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INTRODUCTION

There are varioﬁs models for probéﬁiiity. Each axiomatic treat-
ment of probability seems to be concerned with the decisions of what
events should be and what kind of function of events a probability
should be. Two models will be discussed here. o »

The almost universally accepted axiomstic of the calculus of pz"oba-
'bil:l.ty is that of Kolmogorov [14], published in 1933. The model is a
triple (X, @Q,\), where X is an ebstract space, Q. is a g-field of
subsets of X, and A is totally finite o-additive measure defined on

(3 with the property that A(X).= 1. The Kolmogorov model is not with-
out defects, Kolmogorov has criticized it himself (v. [15]). Various
examples have been published which indicate there is a cei'tain amount
of pathology inherent in the Kolmogorov model (v. [4], [1], end [10]).
The example of Dieudonne [4] is related to the present work. His ex-
ample is a probability space (X, & sA) end a o-subfield B of @
for which there is no function A(+,*), defined on & x X wbich for
fixed A in & is a B -measurable function of x, and for which

AMANB) = I'X»(A,x)d kl <B' (x) for each B in B ; and Por fixed x

in X, a probability measure on . That is there is no regular con-
ditional probebility A{s»+| &, B ) on B x X (v. Jirina [11]). The
“notion of r'eguiar”conditional- probability on (A x X is introduced in

chaﬁtér 2.



Much work has been done to eliminate this difficulty within the
Kolmogorov framework by meking the model less general. In this connec-
tion the concepts of compact measure and verfect measure are important.
A 1is perfect in case for every real-valued, & -measurable function ¥
on X and for every set of real numbers A for which f-l(A) is in

&, there'is 2 Borel set B contained in A for which x(f-l(B)) =
l(f-l(A)). A class © of subsets of a set X is compact, if for each
sequence C_ in @ the relation ; C; + ¢ for n=1,2,... implies

N i=1 ,

i[& c; % ¢. A finitely additive probsbility measure p defined on a
field 43 is compact if there is a compact class € which approximgtes

43 with respect to p, that is for each A in B and N >0 there is
aset ¢ in C and aset B in B such that BcCc A and
n(a-B) <n. I (X, &, A) is a Kolmogorov model such that Q. is
countably generated and A 1is a compact measure or a perfect measure,
a regular conditional probability on Q x X always exists (v. Jirina
[11]). fThere is a close connection between compact measures gnd Per:
fect measures (v. [20] and [21]).

Another objection to the Kblmogor;v model points out that it does
not admit the identification of almost identical events, or stated dif-
ferently, it does not allow the introduction of a strictly positive proba-~
bility measure. Actually, the pathology in the area of conditioning -
seems to arise from this difficulty. Roughly speaking, the sets of proba-
bility zero can add up to a set which is too big.

In order to avoid the latter difficulty it may be supposed that

the events form a Boolean algebra and that the probebility is strictly
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positive. A Boolean algebra is a ring with unit in which every element
is idempotent. A Boolean algebra is g-complete if every sequence of
elements of the Boolean algebra has a supremum and an infimum in the
Boolean algebra. A Boolean algebra is complete if_every subset of the
algebra has a supremum and infimum in the algebra. Then for every Boo-
lean algebra Bo with a strictly positive, finitely additive measure
A, there exists a unique (up to an isomorphism) g-complete Boolean al-
gebra B with a strictly positive, countably additive measure A such
that B is an extension of Bb’ A 1is an extension of Ao and B 1is
the smallest c;complete subalgebra of B containing Bb' Most notable
in this area are the works of Kappos, particularly [12] in which he under-
tekes to study the structure of probebility on a Boolean algebra. The
lack of a basic space of which the events are subsets causes difficulty
in defining some probabilistic notions. The notion of random variable
and its expectation has been defined by Olmsted [19] and others, how-
ever none of these developments has gone far enough, namely in the area
of conditioning, to recognize the merit of the Boolean approach. A
Kolmogorov model can be converted to the Boolean approach by forming
the quotient of the o-field of measursble events modulo the null events,
thus circumventing many difficult measurability problems.

On the other hand, a g-complete Boolean algebra with a probability
defined on it is isomorphic to the o-field generated by the open~closed
sets of the Stone space of the Boolean algebra modulo the null sets (the
Ioomis representation theorem). Of course, the Stone space of a Boolean
algebra is a compact topological space and if the Boolean algebra is the

quotient of a o-field of measurable events modulo the null events of a
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Kolmogorov model, theoretically the integration is largely equivalent
on the Stone space, but the espparent impossibility of describing it ex-
plicitly and the necessity of carrying en isomorphism throughout a prob-
lem limits its usefulness [22]. This leads to the considerations of the
assumption that the basic space is a locally compact topological space
(v. Bourbaki [3], especially Tulcea [8]). While this approach is quite
adequate for the treatment of integration in geometrical types of spaces,
it is out of place in probability theory [22].

In this wvork the problem of conditioning is considered on a Boolean
algebra. Such a treatment is conspicuously absent from the works of
Kappos which is the prime motivetion of the present study. Apparently
this topic has been avoided because of the Loomis representation theorem,
but as was mentioned above this approach has its drawbacks in general
considerations, In the study of conditioning on the Stone space, the
intrinsic proﬁerties of the space come into play and to the probabilist
the work becomes cumbersome. The natural alternative to this is to
carry out the theory on the Boolean algebra. With this in mind it be-
comes apparent a generalized notion of probability and integral are
needed for the study. These come quite naturally end are developed in
chapter 2 where conditional probability on a Boolean algebra is also in-
troduced. This theory follows smoothly and the objections to the Stone
space approach do not apply. Moreover, there is no lack of regularity
as in the Kolmogorov model. Doob [5] has shown that if a regular con-
ditional probability relative to a o-field of sets exists, then the con-
ditional expectation of an integrable function is given by the integral

of the function with respect to this conditional distribution (msking
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the cbvious notational conventions). The analogue to this theorem holds
in general in the Boolean model and is quite easily proved. The lack
of numerical values associated with random variables, probabilities (as
defined here), and conditional probabilities is only spparent as is

shown in this work.



