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J. J., Deely
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0. Introduction:

In recent years many papers have appeared concerning themselves
with various aspects of the following problem, Let nl, ne, sor, ﬁk
denote k-popﬁlations (categories, varieties, processes, etc.,) from
each of which observations are taken on a random variable whose
distribution depends upon an unknown parameter éi' This parameter
is used to define the "best" population; e.g. the population with
iargest mean could be defined as "best", Based upon the observations,
one is interested in determining (in same optimal sense) which population
is "best", There are basically two aspects of this problem: (1)
seek dptimal'procedures which select only one population, or
(2) seek optimal procedures which select & random subset of the

k-populations.

| The basic approach to (1) has been to select only one popﬁlation,
80 as to guarantee with probabiliﬁy P* the selected population is
best provided some other condition on the parameters is satisfied.
Among the contributions to this problem are Bechhofer [2], Bechhofer and

Sobel [3], Bechhofer, Sobel, and Dunnett [4].

The basic approach to (2) has been to select a subset of random
éize but with expected size "reasonably small" and also guaranteeing
that the selected subset includes the best population with probability
P¥*, regardless of the true configuration of the parameters. Among
contributions to this problem are'Paulson (161, Gupta [10], [12],

Gupta and Sobel [11]. Currently work is being done to find a procedure



which minimizes the expected size of the selected subset while still
assuring the P¥ condition, regardiess of the true values of the parameters,

(studden [17]).

There are many other contributions to each of these problems as well
as some variations. TFor & list of references the reader is referred to
Gupta [13]. However, the work to date has left the sequential analysis
of this problem practically untouched. We point out that there are two
possible sequential views, First, one could sampl¢ sequentially from

observation to observation (each observation being a vector consisting of

one observation from each of the k-populations) deciding at each stage
either to stop and make a selection (one or more populations) or take
another observation., The second view is to sample from population to
population, each sample from & population consisting of a fixed number
of observations from that population, Very little has been done with the
first view (see Bechhofer [5] and Birnbaum [6]) and nothing has been done
with the second, It is the purpose of this paper to initiate such

a study. Besides the interesting mathematical problems, there are two
very praétical reasons why such a study should be considered, First,

the number k may be so large as to physically prevent one from sampling
simultaneously from them all; and secondly, there are actual physical
situations in which the populations eppear sequentially and the option
of simultaneous cobservation is not given. As each population appears,
one must either accept it as best or reject it, never to be able to
recall that population at a later time. It should be noted that in

the special case in which the components of the vector, m = (Ol,"',ﬂk),



can themselves be observed instead of a random variable, then this second

view is precisely the well known "Secretary Problem" and various optimal
stopping rules have been given, (see Chow, Moriguti, Robbins, Samuels [8],
and Lindley [15]). For a detailed discussion ofbvarious aspects of this
problem the reader is referred to Gilbert and Mosteller [9]. The question
of optimal stopping rules in a more general framework has beeh discussed

by Chow and Robbins [ 7). They treat the case in which k approaches infinity
and show how the corresponding optimal stopping ruie isipbtained from the
truncated optimal stopping rules. In this paper we will use their results

to obtain the following:

(i) A stopping rule which maximizes the minimum expected payoff
assuming only that each Gi is bounded below by some real
number d;
(ii) A stopping rule which maximizes the expected payoff
assuming each ei has the same a pfiori distribution G.
(1ii) A stopping rule which maximizes the expected payoff assuming

each 81 has an a priori distribution Gy .

The explicit rules are given for two specific payoff functions along with
examples,

Finally, reference should be made to a recent contribution by Haggstrom
[147 on another variant of the sequential problem. Instead of assuming the
populations appear in a random order (or some prescribed order ), at each
stage of sampling a decision is made not only to stop or continue, but-r‘

exactly what population is to be observed next if another sample is to be

taken.
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1. Mathematical Formulation and Definitions

random variables Yi,Ye,,.. until we stop; always stopping at Yk. Assume

be k populations from which we obsgrve sequentially

Y, has a density f(yjei) with a monotone likelihood ratio; i.e.
f(ylei)/f(zlei) is nonincreasing in 91 for y<z. LetW®w = (91,92,...,9k)
denote the vector of unknown parameters, and define the best population as that
one associated with the largest ei' (In case of a tie, one of the possible
candidates is tagged as best.) We assume the ordering of the components

