v' (o) = A"l(l.- mh)“l. This may also be obtained using the classical

Tauberian theorem:

vy - TR
« o

(22) By = lim s m, (s) = AL - o)
s-0o+
when 1 ~oh >0,
For j 4 O, we have
(33) u?l = lim s ™ 5 (s) = M; lim g .(s) = p;l glo(o)
J S0+ s~0+ 0

but we have



1h

(%) ) ey 2= Y b (0,2) - b (0,0)] =
J=1 n=1

n=1 n=1

) Wm0l - ) - h(0)] =8t B() - 1= ) ppted
=1

It follows that:

(35) by =B BITATL - o), G40

J o

Let Pij(t) be the probsbility thatithe semi-Markov process is in state j at

time %, given that it started in state 1. Then it is known that

P, = lim P, .(t) exists and is given by

I n e 1

(36) P, o= Mpit, §>o0.
dJ J ' d -

where nj is the expected time spent in state Jj, before the next transition.

Since:
(37) Mo = k-l + o ﬂj = joo, j>o0 ¢
it follows that: I
(38) P, = 1~ ag hg
P, = 8,8  Ae(lha), >0 .
J Jj o R

Direct verification shows that those probabilities sum to one and that the mean
of this distribution is given by: Bohza(l-QZAE)-l[a(l+aA) + “2].is the second

moment of H(-) .
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IIY. Tne Queuve-length in Continuous Time

Let ﬂij be the probability that at time t , there are J customers

in the queue, given that §(TO) =i . We first note that if i

=0 , we
have: v
(39) (t) =6 . ety jt AMoan (b T)dt i >
"bj T Yoj € o € Tij - ? JzZo

so that we may assume 1 > o henceforth.

If there are customers present at time 1t , they either belong to
the generation, which is then undergoing service, or they are new arrivals
since the last transition in the branching process. We define
Pi(v, r, t) to be the probability, that at time t there are v cus-
tomers left of the present peneration and that there are r new arrivals
since the last transition, given that %(To) =1 . We then have:

t

(40) Pi(o, 0, t) = ﬂio(t) = j

e~ME-T) 4 M, (1)

and for v >1 ¢

§: IZ e-X(t—T) [l(t;?) - [Hk-v(t'T) - Hk-v+l(t'T)]

k=v

(41) Pi(v, r, t)

a [Mik(T) + éik U(T)]

Formula (k1) is obtained as follows: The last visit before + in the
semi-Markov process must be to some state k(k > V) at some time % and
in the interval (T, t] exactly k-v customers complete service and r
new arrivals occur. When k =i , thre is the added possibility that no
transitions have yet occurred in (o,t]. U(*) is the distribution de-

generate at zero,
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For v =1, we obtain:

(t2) P(1, r, t) = E: y oM (t-1) [h(t'T)]r [Hk L (E-7) - H (- 1)]

k=1

a [Mik(T) + SikU(T)]

t

-]

The extra term corresponds to the case, in which the member of the present

t- : r
AT gy Io T [1 - A(erey)] D=ty g

0

generation if the first customer of a new busy period.

%
Denoting by Pi(v, r, s) the Laplace-transform of Pi(v, r, t) we

obtain
x ‘ -1
(43) a. ?i(o, 0, 8) = (s + M) "m, (s)
b. for v > 1:
o .
*
}; Pi(v, r, s)z” =
r=0

(s + A ~ hz) -1 [l - his + A - AZ)W }: [m (s) + 8. k}hk V(s + A = Az)

R mio(s) 6lv

and:



¢

(Lk) z Z w gzt P:(v, r, s) = |

v=0 =0

w; ,(s) [1 + ) g Lobls A - 22)

s + A s+ A - Az *
1L =h{(s + A - Az 1 141
s £ A - Az Lo W - n(s TN k) xvaiyzi(s,w) + W

- W hi(s + N - Az)
- W b@g [s, h(s + A - Az)]

By setting w =z in (L4) we obtain the generating function on j of the
’ %

Laplace transforms ﬂij(s) of the probabilities nij(t) . We simplify

the resulting expression, using (18) and (25) and obtain the well-known

formula:

® i+l
* i_ =z . 1l-nh(s+ A -2rz)
(“5)2“15(5)2-“1_:\2 Y Py w v S

j=o

vi(s) his + A - Az) \,
Ls + A - Ay(s)] [z - h(s + A~ Az)] ?

Takacs [7] p. Tk. |

(z - 1)

It follows readily from (39) that (45) is also valid for i =o .