1. CONDITIONING ON THE STONE SPACE OF A BOOLEAN ALGEBRA

l.l. Preliminaries

Throughout this work a Boolean algebra (o-complete Boolean algebra)
whose elements are sets will be denoted by field (o-field). Let the
events which are to be probable form a o-complete Boolean algebra, then
there is isomorphic to it a perfect reduced field of subsets of a space
by the Stone representation theorem. (A field of subsets of a space is
reduced in case any two differedt points are separated by aaéet in this
field. A field of subsets of a space is perfect if every maximal filter
of the field is determined by a point of the space. A filter is deter-
mined by a point if the filier is the class of all subsets of the field
which contain the point.) For a perfect reduced field of subsets of a
space, a topology can be defined in the space so that the space becomes
a8 compact totally disconnected (Hausdorff) space and the field becomes
the class of open-closed subsets of the topological space. See Sikorski
[23] for the definitions of the above terms and the proofs of the re-
marks., For a treatment of the topological notions used in this work see
for example Kelley [13]. Thus, if A is a o-complete Boolean algebra,
there is sn isomorphism © such that 6(A) = & is the class of open-closed
subsets of a perfect reduced field of subsets of a space Y. Y is
caliéd the Stone space of A. & forms a o;complete Boolean algebré hut

only finite supremum and infimum correspond to set-theoretic union and
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intersection, respectively. ILet B (£ ) %be the g-field generated by
& , that is the smallest o-field of subsets of Y containing £ .
Every countable union of sets of £ is contained in set of £ but need
not be a set of € . The following conventions will be made throughout
this work, unless specifically noted othérwise: the symbols V and A
will mean the algebraic supremum and infimum, respectively; and the sym-
bols U and N will mean set-theoretic union and intersection, respec~
tively. The remarks that follow are motivated by the Aumann proof of

the Loomis representation theorem which can be found in Kappos rizi.

o] =2
et D=(V E) - (U

En) ’ fEn} a sequence of open-closed sets in
n=1 n=1

Y, and let A be the g-ideal in ‘B(&) generated by the totality of
all such D, then &£ is isomorphic to B (& )/A. Each Be93 (£)

can be represented uniquely by
B=E+1I (f is symmetric difference, the Boolean +)

where E is an open-closed set and I belongs to A.
If A is & strictly positive probability defined on A, define

1) onEby

uw(E) = M6e~X(E)), EeE .

In viewv of the isomorphism 6, p is a finitely additive, strictly posi-

tive probability on & . Define p on 93(E) vy

u(B) = p(E),
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where E is the uniquely determined open-closed set of the representa-

tion given above. Then u(I) = 0 for every I € A. The following theo-
rems, /.t and b1, are known, but it is convenient in the present work to

have constructive proofs.

Theorem l.l. The set function p defined on ‘B(E) is a
probability measure on <3 (£).
Proof. Let {Bn} be a sequence of B (E), then

p(U B)=n(U(EST)) Su({UE)U(UT)) =u(VE), and
n=1 n p=1 B n=1 n n=1 n=1 2 ’

w(UB) 2u(U (BT )) 2u((UE)-(UTI)) =u(VE). Moreover,
n=1 =1 n=1 n=1 n=1

a( v E_) = M6 v E)) = M v 0™H(E,)) = 1im A( v e"l(Ei))
n=1 n=1 n=1 N~  i=l

n n n
= Lim (07} V B)) = Mmu( VE)=linu( UE). If B
o i=1 o 1=l hews  i=]

,132 are

disjoint elements of B (£), B, =E,* I, and B=E* I

h =BT L o= Byt Iy, then

u(B, U B,) = u(E, UE,).

Since p(E) >0, for all E in & for which E £ §, and E,NE, c

I, U I,, it follows that B, NE, = §. Hence

u(B; U By) = u(By) +u(E,) = u(B)) +u(s,).

Now let { Bn} be a sequence of pairwise disjoint elements of

43 (€ ), then by the above considerations it is clear that



u(UB) = (VE) llmu(UE) lim z u(g;) = Zu(E )-Zu(B)
n=1 n=1 Do 1=l n=e i=l n=1 n=1

Theorem 1.2. - The-elemenhts of the.g-~ideal A are sets of the
- Pirst category in Y.

Proof. If {En} is a sequence of cpen-closed sets in Y,

V E is the smsllest cpen-closed set containing U E:. Then
n=1 2 n=1 °

D=( V E )={ U E ) is closed, since D is the intersection of the closed
n=1 n=1 °

sets V E, and ( U E )C, where A means the complement of A.

=1 2 n=1
© o
Suppose there is a closed set C such that V En DCODOUE n?
n=1 n=1 °

then C= NE, vhere E  1is an open-closed sétin Y for every «
xel % x

in I, vhere I i1s some index set. Put then, since

o0
E D NE_DUE n? all « in I, it follows that for every « in I,
[~ 4 X
xel l
[e+]

Eo;DEn’ n=1,2,... « Thus E“D VlEn, X in I, because le is the
n= n=

smallest open-closed set containing each En’ n=1,2,¢¢. « Therefore

o]

C= NE > VE, that is closure (UE ) = VE . From this it fol-
Ael x n=1 ® n=1 n=1 2

lows that (A means the interior of A) (closure (D))%= p°

(VE) n(UE)°)=VE ﬂ(closure(UE))c $.
n=1 n=1 n=1 n=1
The o-ideal generated by sets of the form D is the set of

all BCDl U co U Dn Ucoo, Where Di, i=l,2,ouc is a Set Of the fOI'm
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D. By above considerations the sets of the form D are nowhere dense
in Y, hence the sets of the og-ideal are of the first category in Y.

The following result will be used later and a direct proof is in-

cluded here for the sake of completeness.

Theorem 1.3. If the coutinuous (real;iralued) functions f
and g defined on Y are equal almost everywhere, they are
equal everywhere.
Proof. If f: Y- R is continuous, then for each net
{Sn, neD} in Y which converges to a point y, the net {f(Sn),n e D}
converges to f(y). let g: Y~ R be continuous and suppose
f(y )= gly), for all y in N° with p(N) = O. By theorem 1.2, N
is é set of the first category in Y. By the Baire category theorem
c

N~ is dense in Y, thus there is a net in N°© converging to y for

every y in N, If {Sn,n € D} is a net in N° converging to y, ¥y

in N, the net {f(sn),n ¢ D} {g(Sn),n ¢ D} converges to g(y).

Since R is Hausdorff, f£(y) = g(y).

l.2. Conditioning

Turn now to the study of conditional probability for the probabil--}
ity space (Y, 93(E),u). The sets of G3(E) are called Baire sets
and functions ¢on Y which are B (& )-ﬁeasurable are called Baire func-
.tions. Let % be a full u;éubfield of B(E); ''full'’ means that for
each J in C}, the open-closed set of & which is p-equivalent to J
is also in % . Moreover, assume that |, , the restriction of u to

% is complete. By the Radon-Nikodyn theorem, define p(E,«[B(f);i V=p(E,-)
v

as any %-measurable function for which p(E NJ) = fp(E,') dpl% (¥)
J
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holds for every J in CB. , for each E in & . Since P-'(%\ is com-
plete it is possible to choose a version p(E,*) so that O < p(E,*) <l.

