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This paper presents the region of caoverage of third and fourth stan-
dardized momentsh\(a3,ah) of a certain general distribution function,
Burr [3]. It is shown to cover most of the regions of the main Pearson
“I‘ypes IV and VI, and an important part of that of main Type I. The
density function for medians from this general distribution is availe
able in closed form, and all moments which exist are expressible in
terms of gamme functions. Important characteristics of the distribu-
tion of the median for samples of n = 3,5,7,9,11 are given for o3
values of 0, .25, ..., 1,50, with a variety of values of @) for
each. Also populations for which the median is more efficient than

the mean are given,

1. INTRODUCTION
The sample median is used directly for some statistical teSts and in estimation,

in pert because of its ease of calculation and because it is not unduly influenced
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by extreme values., Thus the latter property eﬁables.one to estimate the central
position, A, for the Cauchy distribution f(x) = H-l[l + (x=A )2]-1 (~2,),
with increasing relisbility as n increases, whereas the mean has infinite stan-
dard error for all n'é. Various tests and estimation procedures are given in
Brown and Mood [2], David and Johnson [12], McCarthy [20], Sarhan [25], sSarndal [26],
Sibuya [27], Walsh [31] and Woodruff [32]. Others are available by making use of
knowledge on the distribution of the median for samples from various populations,
There is considereble literature on the distribution of medians, mich of it
being in the form of the moments. The explicit probability density function of
the median is available, however, whenever the distribution function F(x) is
given in closed form. Thus letting the. sample median be X, and using the odd

sample size n =2m + 1, we have from, for example, Cramer [11],
&(®) = f—(zﬂ“—;eL [PGT™ [1F @I 2R) . (1)
m!

Approximation methods, asymptotic results and some exact results are given in

Cadwell [5], Chu and Hoteiling [8], Clark and Williams [9], Eisenhart, Deming and
Martin [13], Hojo [18], Pearson and Adyanthaya [21],.Rider [22] and [23], sibuya [27],
Siddiqui [28], Tarter [29] and Teichroew [30]. Bounds for moments of the median

are given in Ali and Chan [1], Chu [7], Iudwig [ 19] end Rosenblatt-Roth [24] and
upper and lower bounds for the distribution function of the median are given in

Chu [6]. Probability points for some distrii:utions of the median are presented in
Eisenhart, Deming and Martin [14], Gupta [15] and Gupta and Shah [16]. The most
general distribution so far considered, Gupta [15], is the gamma or Pearson Type III
distribution. 1In it a.l;e given moments and covariances for order statistics as well

as probability points for several values of the shape parameter,
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Much of the literature considers rather specialized populations, such as, the
- Ceuchy, logistic, exponential, rectangular, Laplace (double exponential), and

perabolic, Or else restrictions such as symmetrical f£(x) are made. Lettingv

CE[(x -u.)3] /03 = ag ag = By | (2)

E[(x"p')h]/oh =0, = 52 ’ - (3)

it is seen that the foregoing distributions » along with the normal curve occupy
but single points on the (a3 ,ah)-—plane. The gamma distribution is more general

since its possible (“3’°'h) points are along a curve whose equation is

2
oy = 3+1l5e; . ()

 The present 'pa.per provides moments for medians for a population which occupies
an important region in the (a3,ozh) Plane., The moments of all orders, whenever
they are finite, are linear combinations of beta functions, Sample sizes of
n=3,5,7,9 and 11 were used. The values of vmean, standard deviation, @350,
end efficiency relative to X, were found for the distribution of the median for
a family of curves each with @y = =+50 and various ah's, another family for

a3 = =,25 etec. through «. = 1,50,

3

! 2. THE GENERAL DISTRIBUTION '
The population here considered was first developed by Burr [3]. Its distribution '

function is

F(x) = 1 ~ (14x°)7E x>0 k>0 | - (5)

=0 . x<0 .,
Moments around the origin, from f£(x) = F'(x) are

w! = E(xi) = JP xt et (1+x°)"3"'1 ax (6)
o}



Using the transformation v = 1/(14x°) one obtains

1 . = ' .
= k I vk-?./c-l (1-v)¢ av {7)
o .