17
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IV, The Total Number of Customers served in (o,T]

We denote by N(t), the total number of customers, who have completed’
service in (o,t]. The distribution of N(t) was obbtained for the Poisson
queue by Harold and Irwin Greenberg [3]. The strong law of large numbers
-énd tne asymptotic normality of N(t) for a more general class of bulk
queues was established by Neuts [5]. We will now obtain the joihtidistri-
bution of N(t) and E(t) for the MlG‘l queue, using the method of col-
lective marks. |

We first note that:

(L6) P(N(t) = r, E(t) = §|&(c) = o} =6_ & M 4

or 0j

so that hencefortn we assume that i > o.

t
e ME=T)y b {n(r) = r, &(1) = 5|g(0) = 1}ar

a. The method of collective marks.

D. Van Dantzing [l] showed how many formulae, involving generating

functions and/or Laplace transforms can be proved directly by giving them a

probabilistic interpretation. If F(x) is the distribution of a nonnegative
@ .

random variable X, then 'f(s) = I e_SXdF(x), § > 0, is the waitingbtime until
0

a firsterent in a Poisson process with parameter s > o, If Py Pys.-. are

tne probabilities associated with a discrete probability distribution on the

nonnegative integers, then for o <z<1, E: b, z¥ is a probability in the

V=0
following sense; if the discrete variable takes on the value v s then we
perform w Bernoulli'trials with probability 1 - z of success (marks).

The generating function is then the probability tunat in the compound experiment

no mark occurs. Formulae involving generating functions and Laplace transforms
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now often become simple consequences of probabilisticrpropefties; proé
vided one considers the more complicated events involving the "marking"
processes.

A lucid account of the method may be found in Rupnenburg [6].

b. The number of customers, served during a busy pericd,

¢

We consider a busy period, starting with i customers, again as a
type of branching process. We consider three marking processes, independent
of eacir other 1) a Poisson process with parameter s > o. 2) a sequenée
of Bernoulli trials which marks each departing customer with probability
l-2, 0<2z2<1 and 3) a seguence of Bernoulli trials, which marks
the customers present at the beginning of each generation with probability
l-w, ofw <1.

Let hi (s;z,w) denote the probability tnat if there are n
generations in a busy period, the n - th generation completes service
before the first s - event, that none of the departing customers was
marked in the 2z - process and that none of the customers present at the

end of tne n - th generation is marked in the w - process, then we have:

(47) hi(s,z,w) =z hi(s + A - Aw),

hz+l(s,z,w) =z" n'fs + A - hhn(s,z,w)]

The recurrence relation is obtained as follows: If there are at most
n+ 1 generations, then we require that none of the i customers is’
marked in the first pgeneration and none of their descendents are marked in

the next n generations.
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Now hn(s,z,o) is the probability, that there are at most n
generations in a busy period, that the end of the n ~ ta generation
occurs before the first s - event, and that none of the departing
customers is marked in the =z - process.

It follows, by monotonicity, that:
(48) v(s,z) = lim hn(s,z,o)

n

exists and is equal to E{e-S L z N} » where L 1is the length of a busy
period and N the number of customers served during it.

The analytic continuation w(s,z), R, s>o, ‘z] <1 is also tne only

solution of the equation:
(49) E =2z a(s + N\ - AzE)

which lies in the unit desk |E| < 1. This follows directly, using Rouche's
theoren.
Using either (47), (18), or (L9) we may show by direct differentiation

that for 1 - ol > o:

' d _1+ oA
(50) EERIS T PR ey

which is the expected number of customers, served during a busy period,

Also v(s,1) = v(s) and w(o0,z) is the generating function of the number
of customers served during a busy period. An argument analogous to Lemma 3,
shows that «(o,z) is an honest generating function if and only if

l-ay>o0.



¢. Thne distribution of N(t):

We define the followiny probabilities:
(51) i (vet) = B{(e) = v, &(¢) = jlg(0) = 1}, i>o .

and we consider the transform:

o0

o] w
(52) ni(s,z,w) =z z ‘zv Wl J‘ o5t ni,j (v,t)dt
V=0  j=0 ©

For s >0, 02221, 0<w<1, m(s,z,w) is the probability that in
a queue witih 1 customers initially, before the first s - event, none
of the departing customers have been marked by the 2z - process and none
of the customers who arrived between the first s - event and the last
departure from the queue before it, have been marked by a w - process,
which marks arriving customers with probability 1 - w .

We consider two cases; either the initial busy period has not yet
ended at the first s - event or one or more complete busy periods have
elapsed by that timé.

We intefpret the fbllowing expressions:
. 3 iy =1
(53) 0"io(s,z) ="y (s,z) [l - Xf%%g Y(s,z)]

is the probability that no departing customer is marked during any of the
busy periods, complefed before the first s « event.

The probability @ij(s,z)j.> 0, is defined as follows: Assuming that
the first s - even£ occurs during some busy period (and not during an
idle period), @ij(s,z) is the probability that, if the busy period started
with i customers, the last generation before the s - event had j

customers in it.