Define sn(E, +) by

.
k-1

sa(Ey) = ) EL oy (y),

n 21’1 An k

k=1 ?
k-1 : k n
where A .= {y:== <p(E,y) <=}, k = 1,...,27+ 1, for every natural
n,k o = o

number n. Then sn(E,-) converges uniformly to p(E,-). For each

. . - o.
An,k there is En,k in & such that “(An, ’ En,k) 0. As was seen

k

in the proof of theorem 1.1, the En are disjoint for fixed n be-
>

k
241
cause the A are disjoint for fixed n. Since Y= U 4 .,
n,k k=1 n,k
241 241
p(¥y-U E ,)=0. But Y- U R i 18 an open-closed set so
k=1 2 =1
284 o
Y= kgl En,k' If for some k;, 1 <k <2741, An+l,j U An+l,i= An,k’
then E UE ., ,=B ., where 1<1i, j<2°l4)
n+l,j n+l,i— n,k, -2 J - *
-ath]
k-1 .
Let cn(E,y) = & == Xg (y), then cn(E,°) is continuous
k=1 2 ®n,k
and if c(B,y) = 1im cn(E,y) for all y, then cn(E,-) converges uni-
‘ n

formly to c(E,*) so that c(E,+) is a continuous function. Since
Q\ is full, the sets En x are in % which implies that c(E,*) is
J
%—measurable as the limit of a sequence of % -measurable functions.

Moreover, there is N in QP , u{l) = 0; such that cn(E,y) = sn(E,y)
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for y not in N, all n=1,2,... . Hence c(E,*) is a continuocus ver-
sion of the functions defined above by the Radon-Nikodym theorem.

In view of the properties of conditional probabilities as defined
in Doob [57, there is N in C}, n(N) = 0, for which
c(El,y) + c(Ee,y) = c(El U Ee,y) if y is notin N and E, and E,
are disjoint open-closed subsets of Y. By theorem 1.3 » 1t 1is clear
that for fixed y in Y, the function c(-,y) is a finitely additive
set function on & . Then by further use of the properties of condi-
tional probabilities, c(-,y) is a finitely additive probability on &
for fixed y. But a finitely additive probebility on a perfec£ field
of sets can be extended to a probability on the o-field generated by
the perfect field (v. Sikorski [23]). There will be no confusion if we
denote the extension of c(*,y) to B(E) by c(*,y).

Let % denote the class of all B in 93(£) for which c(B,-)

is %-measura’ble and for which
u(BnJ) = J' c(B,-) 4 ulc%, (v)
J

holds for all J in Q\. It is obvious that ‘B > & and that % is
a monotone class. By virtue of theorem 6B [6] R (£ ) « 93 , that is

B(e) =R .

The above results can be summsrized in the following theorem.

Theorem 1.4, The function c(-,'ch(E),QT)=C(',') is

a regular conditional probability distribution on 43 (£ ) x Y.
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For any integrable function £ on Y, by the Radon-Nikodym theorem

let E(f,+) be any %-measurable function for which
f £ au(y) = f E(f,*) dulq{\ (y)
J J

holds for all J in Qr + For set characteristic functions Xg on Y,

we may take E(X.B,-).= c(B,*) since

fJxB du(y) = u(B nJ) = J'JE(XB,-) Wl )

n
holds for all J in %\ « If £ = I ORJ-XB » we may take
i=1 i

n
E(f,*) = £ o E(X, ,*) since
i=1 1 XBi

B

n
[ =2 o umng) =2 o[BG ) aly ()= [5e,alg ()
J M s Aie B Fate Y % Q@
holds for all J in C& - If f is any function on Y whose expecta-
tion exists, let fn be a sequence of simple functions converging to f.
By the properties of conditional expectation as defined in Doob [51,

lim E(fn,') exists. Let E(f,*) = lim E(fn,'), then ul% complete im~
n : n

plies that E(f,+) is a q.-measurable function for which

J zouty) - 2t [ 2 auty) = Ua [ B(2,,) dulg (1) - IJE(f,-)dulQT (¥)

holds for all J in q. .
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If the BE(f,*) are chosen as above, the following result can be

obtained.

Theorem 1.5. If f is an integrable function on Y,

E(z,°) = jY £ c(ay,").

Proof. If B is a Baire set,

E(XB;') = c¢(B,") J‘BC(dy’.) = J‘Y XB c(ay,*) .

n
If f = ZO(. ?
B %

It

n n

B(£,0) = Doy B0, = o [ % clay,e) = [ £ e(ay,e).
e e X I I e N Y

If £ 1is an integrable function, let fn be a sequence of simple func~

tions converging to f. Then

E(£,°) = Un B(t,,") = 1o fyfn c(dy,+) = fyf c(ay,+).

For this work we supposed the subfield C% to be full and complete
in (Y,Q (£ ),n). The assumption of completeness is a minor one for
probability theory since we can take C* to be the completion of the
subfield. A discussion of how much the supposition that Ck be full re-

stricts the problem will be included in the next section.
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1.3. Relation to Probability Spaces

If (X, & ,\) is a probability space, then G./n (& modulo the
o-ideal of A-null sets of Q. ) is a complete Boolean algebra. Let
(¥,%3 (£ ),1) be the probability space formed sbove where Y is the
Stone space of @ /\. The relation between real-valued functions on the
two spaces is in Dieudonne [47 and Halmos [7]. We have already presented
part of this in Theorem 1l.3. This relation is summarized in the follow-
ing paragraph.

For every class of sets Ai in Q and real numbers X, 5 i=1,...,n,

define
n n
oYy % )= T Xy gy
i=1 Coi=l

where [Ai] is the residue class to which Ai belongs. It is clear
that this is a continuous function on Y, that is simple functions on
X go into continuous functions on Y which take on only a finite num-
‘ber of values. If f is a bounded Q. -measurable function, there is a

sequence s, of simple functions converging to f. Define

e(r) = lim e(sn),

then
o(f+g) = lim e(sn+ tn) = o(f) + o(g).
n
Moreover, ||f||_ = ||e(£)||, thus for every £> 0, there is N such

that n >N implies
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He(sy) - Lin o(s M| = Ils -2}l < e ,

that is lim e(sn) is a continuous function on Y.
n

Let Q'o c & be a g-subfield of @ and define G.o/x to be the

set of all residue classes [A] in (/. for which there is A, in
QO such that Ao is in [A]. This is a complete Boolean subalgebra
of R/r. If e is the mapping referred to in section 1.1, o Gb/)\.)
is a class of open~closed sets which forms a field of sets. Let E’o
denote this class and let 93 ( Eo) be the ¢-field generated by Eo'
Then B (Eo) c B(E) so u is defined on 93 ( Eo)' From this it is
seen thet B (€,) is full.

