STOPPING RULES
FOR x,/n AND RELATED PROBLEMS

BY
Y. S. CHOW AND A. DVORETZKY

ABSTRACT

The following results illustrate the problems with which this note deals. Let
x,(n = 1,2, ..) be non-negative, independent, identically distributed random
variables, let § > 1 and Ex{ < ». Then there exists a stopping rule t with
P{‘t < oo} == 1, which maximizes E x./¢t among all stopping rules ¢. Moreover,
the same rule maximizes Emax (x1, .., x.)/t and Emax (xi, . ., )/t = Ex:/t.

0. Summary. This note deals with some problems concerning the existence of
optimal stopping rules for rather simple stochastic sequences. The following
results, which are very special cases of the theorems proved here, are typical.

Let x,,X,,--,X,, -+ be independent, identically distributed nonnegative random
variables possessing a finite moment of some order greater than one !(but which
may be arbitrarily close to 1). Then there exists a stopping rule T which maximizes
the expectation of x,/t among all generalized stopping rules ¢ (this is rather easy)
moreover, T is a genuine stopping rule, i.e., it stops with probability 1 (this is
more tricky).

We also consider the problem of maximizing the expectation of
max(x,, X,,++,%.)/t. This looks like a much more complicated problem. Also,
clearly, for every stopping rule ¢ the expectation of max(x,,-:-,x,)/ ¢ is at least
as great as that of x,/t and it seems plausible that sup, E max(x,,--,x,)/t will be
larger than Ex_/t. Rather surprisingly, it turns out that t is the optimal rule for
both problems and that Emax(x,,--,x.)/t = Ex,/[t.

1. Introduction. We start by recalling some simple facts about stopping rules
and fixing our notations. These facts may be found in the well known references
[1] and [2] (for generalized stopping rules see also [3] and [4]).

Let (Q, F, P) be a probability space and z,,z,,*,z,, - be random variables
on this space. Put f, = %(zq,---,2,), the o-field generated by (24,5 20)
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(n=1,2,---) and f, = {Q,8}. A genuine stopping rule for the sequence (z,)
is a random variable ¢ assuming only non-negative integral values such that

(L1) {t=n}efF, (n=12-).

A generalized stopping rule, or simply a stopping rule, for the sequence (z,)
is a generalized random variable t, which may assume the value oo as well ag
non-negative integral values, satisfying (1.1). For all stopping rules ¢t we have
2421 P{t=n} =1— P{t = 0} and for genuine rules we also have P{t =0} =0,
and in the sequel any stopping rule satisfying this condition will be called genuine.
For generalized stopping rules we define z,, = 0. (For certain purposes it is
preferable to define z,, otherwise, but this definition is the simplest for our pur-
poses.) Then the expectation of z, is always given by

12 Fz, = a= [
{t < oo}

nzt J=m

provided the last integral exists (here and everywhere we omit writing dP under
the integration sign).

Let C, (n = 1,2,---) be the class of stopping rules for which P{tzn} =1
(C, is the class of all stopping rules). We define

(1.3) Vo= esssupE(z,| F,) (n=1,2,-)
teC,

and

(1.4) v, = sup Ez, (n=1,2,--)
teC,

whenever (1.2) is defined for all teC,. A stopping rule ¢ is called optimal for
the sequence (z,) if v, is defined and Ez, = vy.
Whenever v, is defined we define the natural rule t for the sequence (z,) by

(1.5) T = inf{n:z, = y,}

where, by convention, the infimum of an empty set is o0, i.e., T = o0 on
Ungl {zn < 7.}

We shall repeatedly use the following lemma. It can be stated for considerably
more general sequences of random variables, but the following suffices for our
purposes.

LemmA 1. Let z,,z,,--,2,,-- be non-negative random variables, and let



242 ' Y. S. CHOW AND A. DVORETZKY Istael J. Math.,

(1.6) lim o, = 0.

n=00
Then the natural rule T given by (1.5) is optimal for the sequence z,,25,+*, 2,5 """ -
Proof. Since the z, are non-negative Ez, is defined for all stopping rules ¢.
Hence all v, are defined and the natural rule is also defined.
From (1.3), (1.4) and (1.5) we have
(1'7) T = max(z,,, E(?n-i—ll Fn)), v, = Eyn (n = 1:2: ')

Therefore, >

U1=J' }’1=J. Z1+f )’2=J‘ Zl"'f Zz+f Y3 =---
(21} {z=1) (e> 1} (z=1) (z=2} (>2)

n
= X Z; + J. Vn+1-
i=1 JE=y {r>n)

But the last integral is non-negative and <v,,,. Hence (1.6) implies v, = Ez,
as claimed. :

Applying this lemma to the sequence z,, 2,4, -~ We see that, under the above
conditions

(1.8 1, = inf{m:m 2 n and z, = .},
the natural rule in the class C, is optimal within this class, i.e.,

1.9 Ez, =v,.

The natural rules may, of course, be generalized rules. The main difficulty in
obtaining our results is precisely in showing that for the situations considered
here these rules are genuine stopping rules.