21



For j > o, we have that:
A .
(5Ll') omij(s)z) - Omio(s,z') m (?i‘j(s,z‘) w (g)ij (S}Z)

is the probability that before the first s - event, a generation of sigze
J is reached during some busy period and so that no customer departing be-
fore this occurs is marked by the 2z = process.

We also have that:

[=2} =2

(55) @ij(s,z)wj = E: [hi(s,z,w) - hi(s,z,o)]

J:l n=1

Tnis can also be proved by interpretation: If a generation of size J
occurs as described above in the definition of ¢ij(s,z) we mark each
customer in it with probability 1 - w. .

Formula (55) expresses then the events described in the definition of
@ij(s,z) occur and moreover that no customer is marked in the w - process.

Thé right nand side of (55) is obtained by obseiving that the desired
event may occur at the end of the first, second, ..., n - tn .., geheration.

We have now the tools to describe the patn-function probabilities up
to the last complete generation before the first & - event. We may also
consider tne w « process as one which marks all arriving customérs with
the probability 1 - w. The only probability that remains to be expressed
is the following:

If §j is the size of the last generation before the first s - event,
what is the probability that none of the customers departing between the:
beginning of the service of the last generation and the first s - event,
will be mafked in the process and also that none of all the customers present

at the first s - event was marked in the w - process.



This probability is given by:

(56) If j = o:

©

Im e-(s+h)udu + W I

° O 0

R S 0 . 1 - Hs+A-Aw)
- A ~s S + A - Aw ’

and:

(57) 1If j > o

=1 o '
E: E e~ %y jz e-(h—kw)T zk (1 - h(u-T)]wJ_kd.Hk(T)
k=o °

1 «h (s+h=-Aw)
8 + A = AW

Wl - zjhj(s+k-Kw)
W =~ z n(s+A=Aw

Applying the law of total probability, we obtain:
(58) ni(S,Z,W) =

. ' 1 - _Avw_ . 1 - histh=Aw)
onﬁj(s,z) [k T s N+ s S+ A~ Aw

[so] .

= - J o pd
. }E on%j(s,z)w ; - ?(f+§wkw) LW hy (s,z,w)
- w - by (s52,w)

J=1

1 - h(sth-Az) wihi(s,z,w)
VS + A - AW '

+ e ——
W - hl(s,z,w)

e 5%y Xu e-kT[l - H(w-T)]e"(K'AW) (W-T)h ar
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We note that:

e}

(59) EE omio(s,z)wj - E; omij(s,z)hi(s,z3w) =
j=1 j=1

s oMozl by (s,2m) - ¥(s,2) ] + B (s,2,w) - vi(s,2)

by (54) and (55).

Substituting in (58) and simplifying, we obtain:

i+l i
_w Tl - n(s+h-Aw)] Y (s,z)
(60) Hi(s,z,w) - (s+k-hW)[w—Zh(s+k-kw)] * s+th-AY(s,z) °

From formula (60), we may obtain (45) by setting =z = 1 and replacing
w by z . For w =1, we obtain the generating function of the number

of customers served in (o,t] .

L - 1(s) Yi(s,2)
(61) ni(s’z’l) - ST -(Zh(sﬁ * s+h-hY?sfz) ‘

V. The Virtual Waiting-time

The virtual waitingtime %N(t) is the length of time a (virtual)
customer, who arrives at time +t, will have to wait before entering ser-
vice. The imbedded sequence of "branching processes" allows a very easy
and natural derivation of the distribution of TN(t) .

If the queue is not empty at time %, then 7(t) % o and can be

written as

(62) | () = U, + v,



where Ut is the length of time, till the next transition in the im-
bedded semi-Markov process and V£ is the length of time required to
serve the customers, if any, who have arrived since the beginning of the
service time of the present generation.

We obtain TM(t) from the Joint distribution of Ut and V%, where

t

The same probability arguments as used before, lead to:

we define Ut =V, =0 if NOt) =o .

(63) j " %%t f X e 1% T S2Yg P{U, < u, V, < v|E(o) = 1}
: o o0

© t
— ¢ -Ct -}“ (t—T) 5
= Joe dt Ioe d MiO(T) +

j:e'état j: j:e'slu - s,V j: z;e-k(t—T) [x(:zT)]r a H_(v)

r=0

dHﬁwq)d[%o*F&ﬂ

e[ [ [Ty Y AR, ()
o o o o

r=0 y=l
d H (v) a Hv(t+u-¢),d [Miv(t) N U(t)], i >0

These three terms correspond respectively to the following three cases;

the first term corresponds to M(t) = o, the second term corresponds to the
case in which the last transitiqn in the semi-Markov process is into

state O, but at time tl a new customer has already arrived and the

third term corresponds to the case, in which the last state visited in

the semi-Markov process was v + o .
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Evaluating the transforms, setting Sy = S5, and simplifying we

obtain:

(64) jpgg%tflﬁﬂaﬂn@)g>qgo)=i}=

h'(s) - s yH(Q) [E + A = Av(O)]
E -5+ A - Ah(s)

for i >0, Takacs £71.