In view of the results of theorems 1.4 and 1.5, from the probability
theoretic standpoint it is advantageous to study conditional probability
on the Stone space of a probsbility space. However, the student of prob-
ability is taken far efield to attain theorem 1.4 and it is evidently
impossible to choose representatives naturally to get theorem 1.5, they
are chosen merely to get the desired result. Another objection to this
point of view was raised in the introduction, that of the burden of
carrying an isomorphism through a problem.

Recently, much work has been done in generalizing the following
theorem [7]:

If (Y,u) is a Kekutani space and if qfis a full g-subfield of
Baire sets, then there exist a Kekutani space (Z,v), a continuous map-
ping n from Y onto Z, and, for each 2z in 2, a Baire measure
uz in n-l(z) such that the set transformation induced by n is a

one-one mapping from %ﬂ & onto the class ‘3 of all open~-clesed sets
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in Z and such that, for every open-closed set E in Y

w(E) = [ (& 0 x(2)) av(a).

Most notable are the works of A. and C. Ionescu Tulcea [8]. In
this area, the basic probability space, corresponding to Y, is a locally
compact topological space and the central problem is the disintegration
of probabilities. The probabilities uz defined sbove are actually
representatiﬁes of conditional probabilities on the space Y. However,
as was remarked in the introduction, a locally compact topological space
must be rejected as the most general space to be considered for a proba-
bility space. Thus, the generalizations being made in the disintegra-

tion problem are not useful for conditional probability.
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2. SOME ASPECTS OF PROBABILITY ON A BOOLEAN ALGEBRA

In this chapter only those topics of probability theory on a Boo-
lean algebra which relate to conditioning are considered. This work
was motivated by the lack of such a treatment in Kappos [12]. It should
be remarked that a probability as defined in Kappos [12] is not used here
and his probabilities will be called positive probebility measures so

that they may be distinguished from the probabilities introduced here.

2.1. Random Variables

A detailed exposition of the definitions and remarks of this sec-
tion can be found in Olmsted [19] unless some other source is explicitly
stated. In order to study conditional probability, it is advantageous
to assume the Boolean algebra of events is o-complete even though some
of the theory can be carried out for more general classes of events (v.
Varadarajan [24]).

Let B be a g-complete Boolean algebra and let R denote the set
of real nuibers. Recall that a Sb means that a A b = a, or equiv-
alently a Vb =1, where a and b are elements of B (v. Kappos
[12]). A function f taking R into B is a random varisble if the
following conditions are satisfied:

1. 9(0:) Yas o t,

A A
2. Vve{(@) =1 anda A fla) = o,
(0 (0

3. v 9(5) = f%a) for every @ in R.
B>
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Note that if B is a o-field of subsets of a space X, a one-one
correspondence between random variables £ and measurable real-valued
functions f is given by ?(a) = {x:f(x) > a}. This will motivate the
definiticns that follow.
a3 A A A
The order on random variables. f < g means f(@) < g(a) for every

A A A ~
@ in R, f = g means f(a) = @(a) for every Q, and £ < & means

A
< g} but ? g. Under this order, the random variables form a par-
A A
tially ordered set. If fn’ g‘ are random variables, fn < g, then
A A " A ® ~
(ve)(a)=veE (a). If £ >8, then (Af ) (@)= V AT (¢+21f/m).
n n n=- n n
n n n m=1ln
A
Addition of random variables. f + g is defined to be the random

variable defined by (g + E)(a) =V A[?(B), E(a-ﬁ)], where B ranges
B

over a countable dense set of real numbers. Then addition is commuta-
tive and associative.

Multiplication of random varisbles by real numbers. If ¢ is a
positive real number, c? is the random variable defined by

(c?)(a) = %(ch). £ is given by (-f)(a) =1- A %(B)=l- : %(-a-l/n).
B < -xx n=1

A A
0 =0f 1is given by
G(a) =

0o, o<a.

A
If ¢ <0, cf is the random variable -[(-c)f}. Then
A A A AN ~
a(pf) = (0B)f, (oHB)f = of+pf, af+g) = a%+a§, for all real numbers
A
Q,8 and for any random variables f,g. There is a unit random variable

Al
1l given by
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With the above, the class of random variables form a g-complete

vector lattice (v. Birkhoff [2]).

H 2
-
>
v
(o34
\a

Multiplication of random variables. If

1, a<o0
(£2) (@) =
v AL£(B), B(e/8)], 0 <o,
B >0

where B ranges over a countable dense set of real numbers. If
P-FVv0 ama P - -(f A 6), define %é': Fad §+ + % £ - & @--?-§+.
Then multiplication is commutative, associative, and multiplication dis-
tributes over addition. The usual properties of absolute value hold for
|#] = 25 +%" (v. Birknorr [2]). |

Elements of the Boolean algebra correspond to random variables called

characteristic functions and are defined by

i1, a<o
a(a) =a , o0<a<1

0, l<a.

~ A
Note that the unit and zero random variables 1 and O, respectively
are two-valued characteristic functions.
A simple function is one which takes only a finite number of values.

Any simple function can be represented as a linear combination of disjoint
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characteristic functions.
A

A
Limits of sequences of rgndom variables. (v. Birkhoff [2]) £~ f

N A A ~ A N
means limsup f = liminf f = £, that is AV fm} =V{ A fm] = f, The
n n nmn ™ awn®

simple functions are dense in the class of random variables in the sense

of this limit.

2.2. Probability and Integration

let B be a o-complete Boolean algebra and let Q[0,1] be the set
of random variables which assume only O and 1 of B. A mapping ;/.\L

taking B into 0[0,1] is called a probability if

N ~
1. <u (a) <1 for every a in B,
N
=0 if and only if a =0,

0
2. H(a)
3. 1
be if aAb =0, B(a Vb) =n(a) +1(p), and

5. it a ¥0, fi(a )40

hold, where H(a) is the image of a in B under ?.z, that is (a)
is a random variable vwhich assumes values O and 1l. Condition 2 is
a positivity condition and 4 and 5 are additivity and g-additivity
(continuity) conditions, respectively.