The above expressions simplify somewhat when the random variables are
independent. Indeed, if zy,--,z,,--- are independent (1.7) simplifies to
y, = max(z,,v,.) and the natural rule 7 of (1.5) is defined by

(1.10) 7 = inf{n:x, = Uy}
and a similar remark holds for 7, given by (1.8).

In Section 3 we shall need also the following facts. Let Cy be the class of
stopping rules ¢ satisfying P{n < t < N} = 1 and put

M = ess sup E(z | F,)
CN

teCy
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then, when E supz, < co we have

(1.11) lim py = y, a8 n=12).

N=wo
Moreover, 7 can be calculated recursively via
(1'12) 711\}’ = Zy, ynN—l = max(z,,_l,E(y,, ' 'Fn—l))’ ) (l’l = N,N—1,°",2)

2. Scaled independent random variables. In this section we deal with a
sequence of independent random variables which are identically distributed,
up to a scale factor. The main result of this section is the following.

THEOREM 1. Let Xx;,X3,'**,X,, -+ be non-negative, independent- identically
distributed random variables satisfying

2.1 Exf < o

for some B = 1. Let ay,a,,--,a,,--- be a sequence of positive constants satisfying

[+
(2.2) T al <.
n=1
Put }
2.3) A = liminf %22 %2n4s
n =00 a,
and
w0 1/8 r
24 no=(Zdu) . p=tmsp
i=0 n=a Tn
Then, if
2.5 A>p

the natural rule © given by (1.12) is optimal for z, = a,x, and it is a_geniune
stopping rule.
Proof. The optimality of = follows immediately from (2.1), (2.2), Lemma 1

and the estimate

(2.6) v, < Esup a,x, = (Esup abxf)'? < r(Ex})'®,
)

mz2n mzn
It thus remains to prove only that 7 is a genuine stopping rule, i.e., that

@7 Pz < o0} = 1.
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To this end we first note that (2.4) and (2.6) imply

(2.8) liminf 220 < p.
n =0 n

Indeed, (2.4) implies limsup (r,.)"/" < p while the negation of (2.8) would
imply liminf(v,.)""" > p.

In order to complete the proof we shall show that the negation of (2.7) implies
(2.9) liminf Evz_ > 1.
Since (2.8) and (2.9) together are incompatible with (2.5) this contradiction would
prove (2.7). )

We proceed to show that the negation of (2.7) indeed implies (2.9). By the
above and Lemma 1

)

(210) Up = pX an+if Xn+is . (n = 1:2"")'
i=0 {ta=n+i}

Put

.11 ' P, = P{a,x, <U,i{}-

Since the x, are independent we have from (1.8), P{t, = n + i} = PP,y Poy;—y
and, again by independence, (2.10) becomes

(212) Un z PnPn+1"'Pn+i—1an+i J.
i=0

{On +0%n+ 12 0n + 14 1% 4} Xt is

We now define a new stopping rule 7’ by
(2.13) © =inf{m:m = 2n and pp2y%m = Vpmizyer}

where [m/2] denotes the integral part of m/2. Then t’e C,, and, therefore,

o]
(2.19) : vy, = Eayxp.= X a,,,f X -
{

m=2n ' =m}

But, by (2.13), we have for m =2n +2i (i =0,1,2,---), {t' =2n +2i} =
{0:%20 < Untts @nXant1 < Vni 15" BnaiX2nt2i-2 < Untis nsiX2nt2i-1 < Untis
Aany2iX¥2m+2i = Unei+1p and thus, by (2.11), independence and equidistribution

of the x,, we have

2p2 2
f Xomi2i = PaPryq-Pryig f Xap+2 «
(z' =2n+2i)

{@n+iX2n+2iZ0n+14 1}
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Similarly
f Xone2i41 = P, Pn+1 Pnz+i-1Pn+iJ. X2n+2i+1 -
{t'=2n+2i+1} {n+iX2n+204 12004141}
By equidistribution each of the integrals on the right side of the last two equations
is equal t0 [, xuri2umsiv ) Xnsis
Substituting in (2.14) we obtain

2 2
Ea,x, = Z(P PRiianssi+ PR PoPoiss 1820+ 20+1) Xn4i
(Gn+iXn+iZ0n+i+1} .

From this, (2.12) and the inequality (2.14) we obtain

Vgn o .
(2.15) -2 > inf (Pov+ Ppyi@anszi+ Pooos PoyiPryi 1Goni2ie )y

U, iz0
o0
+2 F Qapyais
H Pn+z lnf Arn+2 2n+2i 1
i=0 iz0 an+l

But T[a; P, = P{t = o} and the negation of (2.7) implies that this product
is convergent, hence the first factor on the right side of (2.15) tends to 1 as n — oo

and we have
A2n+2i * ani2ie1

..V e e
liminf —2% > liminf inf
n=oco Uy, n=oo iz0 Qnig

But, by (2.3), this is precisely (2.9) and the proof of Theorem 1 is thus completed.
Theorem 1 has many specializations, we confine ourselves to giving one.