of w.to be random so that even if the entries into the véctor W were known
precisely, the location of the largest one would still be unknown. Thus

by the Joint density of Yl""’?n given W, we will mean fhe "expected"

density taken over the k! equally likely permutations of the given vector

W, That is, letting w('j) = (9§j ),...,e](&'j ))denote a typical random permuta-

tion of W, we write:

k! ‘
_ 1
f(yl:'”)ynlw) = &T E ;f(yl,---)yn'w(J))
J=1
We further assume the Yi's to be conditionally independent;

i.e.
2(y;,7,18,,0,) = £y, 19 ey, 19,)

for 1,j = 1.2,...,k, 1 £ j. Then the density (1.1) can be written as:
|

- n
f(yl:'-“:ynlw) = %’r Z :I'FI='_Lf (yileg'j )) )
J=1

and the conditional density of Yn+l given Yyseees¥y and W becomes



(1.4)

(1.5)

k!

SR bl
h(yn+l|yl,...,yn;w) = k; - , .

2o tls?)

Let x = gn(yl,---,yn) represent the gain (payoff) at the n op-

K’ the ciass of all stopping rules which stop at stage k.

A stopping rule 8y in Ck will be called optimal in Ck

is no smaller than the expected gain using any other rule

servation, and C

if the expected

gain using‘sk

t in Ck' That is, if

E[XS 1> sup E[Xt] .
k t eck

Assuming only that expected payoff exists at each stage, the optimal rule
5, may be described as follows: at each stage take another observation

if and‘only if the expected gain by doing so is larger than the gain
currently attained. For a given W this rule can be prescribed mathematically

by a vector of real numbers, B'(x) = (Bi,o--,ﬁi) , the components of

which are obtained via a "backwards induction" technique. (See Arrow,

Blackwell, and Girshick [1], and Chow and Robbins [7].) That is, set

k
B = % )
and compute the expected gain from taking the kth observation given

that we are at the (k-1) stage which is given by

k (2]
E ‘e - . .
[Bklyl, ’yk-I] bek n(yy ly oy poddy,
where h('lyl,"'.yk) is given by (1.4), Clearly we stop with Xk 1

if and only if



(1.8)

(1.9.

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

o

k
xk—leESklyl’ "Vk-l] d
Then set

, | KoL §
By = X Xy s E[”klyl’ ’yk-l_]

and similar to (1.7) compute

2K
E Ejk_llyl} ¢ ')yk_g]

3k ces
='[:3k~l h(yk-llyl’ }yk_z) dyk.-l

We continue "backwards" inductively defining:

k
Bn

k
= maxt X s E[’Bn+lly1""’yn_-_|} , (n=1,2,,k-1),

in which‘

(oe]
X K
E[ﬁn*llyl’ ’yn] =_[;Bn+l B(Ygaa Y7077 5n) Wy -

Then the optimal rule s, in C, is defined by:

k
Stop the first time x = Bﬁ, n=1,2,¢+¢,k=1,
Otherwise stop with Xpee
Since the joint density functions appearing in the expections used
in defining B'(k) depend upon W, the optimal procedure thus defined is

also & function of w and we write

k,. k ..
B'(k:w) = (Bl(w): .”’Bk-l(w)) .
If the camponents of w are unknown, then the optimal procedure is not
available to us. In this situation & "meximin" procedure is meaningful.
Let {2 denote the set of possible vectors w, We say a stopping rule t*

in C, is maximin (with respect to ii and Ck) if

inf E{X, . [w sup. inf E[X, |w
weﬁ E{ t*I ] Z'teCk-uel ( tl ]



We obtain such & maximin rule in Section 2 restricting i to
;%_: {w: Si > d for some real number d, i=1,2,--+,k} and for a payoff
function which is nondecreasing in any argument. The explicit rules

as functions of the underlying density function are given for the two

payoff functions:

(1.15) ih = y,-en , and
(1.16) , X = mex (yl,---,yn)-cn.

A specific case in which f(yilai) is taken as a normal density with

unknown mean Gi and unit variance is worked out for illustrative

purposes. We remark that the payoff function (1.15) reflects the situation
- in which a population, once rejected, can no longer be selectéd; whereas

the function (1.16) reflects the situation in which it is possible to

recall a previously rejected population.