This notion of a probability is different from that of Kappos [12]
and all other investigations of this topic, but they are closely related.
If w is a positive probability measure on a o~field of subsets of some

space X, define ﬁ by

X , a<w(a)
na) =

4) ) W(A) £a,
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for each event A. Note that the real number at which the '‘jump'' of
the random varigble ﬁ(A) occurs corresponds to the measure of A,

The notation 3 will be used for a mapping of B into the class
of gll random variables (Q[B]) with the properties 1-5 above.

The next step will be to define integrals. They will be defined
with respect to more general mappings than the analogues of measures.
To be precise the integral will be defined relative to mappings des-
cribed in the preceding paragraph. It should be pointed out that the
integral will not be numerically valued, but the values are random veri-
ables.

If 5= aa +eaut ad s e 20,8 Nay=0, 143, 1,5°1,.00,m,
is a simple function, define its integral relstive to the mapping g

by
A A A A
J‘ S d § = a., @(al) +-¢.+ an §(an).

Then the integral of a simple function is a linear combination of ran-
dom variables.
A A A
If f is a non-negative random variable, that is f > 0, define
its integral by

~ A N A A A A A
I £dé=supfl|sds: s simple, 0<s <Ff}.

A

In order to prove some of the properties an integral should have,
~
the following notation is useful. For a real number «, let ¢ denote

the random variable given by
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1 ,B<a

0 ,a<B.

Generally :—:\ and ﬁ will denote random variables defined above whose
Jump occurs at a small positive real number and a large real number,
respectively.

The theorems 2.2, 2.3 and 2.4 are generalizations of theorems in

Olmsted [19], where complete proofs are not given.

N A
Lemma2.l. If a <b, &(a) < 3(b).
Proof, If a<b,b=aV (b~a) so0 by 4 of the definition
A A A N ~
of 3, &(b) = #(a) + &(b-a), and then by 1 of the definition of &,

3b) > 3(a).

A N A N N A A
Theorem 2.2. If 0<Lf<Lg, [fd ésjgd 3.
) ~
Proof. At first suppose that £ and ’g are characteristic
A o
functions, then f = a2 for some a in B and ¢ ="E for some b in

A ~ A A ~ A
B such that a <b. Then If d 3 = 3(a) and Ig d & = &(b). By lemmas
AA e A '
A
If £ and /é are simple functions, there is a common de-
composition so that

£ B Feeat 08 a 2 T
—alal cos anan an g-ﬁlal vee Bnan’

where B; 30, i=1,...,n (v. Olmsted [19]). Now it is clear that

A A . A
ffdésfgdé in this case.
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For non-negative random variables the result is obvious in

view of the definition of the integral.

A
Theorem 2.3. If S and t are simple non-negative functions
and O is a positive real nmber,f(é‘@)d@ = I’é a’s+ I’E 473,
and fa§d$=a§d$.

N A A ~ A
Proof., Iet s = alal Fooot anan, then 0s = . a

+ 'l'OUA
13T TR B,

and fa% ad = au18(al) touot ounf:?(an) = _f 8aa.

There is a common decomposition so that s = a131+...+an3n
and /1: = 313 Foeot B 2 2 &nd S+t = (a +Bl)a +...+(a B, )a (v. Olm-
sted [19]). Then J'(s+t)d 2 = (0y+8)) @(a ) +eeut(a + ) Q(a ) and
by the properties of multiplication by real numbers

A A A A A ~
J‘(is‘+’1§) 4% = a8(a;) +eeet a Ba ) + B 8(a)) +eeat Bni(an)=I§ 4%+ [t da.

Fal
Theorem 2.4, If Sh is an increasing sequence of non-negative

Y
simple functions whose limit is the random variable £, then
fé‘nd ? 4 ff a 3.

' A A
Proof. let 5 be a simple function for which 0 < 3 <f and
A
if 5, 1s as in the statement of the theorem, then Llim 'En > 8. Since

n
(v A8, 1) () = V(AL8,3,1) () = Xo@(a) A S (@) =S(), ALE,5,] ¢ 5.
Then

(5 -5, 8.1 =%_4 o

N N A
The t  are simple functions so if N = sup{a:?,l(a) > 0}, t SN for

every n. Let € > 0, then



2N 2
e+ Nt (&)

A
t <
n -~ n

By theorems 2.2 and 2.3
J‘%‘nd < fi:‘ a%+ IN(’tn((e\))d § =2+ 13t ().

A A
But tn(e)4r 0 so by 5 of the requirements on 3,

A LA A
@(tn(e)) 4 o.
Thus, letting €40,
A
ln [ (8 - AL5,4 1)a 3 = 0.
n
n
By theorem 2.2 and 2.3
[$a8=1m[ar85 303 <1 [5.a%.
n n

Then

A A A ~
[fadcun[sas<[fat’
n
A N ~ N
and teking the supremum over the s for which 0 <'s < f, the desired

result is obtained.

A random variable /f\‘ is bounded above if there is @ such that
Jf(a) = 0; g is bounded bélow if there is P such that ?(B) = 1; :‘?
is bounded if it is bounded above and bounded below.

The definition of the integral for arbitrary random veriables and

the following theorems 2.5 end 2.6 do not differ from the standard ones,
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but will be included for the sake of completeness.

Theorem 2.5. If ? and é‘ are non-negative random variables

‘whose int’egrals are bounded and @ is a positive real number,

then J‘OA ?a 8, and J‘ (£+48)d 3 are bounded, and

Iaf‘d%:aj?d@, I(f+§)d.$=f§d$+f§dg.

Proof. lLet gn and %n be sequences of non-negative simple
functions such that Qn‘[‘f and ’f\.nﬁ* £. Then OQHT of (v. Olmsted [19])

and by theorems 2.3 and 2.4
A A A A A\ A
I(deé:limj.asnd @=C¥Ifd§.
n

Since O < En + %nh? +8 (v. Olmsted [19])

P4

lil.lm f(§n+ ‘c‘n) d% = f(f +8)a ¢

making use of theorem 2.4. But by theorems 2.2 and 2.3,

! A A
I(3n+%n)d§=Isnd$+fﬁnd$<f?d$+fgd$.

On the other hand,
J(€+g)d$2f(€n+€n)d$=f§d$+J'%d 5.

But (v. Birkhoff [2])

®>
&
0

um(fﬁnd3+f%nd$)=f?d$+f'
n
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Combining the two implied inequalities, the proof is terminated.