VI. The Virtual Age

We define the virtual age at time t as zero if the server is idle
and as the time already spent in the queue by the customer, who is in ser-
vice at time t, if the queue is not empty. We define ofo) = o .

We propose to calculate the transform:

o

£
(65) X e 5Cat j e %% pla(t) < 7|g(o) = i} ,

0O

The result is obtained by considering the possible locations of t rela-
tive to the imbedded branching processes.
We list below these possible configurations and the corresponding

contributions to (65).
Case 1: af(t) = o

(66) I, = (A+0)"m (C),

Case 2: The initial group of i customers has not vet completed ser~

vice i.e. oa(t) =t .

61 1, = (o)1 - n'(6es)]
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Case 3: At least one transition has occurred before +t in the semi-
Markov process. At some time T > 0, there is an ending of the service
time of a generation and v customers are in the queue. These v cus-
tomers terminate service at some time t - u . The customer who is in
service at time t, arrives at some time t - 1 -~ Vv > 7 and there are r
customers ahead of him in the generation to which he belongzs, all of who
must have arrived in the interval (v, t - u - v) . Expressing the

probability of this event, we get the following contribution to (65)

(68) I, =

[eo]

e-k(t—u-va) [A(t-u-v-7)1"
r.
v=l r=0

(8. () - H, ()] a4 K (t-u-r) A au o m, (1) + 5, U] =

- ; E(Z+C) ) k~s-hg(s+§7_' [?ﬁﬁii[g,h(g+s)] + hi(C+s)

zﬂigi [C,h[§+h-hh(g+s)3] i, hi[g o - hh(g+s)3l _

. A Lo n(eg) B @) - ¥HE) +
R W Mi(s+) g+ s |

MME) T (OLn(rA-M(grs) - y(O)]
by formula (25).

Case b4: The second last transition before t was into state O and at

time T a new customer arrives. His service terminates at t - u, the

customer in service at time t arrives at t - u - v > T and in

(tf, t - w-v), T customers have arrived.
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(69) 5, =
y“eL b It -su It”ue-sv It'u"v' E: oM (t-u-v-7) [K(t-ng'T)]rdH(t-u-T)
o o o ° -

r=0 o

[H}(u) - Hi+l(u)] A du q [Mﬁo *® F(T)] =

tmol)  rEeern 0 et [B(se) - Mmoo

Case 5: The last transition before t in the semi-Markov process was into
state O . A new customer has arrived before t at time t - u and his

service time is not yet finished at time % .

(70) I =
X:e'gtdt X:e“su [1 -_H(g)]'d [Mio * F(t-w)] =
-y - e . o),

These five cases exhaust all possibilities. Summing and simplifying, we

obtain: ' .

| . .
() Jettar [ e patt) < x[g0) = 1 -
o} )

cA i sl T sy ()
£ +s A-s-Ah(C+s) LA -Ay(C )] [A-s-AnC+s)]
This formula also nolds for i = o .
Using the standard limit theorem for semi-Markov processes, we can
show that as t = o , the limiting distribution of o(t) is the same as

the one for the virtual waitingtime TN(t) , given by:
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(72) fe'sxd P{M(=) < x} = re'sxd Plo(=) <x} =
0 o)
(L-Aa)s

s=A-Ah(s)

for 1 - A >0 .

VII. The functions hn(s,z) in the case of the Poisson gueue.

The calculation of the functional iterates hn(s,z) is of course

uswislding in general, but in the case of the Poisson gueue they can be

expressed in terms of Chebishev polynomials. If we set A = 1 and o« =p -1 s
then h(s) =p (ws)-l. |
Then we have:
-1
(73) hl(S,Z) =p[p +1l+s - z] s
-1
hn+l(S’Z) =p'[p+ s+ 1 hn(S,Z)] P)
We set
p P wltp + 1 +s,2]
(71}) h (S:Z) = =
n Q [p + 1+ s,2]
‘ n
where Pn and Qh are ﬁolynomials of degree n th C+1+s . It
follows that:
(75) Pl +1+s,2] = Qlp+1+s,2]
and
(76) Qn+l[p 1+ $y2] = { +s+1) Qn[p + s+ 1,2] ~ p Q ;le+ s+ 1,2]

!
=

Q.o[p+’ 1+ s,2] =

Ql[p_+l+s,z] prl+s -z



Solving the difference equation, we find after some calculation that:

1 N .
L) = o {P+l+s-2) sin (n-1) 0 + /7 sin (n-2) 6
(77) hn(s’“) =P P +lis-z) sinn 6 + /P sin (n-1)e
with
COS e - p + l + 8 . l___
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