In many situations it is meaningful and possible to assume that ai
itself is a random variable. For example, suppose a company is receiving
sequentially one lot (say, containing 1000 items) from each of k suppliers,
The ith lot has & true fraction defective p, = 1-6i (o< Bi < 1) and
based upon a sample from that lot, the campany either accepts the lot
and stops further shipments from other suppliers or rejécts and orders
from the next-Supplier. In this situation it is extremely realistic to assume
Gi to be a random veriable being distributed according to an overall
quality distribution of the ith supplier., Other examples can be given

substantiating this view., With this in mind ve consider the situation in

which ei has a distribution Gi; the Gi's being independent random variables,



(1.17)
(1.18)

(1.19)

(1.20)

(1.21)

Then using the above technique with an appropriotely modified payoff
function, a Bayes (optimal) stopping rule can be obtained. In Section 3
such rules are obtained in two casc¢s: (a) G, =G 1= 1,2,.+-,%; (b)
Gi's distinct. ' The payoff function is taken analogously to (l.iS) and

(1.16) as either:

?{n = E[anlyl)"’;yn]"cn ) or

-cno .,

X = max g B[O, oo ]
n 1<i<n } [ llyl’ :yn

Note that by the independence of the Gi's and the conditional independencé

of the Y,'s (see (1;2)), we can write

BN EECADLNE
Iy ]

B[O, |y.,e-<,y ] = E[ -
1Py 7 Tty [0)ac,(6)

i

the a posteriori mean of the ith population, Thus the two payoff'functions

reduce to

X = E[Gn[yn]—cn , and

x = max {(E[6.]y.]}-en
n 1_<_i_<_.n [ llyl]} »

respectively. The normal case is again worked out as an example.
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Maximin Stopping Rule and Minimex Configuration

Viewed as a two person zero sum game we have the following problem.
"Nature" selects a vector w = (61...,ek) from some set 0 of "allowable"
vectors and then gives & random permutation to the statistician, But
the statistician can only observe sequentially the vector (Yl,--',Yk) of
random variables whose densities depend not only upon the vector w
but the particular permutation of its components'as well, The statistician
peeks the location of the largest 61 as soon as possible., Thus a)strategy
for nature is really a particular configuration of the parameter space,

and a strategy for the statisticlan is a stopping rule. Given a parti-

_cular payoff function the statistician seeks a strategy (stopping rule)

+¥* such that the least he can expect is maximized no matter what strategy

in Q1 1s employed by nature; i.e, & maximum stopping rule. Whereas nature

seeks a strategy (configuration) w* in Q such that the most she can expect
to pay 1s minimized regardless of the statisticians strategy; i.e. a

minimax configuration., As in Section 1 we let Xt denote the statistician's

. galin associated with the strategy t, and E[thw] denote the statistician's

expected gain when using strategy t given that nature's strategy is w. Formally,

we make the following definitions.

Definition 2,1: A stopping rule t¥* in Ck is called maximin if

o EOale) 2 g o B0 o).

Definition 2,2: A configuration w* in Q is called minimax if

sup E[thw*] < inf sup E[thw] .
teck' well teCk
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(2.2)
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The following notation and résults will be useful in the theorem
below, Let t indicate the optimel rule associated with the vector B'(k,w)
obtained via backwards-induction as given in Section 1, It 1s shown in

Chow and Robbins [7] that for a given w

k
sup E[thw] = B[X, |w] = E[?l(w)lé] .
k w .
We remsrk that the last equality above says that the expected payoff is

precisely the expectation of the first component of the vector B'(k,w).

Thus for W, in Q we have

k ,
E[xtw lw] = E[;-}l(wo)lw:l .
o
A further result in [T7] states that if the Yi's are independent and

identically distributed with demnsity f(y), then the optimal stopping rule
for the payoff function (1.16) is defined by:

Stop the first n (n=1,2,¢-+,k-1) for which v, =Y

Y & real number such that Y(y—Y)f(y)dy = C,

Otherwise stop at n = k.