L3
Hew

k B(k-ifc, ifc + 1)

from which the central moments Ho sk and 3,0, are obtained. For @y, to
exist it is sufficient that ck > 4,

Recent calculations with an IBM 7094 and a Honeywell H-200 show that the approxi-
- mate region covered by (5) lies between the upper and lower bounds shown in Fig. 1.
In line with the description of the Pearson system of frequency curves given by

Craig [10], the axes are taken as °'§ =f, and

o
]

(2~ 35 6) / (a+ 3) , ®

vwhich proves more convenient than use of g and o). The regions covered by

the three main Pearson types I, IV and VI are shown in Fig. 1,~ along with the

various transitiona) types such as III, that is, the gamma distribution, which

lie along curves, Further, some distributions like the normal, rectangular, logistic

and exponential are shown as points. The subseript B refers to a bell shaped

function, and J to one which J shaped. The Weibull occupies the dotted curve which

becomes the lower bound curve, since as k becomes infinite in (5), F(x) ap-

proaches the Weibull as a limit. . .
It is seen that the distribution (5) covers a very important and large portion

of (atg,é) space, It even goes beyond § = +.4 . This was the region which K. _

Pearson named "heterotypic" because all Pearson system curves beyond this point

have infinite eighth moments and hence infinite T, o Many cases of (5) lying
b .

beyond § = +.4 have ck > 8 and hence finite G, -
. L
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Fig. 1. Upper and lower boumds of coverage in 02, § space for general

system of distributions (5), together with regionS, curves and points for
Pearson system and other-distributions.
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The c.d.f. (5) appears to have but two parameters ¢ and k, but there are
in reality four parameters. Given values of ¢ and k in (5), these determine
Ky, O, a3, ). Then to obtain a distribution having these values of a3 and oy,

but with mean and standard deviation v and T, one uses

o T ¢

e . Yoy - - (9)

"This may be solved for x in terms of ¥, and su‘bstituted into (5) to provide
a distribution function having moments v, T, o3 and @) .
Finally it may be worth emphasizing that probabilities are obtainable from (5)

without integrating, by

—

Pla<x<b) = F(b) - F(a) | (10)

(1+a°)7" - (.1+bc)"k .

3. THE SAMPLING DISTRIBUTION OF THE MEDIAN
Given the odd sample size n = 2mtl we may substitute (5) into (1), obtaining

the density function of the median explicitly:

' : ) . onk . -1 . . :
, &) =-((—2$—;-2L [1- @)% @) (;—ﬁ:—cc?,,—l : ()

For moments about the origin, by definition

~

HENREFORE S W@



Substituting (11) into (12), and then letting u = (i+3°)™), one obtains

“; - (;]:_; kJ‘ (1u )m 1nn+k-1/c-1 a u)l/c .

nm
since (1) = ) (2) ()
=0

py = B 2, (2 [ (y? dmtormimi/enl (g opife o (23)
@)* T |
m . '
: - (+l) z K?) (-1)% Blk(m+j+1) - ifc, ife+1] ()
mi =0 - : o

1
since the beta function, B(p,q) = I up'l(l-u)q-l du . One can then use the
o

well-known relation for B(p,q) = I'(p) I'(q) / I'(p+q) and have a sum of terms
involving gamma functions., Thus we have, in this convenient form, moments about
the origin, of all orders which exist.

In order to exist, it is necessary and sufficient that

- k(m+j+l) - ifce >0 for j =0,.s., m

or ke(m+l) >i .