FaN
A random variable f is integrable when the integrals of %+ and

?” are bounded and its integral is defined as
AA At . A Am A
If-d@:ff d@-ff a3,

fal
Theorem 2.6. If f and g are integrable, then & f and

N A
f + g are integrable and

AN A A ~
fafd@:affd@, and

Je+® a3

1
—
>
o
Y
+
Sy
wr>
o8
=104

A
Proof. If £ and g are integrable, it follows from the

A
definition of integrable that |f| and |2 are integrable. But

E+)F < |f] + |gl ama (F48) < [T + [B]

A

5o by theorem 2.2 and 2.5 f +‘§ is integreble. By an epplication of
theorem 2.5 to (v. Olmsted [19])

+ A-

P+ g +

A N -
(£ + 2) =(f+8) + YA ,
J‘ (t+8)Y a % - I(%+§)- a3 = J' e % - f a5+ I§+d S-J'fg"d 8.

N Aw
Since of = af+ - af , by means of the above and theorem 2.5,

J £ af = af a3 - QJ?- a5 = QJ fa 8 .
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The theorems 2.7 ~ 2.9 are proved exactly as in standard measure

theory (for example, v. Loeve [16]) now that the preliminary theorems

have been estfblished.

M
Theorem 2.7. (Monotone Convergence Theorem). If ?5 < fn is

N ~
integrable and fnﬁ‘ f‘\, then f is integrable and
~ A A Fal
ffndgfj'fd@. :

Theorem 2.8. (Fatou-Iebesgue Theorem). Let ?1 and g be
~ A A A
integrable. If h < fn or fn < g, then

A »~ N A
f liminf £ d § < liming J' £_a 8§, respectively
n n

A A A A
hmmjfndQSflimup £ as.
n n

A
Theorem 2.9. (Dominated Convergence Theorem). If |fn| <g

N N A
with g integrable and if fn - £, then

~ A A A
J‘fndq’ = J‘fndé'

2.3+ Absolute Continuity

Let B be a og-complete Boclean algebra and let ﬁ be a probabil-

A
ity. A maspping 1T taking B into 0[0,1] (v. section 2.2) is abso-

lutely continuous with respect to a in case, given any 2 > 6, there

S ~
is 8 >0 such that

Iﬁ(a)l <€ whenever h(a) </g,'
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where a 1is an element of B.

A
The integral of an integrable random variable f over an element

a of the Boolean algebra B is defined by

N
where & is a mapping as in the previous section.

Fal B
Theorem 2.10. If f 1is an integrable random variable, the

following hold:

I A

l. if f>0,
A ~ A

2., if £ >0, £f4a43%>0 for some a,

A A A A A
3. iffnot >0, | £d435<0 for some a, and

B

a
A A A A ~
k. ifIfd@:O for every a, £ = 0.
a
A A A AA N
Proof. (1) If £ >0, 0 <af <f for every a. Let
A A A
@ = sup{p:(af)(B) = a}, then O < a <a f, that is

A A A A
osaqs(a)sj' $as.
a
A A
(2) If £ >0, there is @ >0 for which a = £(a) > 0. Then

A A A N A
?, and O<a§(a)SJ. T a%.
a

A A A A

N
a a, and fds<as (a) <O.

A A A
(3) 1t £ not 20, there is a <0 for which a = f(a) < 1. Then
=

a

A A A FaS A A .
(4) Ir £40, f not >0 or f not <O. In either case an applica-

tion of 3 leads to a contradi_ction and the desired result is attained.
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Note that a probability ﬁ is a less general mapping than g.
Thus the general integration theory is already established. We turn
now to the Radon-Nikodym theorem. Although the integral of a random
variable with respect to a probability is not the same as in Olmsted
{19], the proof of the Radon-Nikodym can be done in the same manner.
Since it is primarily a matter of substituting 8‘ for o and mappings
from B into Q[0,1] for mappings from B into the real numbers, the
proof will not be given here. The Radon-Nikodym theorem is stated as

follows.

A
Theorem 2.1l. If 1 is absolutely continuous with respect

A
to ﬁ, there is a unique random variable f such that

A A N
n(a) = I hig dﬂﬁ. Conversely for a random variable f the in-
a

A A
tegral 7(a) = f fap is absolutely comtinuous.
a

The Radon-Nikodym theorem lays the groundwork for conditioning in

probability theory and this topic will be considered in the next section.

2.4. Conditioning

let Bo be a Boolean g-subalgebra of B. The restriction of ‘ﬁ

A
to B, written ’;IIB , i @ probability on B,. If f is an integrable
o

Fay
random variable, the mapping 17 defined by
Ma)=[ Fap
a

for & in Bo is absolutely continuous with respect to G by theorem

~
2.11. Therefore T 1is absolutely continuous with respect to ﬁ]B so
o
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N A
there is a random variable EB (f) teking values in Bo for which
o]

E (%) ap =A(a)
fa B uIBO i

denote the mapping which takes a random

téﬁ)

for every a in Bo' Let

(e
A A
variable f into Ep (f\). AB will be called a conditional expectation
o o

A A
given Bo and EB (%) is the conditional expectation of £, given Bo'
: o]

N
Theorem 2.12. EB satisfies the following conditions:

0o
C.E.1. (‘i) = ’J\-,

N ~ N A ~
C.B.2. if f >0, E, (f) >0,

n
C.E.3. E (.z c, £.) = %1 ¢ Ep (fj),
C.E.4. IEB (£)] -<-§B (I£]), ana
(o} (o}

A A
C.E.5. if fn - f and there is 'é integrable such that

A A A A A A :
|£] <, then EBo(fn) - EBo(f).

A A ~ A
Proof. (C.E.l) 1 takes values in B, so Eg (1) = 1.
. o

A A
(C.E.2) If £ >0, J‘f d7 >0 for every a by 1 of theorem 2.10.
a

A A A A
J' E, (f)ayl, >0
a BO BO

A A
for every a in B,. If E]3 (f’) not >0, there is a in Bo such
()
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A A A A N A
that J‘ E, (£) anl, <0 by 3 of theorem 2.10. Thus E. (£) > o.
a BO BO BO -

(C.E.3) Note that

But then

(C.E.k) Since |f| +T and |f] - F are >0, £. (|3 +2) ana

A A A ~
Ey (If] - £) are >0 by C.E.2. Then by C.E. 3
[o]

E () >2 (B ama E (2 > -5 &)
Bo(I l)_EBO() EBO(I ) > Bo(

Therefore ﬁB (I?I ) > 'ﬁB (f)l.
o °

A AOA ~ ~ A
(C.E.5) 1f -y, =V IfJ- f| converges downward to 0 (v.
J2n
Fal ~
Birkhoff [2]). Moreover, Y, £2g and
~N A A A A ~ A ) AA N A
B B -8 D] - 1y G- DI s, 1,30 <5, 6.