We now state and prove the main theorem; recalling first that the

following assumptions have been made:
(1) f(ylei) has monotone likelihood ratio,i = 1,2,...k.
(1i) Yi's are conditionally independent (see 1.2),

(iii) the payoff function gn(yl,-'-,yn) is nondecreasing in each of

its arguments.
(iv) Qy = {w=(91,--°,9k): Gigﬁ, 1=1,2,-+,k for a real number d},

Theorem Let (.= Qd for some real number d end let w*= (d,d,+++,d). Then

the game described above has the value

v = E[Xg , u¥]
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Remark: This theorem says t&* is the meximin stopping rule and w¥* is the

minimax configuration,

Proof: It suffices to prove that

(2.4) ing E[X, Iw]_>_E[Xt fure],

ws\d uI ¥ ¥

For 1f the above is true,” it then follows that
2, su inf E[X |w] > inf E > E{X wk ] > inf BE{Xy |w
(2.5) te“df:[l] ﬁ[xtl [tl] ﬁ[tll

> inf sup E[ thw >sup inf E[X |v]
wc.ud teCy teCy weud

Thus the game has & value v given by
(2.6) ' v = %‘é@k inf E[X,|w] = inf sup E[X, |w] = E[X; ,[w*],

which is the stated result.

To prove (2.4), we note that using (2.2) it remains to show that

(2.7) ingd E[ (w*)| ] > E[s (w*)]w*]

where B'(k,w*) = (B?(uﬂ*),,ﬁi(uﬁ*)) is obtained via the backwards

induction and defines the optimal rule when w¥ is the true configuration.

That is,
(2.8) By (%)

xk. = g (¥ se00y)

max !gn(yl, RPN AVY E[5§+1(“’*) lyyse "yn‘“’*]I

(2.9) Bl (u¥)

for n = 1,2,°*,k-1; and we define recurssively

(2010) . E[sn+1(w*) Iyl’ "':yniw*]

f k
= mBn,i_l(JJ*) h(yn+llyl!°'°’yn3w*)dyn+l °



(2.11)

(2.12)

(2. 13) |

(2.1%)

(2.15)

(2.16)

-12 -

But from (1.4) with w=w* we have that

By ol s e soysu®) = £y, 1d) |
(i.e. when w=w*, the Yi’s are independent and identically distributed), hence
(2.10) can be written as |

g (@) lyy e viod] = f B (o) o, @)y

n=1,2,°°°,k-1. We will use (2,12) to make the following inductive
argument, For n=k-1, it is seen that assumption (1ii) implies
E[-Sl;(w*)lyl,--- .yk_l;ur*] is non-decreasing in each of its arguments;
(denoted by simply NDA hereafter). But fram (2.9) this in turn implies
Bi_l(u#)vis NDA. Then from (2,12) with n=k-2, the preceeding statqmenf
implies E[?E_e(w*)Iyl,-e-,yk_3;uﬁ] is NDA. Proceeding backwards

inductively we obtain the fact that Bi(w*) is NDA,

Next, observe that for any w in f%'we have
K > o |
, E[Bl(w*)lu] 3/.d§(u*) h(yy jo)dy, f/~81(w*) £(y, pldy,,
-0 A :

in which, by (1.3),

k
£(y, o) = § }_;fwll 8,) .

Thus we can write (2.13) as

k .
IS Y JEC AT

But B?(w*) has already been shown to be non-decreasing in Y15 thus by

assumption (i) we have

L3 stylepar, 2 [Fe) sty o
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for every i = 1,2,°*°,k. Therefore

(2.17) E[slf(w*)lw] > /_; 0:-3}1‘(11.*) £y la) = E‘:B]I(w*)luﬁ‘]

for every w-;Qd; which gives (2.7) thereby completing the proof of the theorem,

" As observed in the proof of the above, the Yi's are independént and
identically distributed with density f(yld) when »=4/%, Thus using the

remark preceeding the theorem, the following Corollai"y is irmnedia.te.'

Corollary 1 For the payoff function (1.16), the maximin stopping rule

over Qd is given by:

Stop the first n (n=1,2,°*-,k-1) for which Y, > Yiwhere Y is
o
a real number such that_[ (y-y) f(yld) = e¢. Otherwisestop

at n=k,

Corollary 2 For the payoff function (1.15), the maximin stopping rule

over Qd is glven by:

Stop the first n(n=1,2,<°-,k-1) for which Yy 2 &, -c vhere
-1-¢

® _ dj
4= [ vevlow s (@ -e) [ 7 oy for 32,300k
- ]
dj-l c R
{ve]
and & =f y £(y|d)dy. Otherwise, stop at n=k.
- 0O
Proof: From the definition of the sequence B'(k,w*) we compute
o k ® )
(2.18) E[Bk(w*)lw*J =f y f(y|d)dy —ck = d; ~ck
-0

and set

. 3k g -
(2.19) Bk_l(uﬁ‘-) = max {yk_l-c(k-E),dl+c-ck} = max {yk-l +c, dl} -ck
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and we stop at Yy if and only if Yie1 2.d1'°°

Then we compute

K jdl’c
(2.26) B = fy s(vla)ay + (a)-e) [x(r])ay + ¢ -
) dl-c .
= d2 + ¢ -ck ;
and set
Sk . o
(2.21) dk_l(w*) = max {yk_e-c(k-2),d2+crck} = max {yk_2+c,d2}-ck +c

and we stop at Yo if and only if Yy o Z.de -c¢. Proceeding backwards
inductively we obtain the desired result.
Exémple: Let f(yilei) be the normal density with mean Gi and variance one,
and supposé each 6, > d. Then for the payoff function (1.16) the maximin
stopping rule given b& Corollary 1 is:
Stop the first n (n=1,2,+++,k-1) for which Yy > z+d, where z is
such that o(z) -z(1-6(2)) = c; @ and 3 being'the standard nomal
density and cumulative distribution functions respectively.

Otherwise stop at n = k.,

For the payoff function (1.15), the maximin stopping rule given by

Corollary 2 is:

Stop the first n(n=1,2,...,k-1) for which y >4 _ -c

k-n

where

dj = cp(dj_l-c-d) + d(,l-@(dj_l-c-d)) + (dj_l-c)@(dj_l-c—d)

for j=2,3,"',k-1 and dl = d; ® and § as above. Otherwise stop at n=k.
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3. Bayes Stopping Rules

In this section we assume that Gi is itself a random variable
distributed according'to Gi over some set @ of real numbers; Gi's being
independent., We consider two cases: (1) G, = G for 1=1,2,°°*,k; and

(2) G's distinct. Two payoff functions are considered in each case;

namely, (1.20) and (1.21). We shall use the notation ut = max(u,0).
Case 1 Gi = G for i=1,2,...,k,
In this case we obtain the unconditional density of Yi by
. » | . — ! n
(3.1) ot = felvis)a oey)
. and note that the Yi's are identically distributed. Furthermore the

independence of the Yi's follows from the independence of Gi's and the

conditional independence of the Yi's, (see (1.23). Thus if we define

2) ' . .

(3 ) ' Zi = E[eilYi] » 1=1,2,-44,k r '
then the Zi's are independent and identically distributed and the payoff
functions (1.20) and (1.21) become

(3.3) X, = Z,en

»and

max (zl,»--,zn)-cn

n

(30)4’ X
respectively. For payoff function (3.4) the remark preceeding the
Theorem in Section 2 is applicable and the Bayes (optimel) stopping rule

with respect to G is given by:

»

Stopping Rule(B.1) Stop the first n (n=1,2,--,k-1) for which 2 >V,

{ee]
where Y is a real number such that jle[G]y]-Yf'f(y)dy = C,

Otherwise stop at n=k.
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For the payoff function (3.3) the Bayes stopping rule is obtained by
generating the vector B (k) as indicated in Section 1, Note that the

independence of the Y, 's reduces the expression (1.12) to

1
(3.5) Bl Balvys ooy 4] - S 2ty )av..
Thus .
(3.6) B E[sl*yyl,...,yk_l] = E{B[8]Y, J-ck} = A-ck,
’ where we have set ’
(3.7) x=_£eac(e) .
' Then ,
(3.8) B;-l = max {z, ,+c,A} -ck ,  end
(3.9) E[Bi:_llylf",yk_a] = j; Bi:_i (¥ )y -ck

| =/:1:;x lE[6]y]) +e,3] £(y)ay

= M+ ec +ﬂx-c-E [elfj )+ ‘.f(y)d.y

In general we obtain

(3.10) ' B}: = 2 -ck;

(3.11) . B:: = max {zn+c,. a'n+l} -ck + '(k-('n+l)) c; n=1,2,°**,k-1;
in which;

(3.12) . Gk = )\

A+ (onjﬂ-c-E[ely])Jrf(y)dy; 3=1,2,°«,k-1.