With any positive k and c for (5), moments of all orders exist for sufficiently
large sample size 2m+l,

For central moments one uses

By = 'u-' - (u.i)2
"'3 = 3'-"#"1 + 2(151)3
by = uh -t + Guad? - 32"



and then (2) and (3) for the shape parameters,

.4, CHARACTERISTICS OF THE DISTRIBUTION
OF THE SAMPLE MEAN

The values of the mean, standard deviation, o and @), 5 and the efficiency
of the med:.an as compared to that of the sample mean, are of general interest.,

In particular the effect of non-normality of the population on these cha.ra.cvter-
istics is of importance,

A program was written for a computer (Honeywell H-200) which will take a given
k value in (5) and a given value of g and find c¢ to give this value of 3.
Then it also calculates u, ¢ and o), for the population, and finally from (12),
the desired characteristics of the median for various sample sizes n, including

efficiency defined by
. 2 2
Eff., (median vs. mean) = o= ]/ o< . (15)
: P

The last is only relative efficiency, since it is not known what estimate of 1)
-is most efficient in various cases of distribution (5). However, for such popu-

 lations with skewness up to 1.5, the mean is always more efficient than the median,

‘_u,j_-' EFFICIENCY, E(X) AND BIAS
Further discussion of (15) is, however, required, o; is, by definition, o//m
(for any population with finite o). It is the root-mean-square deviation of X's
around their mean u. Likewise, oy is the RMS deviation of X's around their
mean, This mean of X's is, however, neither the population mean p, nor is j.t
the popﬁlation mediean &, It can read:ily be shown that the median of the popula-

tion of medians is exactly the population median €, although this fact appears
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to be not widely quoted.* In all the special cases of (5) Vhich were studied the
mean of the sample medians lies between g and € and rapidly approaches £ as
n increases, For example, for & population (5) with k = 3 ‘and /e = 4383, for
which ay = 1,500, lah = 8.534, ¢ = .3552, p = H15+, € = 5540, the means of the sam-
ple medians are .5795, .5699, .5655, .5630 and ,561k, respectively, for n = 3,5,7,9,11,
This approach is of course in line with the well known fact that the sample medians

are asymptotically normal with mean of €, Cramer [11],

A simple proof of this statement follows: The population median £ is such that

3
I £(x) ax = F(€) = .5. Then for the distribution of sample medians we naed to show
o :
g : ]
I (X) dX = .5, Since I g(X) dX = 1, it will be sufficient to show that
-0 -0 .

g )
I g(X) ¥ and I g(X) d&X are equal. Substituting y = F(X) into (1), these
g . '

-0

) 1l '
integrals become KI ym(l-y)mdy and K J‘ ym(l-y)mdy. But the latter becomes
[0} 05

identical to the former if one lets y = 1l-y°',

Thus, in summary, o; measures the relative closeness of X's to what they esti-
mate, that is, M. Likewise the medians X are unbiased estimates of E(?c'), which
is not a very interesting éharacteristic of the population. On the other hand X's
are slightly {aiased estimates of population median €, Thus it would be perhaps
fairer to take E(?E-g)z instead of O‘;, in (15) for efficiency., Now E(?c'-g)2= c§.+(v-§)2
where v is the mean of the sample medians., However, in none of the populations con-
sidered, was (v-g)2 more than ,0259 a}?{. ’ .and in most cases it was far less., Hence

either definition of efficiency may well be used and thus we use the simplez (15).

4.2 EFFICIENCY OF MEDIAN
For the general distribution (5), characteristics for the median were calculated

for families of distributions as shown in Table 1,



TABIE 1. FAMILIES OF DISTRIBUTIONS OF
Mx) =1~ (1+x°)'k, USED FOR MEDIAN

Line Skewness o3 Range of k Range of 1/c Range of o
1 - 50 4 - 10 L0848 - 1042 3.692 - 3,423
2 - .25 2 - 10 .0508 - ,1645 3.753 - 3.038
3 | .00 2 - 10 0925 - ,2316 3.637 - 2,886
L + .25 2 ~10 <1353 ~ .3042 3.800 ~ 2.957
5 50 1-10 0562 ~ ,2804% 4,828 - 3.246
6 .75 1-10 0321 - 582 5.648 - 3,756
7 1,00 1-10 .1058 ~ ,5359 6.858 - 4,493
8 - 1.25 . 1-10 21270 - L6115 8.536 -~ 5,466
9 +1.50 1-10 1459 - 68l 10.789 - 6.689