AN A A A A A A A
Now E (yl) > By (ye) >0 20 and E_ (y ) converges to some y > O.
(o ) - - B, n’ -

But
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s0 by the Fatou-Lebesgue theorem

N A_A . A Fa¥ A
ogjydplB Sllmfyndu=o.
[o] n

A A
Thus y = O by 4 of theorem 2.10 and (v. Birkhoff [2])

A A A A
E. (£)- E_(£).
Bo n BO

This concludes the proof of theorem 2.12.

The properties C.E.1-C.E.5 of conditional expectation resemble those
of the traditional conditional expectation as given by Doob [5]. However,
there is an important difference other than the fact that the functions
and integrals are different, namely there is no qualifying ‘'with proba-
bility one''! appended to the properties as in Doob. The importance of
this difference is brought out in the properties of conditional proba-
bility, to be defined, and theorem 2.1k.

I g is the characteristic function of an element of B, that is

ACADN A . A .
T =7, By (2) will be written g (2) and called the conditional proba=-
) )

~

bility of a, given Bo' The mapping EB restricted to the character-
o}

istic functions of B is written ‘GB and called a conditional proba-~
o

bility given Bo' Note that the defining equation becomes

A N
[ By @ aily =[baf=0aw,
a o o a
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for every a in Bo.

Theorem 2.,13. "’IB takes its values in Q[Bo] and satisfies:
(e}
A A ’ A .
CeP.l. O < g () <1 for every a in B,
o}
A A
C.Pe2s by (a) =0 if and only if a = O,
(o) .
A~ A
COPI3| “.B (1) = l’
o]

CeP.le if apd

l A A A
0, py (2 Vo) =uy (2) + g (b), end
[o] . [} (o]

C.P.5. if a Y0, u, (a )¥ 0.

N
N
B

B

N N A Vel
Proof. GB (1) =%, (1) =1 by C.E.1 so C.P.3 is obtained.
[o] [o]

By definition

P A
[ A5 atly =fiano) =3
a, [o] (o] -

it
o>
.

for every a in B, 80 by b4.of theorem 2.10, ﬁB +{0) If
(e

Y A

Lo (b) =0, fﬁ (b) af]. =n( aAb) =0, for every a in B , that

B B B o
e} 8 O . (e}

is b= 0. Thus C.P.2 is obtained. For every a in B, 0<a soby

C.E.2

0 =iy (0) = B (0) <& (8) =i (o).

Using C.E.3

550y (e = By (1) - £ (&) =1 (o),
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A
that is aB (a) <1 for every a in B, and C.P.1 is obtained., If
0

A A /\
aAb=0, (& +b)2(a Vb). Then using C.E.3
A ~ A A A A A A A
(D (a Vo) = Eg (a2 +D) = Ey (a) + Ey (v) = uBo(a)+uBo(b).

Only C.P.5 remains to be proved. If a, v+ 0, an¢/6 S0 as is seen in
the proof of C.E.5

A A A A A A N
o (2 ) =B (a )VE_ (0) =pn, (0) = 0.
B, n’ B,  n B, B,

The proof of theorem 2.13 is completed.

The reader will note that the properties C.P.1l - C.P.5 of the map=-
ping ﬁB are exactly those of the requirements on a mapping with re=-
spect toowhich integrals were defined in section 2.2. In fact, the
conditional probability is the motivation for defining the integrals
as they were defined there. What other applications such integrals
have is not known and will not be discussed here.

Note that there is no condition of regularity for conditional proba~
bility in this sense. Thus the existence of regular c9nditional proba-
bilities and related problems does not plague the theéry. Following is
an important theorem of probability which cannot be obtained in general
in the conventional theory because regularity is not generally the case

(ct. Doob [5]).

ey
Theorem 2.1k. If f is an integrable random variable,

E @) =[fan .
EBO(‘ J b
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A
Proof. If f 1is a non-negative simple function and

A ’~
T = al al +eeot an an,

then by C.Eo3

A A . D ~ A A A A
1 (£) = o Eg (al) teeot @ B (an) = 0 g (al) Fooot L (an)
o o} - (o} : e} o
Pal
- [fany.
o}
PN A\ A A
If £ 1is non-negative, let 0<s_ 4% £, then

n

A A A A A A A A
fs ap 'rffdu , and E_ (5) 15 ().
n Bo Bo Bo n Bo

A A A A '
But J"s‘ndﬁB =E, (8) so IfdﬁB =E, (f). Ir f is an ar-
o] o . 0 .

bitrary integrable function,

A LA At oA . Nmo A X Aty
fau, =} f ap -Ifdu =E_ (f) - (£7)
j B, f B, B~ "B, =N

=E, -3 =& (&),
EBO( 1) EBO()

Theorem 2.14 is important in applications which the student of ele-
mentary probability views with no surprise, but it is not true in the
conventional theory.

After the preliminaries, the concept of conditional. probability
is much more simple than in the conventional set-up. There is an ap-

parent inability to correspond numerical values to events, random
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variables, etc, This is only apparent and the problem is considered in
the next chapter. Note that none of the objections to the Stone space

approach apply here. ‘
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3. RECONCILIATION WITH THE CONVENTIONAL THEORY

3.1. The Relation of Probability Measures on a g~field of Sets

to Probabilities on a g-~complete Booclean Algebra

Ir (X, & ,)) is a probability space in the sense of Kolmogorov,
then (/) ( @ modulo the g-ideal of A-null sets in () is a complete
Boolean algebra whose elements are denoted by [A], indicating A 1is
an element of the residue class [A]. Thus 1 will be denoted by [X]

and O by [¢]. A mepping in the sense of section 2.2 of chapter two

can be defined on Gl/h as follows:

(x] , a<ax(a)

(B(aD)(@) =
[0 , Ma)<a.

The following theorems3.l and 3.2 are obvious after a moments re-

flection, but proofs are given to aid the intuition.

Theorem 3,1, If ﬁ is defined as gbove, ﬁ is a probability

on Gi/x in the sense of section 2.2.

Proof. Just the positivity, additivity and continuity condi-
tions will be checked.

If p([A]) =0, it is clear from the definition that A(A) = O.
Then [A] = [$].
If [A] A [B] = [4)]:
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(B([a]) + u([B)) (o) = \é’ A [(E(CA1))(B), (A([B]))(a-B)]

\J AL(R([a1))(B), [x1]
a-A(B)< B ‘

]
<

v ALR([aD))(B), [$1]

B < a-\(B)

v (R([a1))(B) = (i([a]))(a-r(B))
a-A(B)< B

[x] , oa-MB) <a(a)

= (u([A] v [B]))(a).
[¢1 , a-)(B) = M4)

If [An]~t[©], for any @ >0 there is n_ such that n <n im-

plies x(An) < ¢ Then

R([A1))(@) = [§] for n>n,

that is

v [a((fa, 1)1 (B+2/m)] = [§] for B >0

m=1 n

so that

(a w(la,))B) = [$] for B >o.
n
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If <0, B+ l/mO <0 for some m and

(a([An]))(B+l/mo) = [X] for all n.