- 00

(3.13 | | o

Thus the Bayes (optimal) rule as defined in Section 1 becomes

Stopping Rule(8.2) Stop the first n (n=l,2,"',k-i.) for which

E[B[yn] > 0 ,17C) the aj's being defined above.

Otherwise stop at n=k,
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Example, To illustrate Stopping Rule (B.1), consider the normal density
f(ylei) with mean 91 and variance one and let 91 be distributed normally -

with mean A and unit variance, Then

(3011") E[elyi] = %& . » and

fhe density (3.1) of each Y, 1is normal with mean A and variance two.
Using (3.14) in (B.1) we obtain the Bayes stopping rule for the payoff
function (3.4):
| ‘Stop the first n (n=1,2,..,k-1) for which
Yy > 2 8 + X, where 6 is a real number such that
P(0) =6 (l-@(b)): W2 c, v and § as before, Otherwise

stop at n=k,.

Case 2 . Gi's distinct.

!

‘ If each ei has & distribution Gi not necessarily the same far all
, i=1,2,'°f,k, then the unconditional density for-Yi becomes
(3.15) 2,0 = feyle)a ¢ (e)
If we set ‘
(3.16) | Ay = .{;e d G;(6)  (4=1,2,°°1,k),
" then for the payoff function (3.3) with Zn defined by (3.2), the Bayes
stopping rule is quite similar to (B.2)., By making the appropriate changes »

in (3.8) - (3.11), we obtain the Bayes stopping rule:

Stopping Rule(C.1) Stop the first n (n=1,2,+++,k-1) for which

E[Gnlyn] Z_E£+l-c where 3% = A and
~ ~ +
G‘J = )‘J +ﬂa'1+l'c‘E[9JIY])fj(Y)db’ » J=1,2,°°°,k-1,

Otherwise stop at n=k.

If we use the payoff function(3.k), the Bayes stopping rule in this

case (Gi's distinct) cannot be obtained using the technique of Case 1



(3.17)

(3.18)
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because the Yi's are no longer identbically distributed, Of course the
backwards induction technique would work but becomes quite tedious and
complicated. However, by making some further restrictions on the

G,'s and densities f(yilei), a further result of Chow and Robbins (7]

i
can be used to give the Bayes stopping rule quite simply. Thelr result

is as follows: let Y,, denote the real number such that

E[(Zn-i-l-Yn)+] =c, | (n=1,"",k-1),

where Zn+ is defined by (3.2). If the sequence {Yn} is non-increasing,

1
i.e. ¥;> Y, > ++* > Y, _;, then the Bayes (optimal) stopping rule is given

by:

Stopping Rule (C.2) Stop the first n (n=1,2,°°,k-1) for which

L {E[eilyi] > Y . Otherwise stop at n=k.

Thus any cambination of f(yi|ei) and G, which gives rise to &

i
non~-increasing sequence of Yn's will have the above as its Bayes stopping
rule, One condition which guarantees the sequence {Yn} t§ bé non-increasing
is the following.- Assume fi(y) given by (3.15) is a member of some para=
metric family indexed by A, in (3.16); i.e. »

20 =50 , i=1,2,+++,k; and .
1

assume that fh (y) bas a monotone likelihood ratio in Xi. Let the populations
' i

be arranged so that A, > Ay > o+ >\, If E[enlyn] is an increasing
function of y, and A_, then from (3.17) it follows that {yn} is non-increasing.

We conclude with an example illustrating Stopping Rule (C.2),

Example: Let f(ylei) be normal with mean Oi and unit variance and assume
61 to be normally distributed with mean Ai and unit variance, Assume
further that Xi 2_12 > 0 2-kk’ (which would be the intuitive way of

sampling the populations anyway.)., Then for (3.18) we write



1
1 AW
(3.19) £,(y) =8 (y) = —— e
i J2T 2
which has monotone likelihood ratio in kig end the & posteriori mean becomes

A i+y T
) ’

(3.20) ‘ E(8,ly,] =
which is strictly increasing in Yy and Xi. Thus the Bayes stopping rule is:

Stop the first n (n=1,2,°,k-1) for which

ALty '
1<i<n V2

number such that @(6)-6(1-8(5)) =2 ¢, with @

where 6 is a real

+1

and ¢ as before. Otherwise stop at n = k.,
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