As seen in Table 1, there are coxbinetions of ¢ ‘end k for (5) which give
the same size of g but opvosite signs, and qzi:'-.te Sirdlar ah's. The family
in line 1, with skewness -.50 covers only a small raage of ah’s, vhile that’
in line 2 ﬁ;:th o3 of ~,25 axre qx:ite simijor to thorte in line L4, but a smaller
range of Q). Consequently we shell give attension caly to the families with
skevness of 0 +to 1.5, |

The foJ.lowing moy be stated from caleulated results on the distribution of
the median (n=3 to 11) for the lzt%cr femdlies of distributions and others
not here tabulated:

(a). The relative efficiency of the median for given population ag and Q)

| decreases as the sample size n increrses, for the lower pepulation skew-

nesses, But lor 3 = 1,50 axd above and high ¢, 5 the relative effi-

ciency increcses as n increases,
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(b). For fixed population oz3 » ‘the relative efficiency of the median in-
creases as o increases. Moreover in the given families of popula-
tions the efficiencies for n = 3 to 11 tend to approach about the
same l:LmJ.t for the largest available oy, .

(c). Within these families of populations @), seems to have greater influ-
ence on efficiency than oz3, perhaps because of the strong relation of
), to og . In fact for fixed @), efficiencies even tend to increase
for lowered a3 . .

Table 2 shows some numerical results on the relative efficiency of the median,

TABLE 2, EFFICIENCIES OF MEDIAN RELATIVE

TO MEAN FOR SOME FAMILIES FROM TABIE 1

Sample Population @y = .00 Population a3 = «50
n @), = 2.89 @), = 3.6k @, = 3.25 @), = 4,83
3 732 802 733 863
5 684 a7 .68% .89
7. - 665 +760 .665 815
9 655 755 65k .8U3
1 648 751 647 842
Population oy = 1.00 . Population a3 = 1.50
@, = buio o, = 6.86 o =6.69 @, = 10.79
3 JTT1 .899 837 R
5 729 891 813 . 948
7 713 889 805 .951
9 (. .889 | .800 .953
1

0698 ’ o889 -797 09511'
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It is also of some interest to know at aboﬁt what values of og and o), the
median begins to be more efficient than the mean. Table 3 shows scme populations
for which the median is marginally more efficient than the mean. The transition
seems to take place at ag about 2.4 and o), about 11. Although these moments
are large, all of the populations in Table 3 are bell-shaped since ¢ > 1, thus
giving & mode with zero slope for f(x), and with f(x) =0 at x = 0. For
higher 0'3 and @), the median becomes progressively more efficie'nt. It can
of course become infinitely more efficient as for example for the Cauchy distri-

bution,

'TABIE 3. POPUIATIONS (5) FOR WHICH MEDIAN

IS MARGII\IPE.,LY MORE EFFICIENT THAN MEAN

Population Relative Efficiency of Mean
k 1/c ag .y n=3 n=11
1 «20 2,49 10.69 1.048 1,09k
L .70 2.65 20.87 1,030 1.083
6 .80 2.4k 15.19 1.005 1.061
9~ .0 2.4k 13.99 1,011 1.088

4.3 DISTRIBUTION OF THE MEDIAN
| The four general characteristics of the distribution of the median will now be
discussed., As medians EGE) is different from the population median €. letting

the bias be defined by

E(X) = g + B(n) | (16)
it appears from the available data that to a first approximation B(n) varies

Anversely as n. Meanwhile, as might be expected, the standard deviation ox



to a first approximation, varies inversely as /1, .much as does o -

As is to be expected from the asymptotic normality of medians about €, @y and
@, approach the respective normal limits of O angd 3, rather rapidly in fect.
We summarize in Table L these characteristics of the median, for the populations
used in Table 2, These are only 8 of the 252 populations for which the charac-
teristics of the median were evaluated for n = 3 to 11.