COROLLARY 1. Let xy,X3,"**,X,, - be independent, identically distributed
non-negative random variables, let a > 0 and Ex? < oo for some B> max(1,1/a)
then the natural stopping rule is a genuine optimal stopping rule for the sequence

Xa/n".

Indeed, (2.2) is satisfied and we have 1 = 2!™* while p = 2/F~% and thus 2.5

holds and the theorem applies.

3. A problem involving the maximum of random variables. Our aim in this
section is to prove the following theorem about stopping rules for
Z, = a,max(xy, -, X,). 0,7, etc. will denote for (Z,) what v,,7, etc. denote
for (z,).

THEOREM 2. Let x;,X5,"*, %, and a;,a,,+--,a,, - satisfy the conditions
of Theorem 1. Let, moreover, (a,) be a logarithmically concave sequence, i.e.

let
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3.0 ApfOny1 < Apy1/Bnyr (n=1,2,--).

Then the natural rule T for Z, = a,max(x,-:-,x,) coincides with the natural

rule t for z, = a,x,. It is thus a genuine stopping rule and we have
3.2) 9; = Ea,max(x,,--,x) = Eax, = v,.

Proof. We first show that 7 is optimal. We have -

(33) 9, = sup Ea,max(x,,,x,) < sup (Ea’max(x},--,xf)"*
teCp teCy,
0
S E@GE+ - +xhH+ 2 an+iﬂxn+ip))l/ﬂ
i=1
<

© 1/8
(na,‘f + X a,‘,’H) - (ExByl/e
i=1

T

From (3.1) and a,, - 0 (which follows from (2.2)) we deduce that (a,) is mono-

tone. Since a’ is monotone it follows from the convergence of the series (2.2)

that na® — 0 and therefore

lim 3, = 0.
n=oco !

In virtue of the lemma this proves the optimality of %.
In our problem 7, and 7Y are a.s. functions of max(x,,-,x,). Let us put

7w = E(7,|max(xg, %) = 4), 7(u) = EG |max(xy, -+, %)) = 1).
By (1.12)

N “N+1
() = ayu = Fy11(0) = ay,qu.

We next show that generally

(3.4) Lodw) £ @ (1= 1,2,,N).
ak Apyy

Indeed,
1 5 a,

(3'5) _'Yn(u) = Ssup E—max(u’xn+13'":xt)
an teC an

while

3.6) L5t =tsup B2 max(u, x4z, %),

Api1 N+1 Qpid

teC |
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By idependence we may confine ourselves to rules in which {t=i}eB(x,,,, -, x,)
in (3.5) and {t=i-+1}€B(xps2, s Xnsi4,) in (3.6) for i = n,--,N (for i =n
the corresponding & are, by convention, {Q, #}). There is a canonical one-to-one
shift correspondence between these stopping rules of CY and CYtL where to
teCy corresponds to t' =t -+ 1eCN} L Since, by 34), a,/a, < a,,/a,,, for
every value of ¢ = n it follows on comparing the right sides of (3.5) and 3.6)
that (3.4) holds.

From (3.1) it follows that Esup z, < o, therefore, keeping n fixed and letting
N -» o we obtain from (1.11)

L@ (= 1,2,-).

Ayt

%) L)

Consider now the natural rule 7 for Z,. If T = n + 1 then Gt 1 MAX(X 1,y Xy g 1)
2 Fasrr(max(xy, -, x,. () while a, max(xy, -+, x,) < Pa(max(xy, -+, x,)). Since
7a(#) is a non-decreasing function of u it follows from (3.6) that max(x,, ---, ot 1)
> max(x;,---,x,) or that x,., = max(x;,--,X,,;). Since obviously also
X; = maxx, we see that ‘max(xl, -=*,Xz) = X; and therefore Uy =Ef;=Ez;<v,.
On the other hand ¥, = v, as remarked earlier, thus the two are equal,
Similarly 5, = v, for all n and since 7 = inf{n:a,x, > Up4q} it follows that
T=r.

We again bring only one example of the application of this theorem.

COROLLARY 2. Under the conditions of Corollary 1 the natural rules Jor
Xa/n" and max(xy,---,x,)/n* coincide. This common rule 7 is genuine, optimal
Jor both problems and

EX - g max(xy, -+, x.)
1 1= :

4. Remark. Our method can give somewhat more general results than stated.
We may, for example, relax the condition about the equidistribution of
X153 Xy, -+ . However, there remains a very simple fundamental question which
we cannot solve. For all we know there may ‘always’ exist a genuine optimal
rule. For instance if Ex, = oo then clearly ¢ = 1 is such a rule. It would be ex-
tremely interesting to solve this problem even for the case a, = 1/n.
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