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1. Introduction and Summary., Distribution problems in multivariate analysis

are often related to the joint distribution of the characteristic roots of a
matrix derived from sample observations. This well-known Fisher-Girshick-Hsu-
Mood~-Roy distribution (under certain null hypotheses) of s non-null character-

istic roots can be expressed in the form
S m n

(l-l) f(el,..., eS) = C(S:m,n) .H ei(l-ei) _H. (ei"' 93)
i=1l i>j

0<8 <. .8, <1 ,

where

2 .
(1.2)  c(s,m,n) = H%s I (mints+l) / {Fs(%(2m+s+l))FS(%(2n+S+l))FS(%S)} >

FS(-) is the multivariate gamma function defined in [2], and m and n are
defined differently for various situations described in [4], [6]. Pillei [3],
[5] has given the density function of the larger of two roots, i.e. when s = 2,

as a hypergeometric function. In this paper, the result is extended to the
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general case giving the density function of the largest of s roots as a gen=-

eralized hypergeometric function [1],[2]. The density function of the largest

root of a sample covariance matrix derived by Sugiyama [7] can be obtained from
1

the one derived here by considering the transformation EAS = nf; and making

n tend to infinity.

2. The distribution Ef the largest root. Let us recall first the definition of

the hypergeometric function of matrix argument [2], If S and T are (p x p)

symmetric matrices, then

(201) 2Fl(al)a' 5 b; g)

I (v) I -3, a,~2(p+1) bea,-L(p+1)
— D ~ 2 12 1 2
= I-8 T s I-T (at),

Now make the following transformation [3],[5],[7] in (1,1):
(2.2) 05 =05 45 =0,/0, i=1,,4., 8«1 ,
We get

(2.3)  £(y08pseees £ 750,)

1 S~1 . S=1
= c(s,m,n)e‘:s+(s”l)(l+'2's)(1-es)n I {z?(l—zies)n(l-zi)} 0 (45-2.).
i=1 i>j=1 J

Now for the integration of (2,3) with respect to the 4's in the range

0< El < e 52 1, note that in the multivariate beta function form the

s-1 <

(s=1)-fold integral will reduce to (2,1) with 8, = mHs, a, = -n, b = ms+l,

S =90 P = s=1, and the limits O and Es-

5 555-1’ except that the result thus

1



-%(3-1)2 s~1
obtained should be multiplied by I Fs_l(~§-) since the integrand

of (2.1) is equivalent to that of (2.3) only after an orthogonal transformation
to diagonalize the matrix T and integrating out the elements of this orthogonal

matrix. Thus we get

1 2
1,5 (s-1)
(2.#} fz(es) = {c(s,m,n) r,_,(mt % s) Fs-l(“%S) 1"s__.L(-——S’2l)/H2 o
__Fé-l(m+s+l?}

ms+(s-1)(1+ % s)
o )

n 1 » .
When s =2, (2.4) reduces to the result given by Pillai [3],[5]. Further, the
density function of the smallest root, el,ncan be obtained from (2.4) by
changing 1-8, to ©, and m to n [3],[5]. In addition, the density func-
tion of the largest root of a sample covariance matrix [7] can be obtained from

(2.4) by the method given in the last section.
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