As seen in Table 4, the bias B(n) rapidly approaches zero as n increases,
while ox less rapidly decreases, It is also to be noted that for the same
0'3, o—i/ oy is somewhat lower for higher @), . This is because the median is
less influenced by extreme deviations than is Oy of the population,

Skewnesses oy of the median are in general much less than those of the popu=

~ -

lation and steadily approach O as n increases, Likewise @), of the median
is in general closer to 3 than is that of the population and approaches 3,
A closer examination of Table 4 reveals a behavior for curve shape character-

istics of the median which is not analogous to that of the mean for which

@3:x T %3.x /= .Q'h:i = 3+ (ah:x ~3)/n *

For example take the two cases for each of which a3 = 1,00 . One might expect

that for the population with higher a@,> for the medians would be higher.,

*3
It is in fact lower., Thus the distribution of medians tends more toward normale

ity for the less normal population. Meanwhile the @, values go up on.ly slightly
for the population with the higher @, o For the two populations with @z = 1.50,

both o:3 and aﬁ for the medians are more toward normality for the population

with o) = 10.79 than for that with 'ah = 6,69,
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TABLE lf. CHARACTERISTICS OF THE DISTRIBUTION OF THE MEDIAN

Population
1/c oy o),

+2316 .00 2,89

B = 5420

.0925 .00 3,6k

.0562

«5359

.1058

6841
B = 1991

1459 1,50 10,79

B = 1.0359

g

«9217

1.0000

2438

1.0000

«1650

l:-a\nwljsl\nwt:ﬂmwEﬂmwﬂﬂmwhﬂvmwb-dmwﬁﬂww =)

VAIUES AND CONTRASTING o), VALUES

Distribution of Median

E(X)

J5k2k
5426
.5428
5430
9209
29211
.9213
9214
3726
3706

.3696

+3687
1.0020
1,0012
1.0009
1.,0006
«2553
.2511
2401
2472
1.0072
1.004k4
1,0032
1,0020
.1802
J17h7
Q721
.1696
1.0138
1,008k
1.0061
1.0039

o%/ox
675
.5kl
L6k
.37k
645
.509
433
.3u8
N
5k
L6k
375
621

o,
2.99
3.01
3.01
3.01
3.3k
3.23
3.17
3.11
3.10
3.06
3.05
3.03
3.73
3.45
3.32
3.20
3.66
3.h42
3.30
3.19
k.10
3.62
3.43
3.26
L.64
Lok
3.76
3.49
4,62
3.85
3.57

3.3k
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The 'expla.na.tion for this behavior is not hard to find, The median, being equal
as it is to the midmost sample value, is governed more by the center of the popu-
lation gistribution than by the tails, But it is the latter which largely deter-
mine the population g and @), . In one instance the authors drew two graphs
of standardized f(x)'s with the same oy but different ceh’s. The distribu-
tion of (5) with greater @), had a more symmetrical central portion than that
with Jesser @), hence giving less skewness to the medians., It would be inter-'

esting to know how often such a condition exists with other general populatinmns.

. De SUMMARY

A certain general system of distributions » Burr [3], and its coverage of a3,.&h'
space was found to contain much of the region covered by the Pea.rsqn system of
frequency curves, |

It is possible to find for (5) the density function of the median explicitly
and all existing mements as linear combinations of beta functions. The behavior *
of medians from this general system of populations was studied. Exact results
" show the effect -of departures from normality as to efficiency relative to the
_mean, -bias in estimating population median, and curve shape of the distribution

of medians. _ | .
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