Then

(n R(CA1))(B) = [x1,
n

hence A ﬁ([AnJ) =0 i [a 13 [4].
n

Theorem 3.2. If p is a probability on (R /A in the sense
of section 2.2, then there is a probability measure on the
field of sets (. which corresponds to it as in theorem 3.1.

Proof. For A in [A], define

w(a) = sup{a:(R([A])) () = [x]3.

Then it is clear from the requirements 1-3 on a that (1) 0 <w(a) <1
for every A in @ , (2) w() = o, and (3) w(X) = 1. () 1f

Ay A Ay =0, (8] A [A] = 9] and

w4, U 4,) = supfa: gA[(ﬁ([A]_]))(B), (1(Ca,1))(e-8)1=[x1].
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( v A[(ﬁ([Al]))(B): [x1]
a-w(A2)< B

w(aU 4,) = sup{a:v = [x]}

v AL([a))(8), (913
AN (i) ( )

= supfa: (1([A,1))(0=w(a,)) = [X1} = w(a,) + w(a,).

(5) 1 A b, [AT4[P] so f([a,]) ¥6. For e>o,

(A WIAN(e/2) = Vv AG(IA D) (e/241/m) = O]
n

m=1 n

so for every m, (ﬁ([An]))(e/2+l/m) = [¢] from some n on because
?l([An]) 2ﬁ([An+l]). Thus there is n_ such that (ﬁ([An]))(e) = [¢],

that is W(An) <e for n> n_. Hence W(An) ‘0.

ki ﬁ is defined from a probability measure )\ on a a-field of
sets Q as above, then the probasbility measure w defined on @ in
theorem 3.2 is equal to A. Note merely that A(A)=sup{a:(R([A]))(a)=[x]].
Also, on the other hand, if ’;\1 is a probability on @/k and w is a
probability measure on €3 as defined in theorem 3.2, then if G is a
probability on & /) defined from w, then 5 and ¥ are identical.

This section shows that there is no disadvantage in considering
probgbilities in the sense of section 2.2 and that tﬁere are numbers as=~
sociated with tﬁese probabilities for one who must compute. However,

there is the advantage of a simpler theoi'y, a large part of which is in
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Kappos, Another advantage brought out by this work is their relation
to conditional probability as defined in section 2.4. This leads up to
the question of the existence of numerical values properly associated
with the conditional probabilities on a Boolean algebra which will be

considered in the next section.

3.2. The Relation in Conditioning

Let ‘R be a g-subfield of R and let S /A be the set of residue
'classes of & /x which contain an element of <8 (v. section 1.3).
The reason for this is to have B /A < Q/r. As before, B/n is a
complete Boolean algebra.

A real-valued mapping A(+,+] @ ,B ) definedon @ x X is a

regular conditional probability on (X x X (v. Jirina [11]) if
(1) forany &4 in G, A4 ,-|R ,DV) is 93 -measurable, and

MA NB) = J' AMa,x] & L8 Yan(x)
B

holds for all B in 3, and

(2) for every x in X, M+,x| &,B ) is a probability measure

on @,

Condition (1) is the conditional probebility condition and (2) is
the regularity condition. Throughout the remainder of this work the
term ''conditional probability on G x x'v will be used to distinguish
this mapping from the conditional probability on a Boolean algebra.

A conditional probability on @ x X, satisfies:

1. forevery A in &, 0<a (4,°] R,V ) <1 with A~

probability one,

2. Mb,"| @,9B) =0 with A-probability one,
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3¢ AMX,e] @ ,93) =1 with r-probability one,
be 1f ANB=0, MAUB, | Q,B) =14, |R2,B)(s-]2,B)
with A-probability one, and

5. if An+¢), rA,, |@,%3)+ 0 with A-probability one.

Define a mapping /‘\“B /B G/n into o[V/A] by
(ﬁqg/x([A]))(a) = [{x:0(A,x|B,D) > al].

The following theorem parallels theorem 3.l.

Theorem 3.3. If A(+,+] & ,53) is a conditional probability

on 3. x X, then ﬁ(& /2 is a conditional »probability.

Proof. ILet A(+,*) = A(+,*]@,8). 1In view of 1,2, and 3
for A(+,¢) only the positivity, additivity, and continuity conditions
will be checked.

N A : '
If u(B/}"([A]) = 0, MA,*) = 0 with A-probability one, that is

»MANB) = I rA,x)an(x) = 0, for every B in 93 .
. B

Thus A(A) = 0 or, equivalently [A] = [§].
If [A] A [B] = [$], choose A in [A], B in [B] so that

ANB={. Then

(L@, ([a1 V [BD)(@) = [{x:M(a U B, x) >a}]

= [{x: Ma,x) + M(B,x) > a}]

= [g({x:x(A,x) >p} N {x:n(B,x) >a-p})]
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= g A(L{x:n(4,x) > 811, [{x:(B,x) >a-p}])
- Mg 1, (TAD)(B), (hgyyy ([B]))(a-B))
= (Gq, (181) + g, ((B1) (@),

1 [a] $[$] choose B, in [A ] so that anb (for example,

n
take E = kzl A, and use Bn = En - Em). Given a >0, let
E, = {x:).(Bn,x) > al.
Then
MBNE) = | MBy AN (%) > @ ME,),

E

h
that is

MB,) >a ME,) so AME) < 1/an(B)Vo.

Then (ﬁ@/x([Bn]))(a) = [E ] where [En]~1r[4)]: so

MGy (1)@ = (1. sV Alig ), ([8.1)(1/n) = [p], thet 1s
(A ﬁ@/x([sn]))(o) = [$]. 1In view of the fact that A ﬁ@/h([Bn]) > 3,
n S n

the proof is complete,

Notice that regularity is not involved in theorem 3.3. The next

problem to be investigated is that of the existence of a regular
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conditional probability on @ x X defined from a conditional probabil-~
ity in the sense of section 2.4. Of course, only a partial solution can
be obfained (v. Dieudonne [4] or exercise 48(L) of Halmos [6]). However,
in the cases important in application there is a solution. TFor the sake
of completeness and intuitive appeal, the two most important of these
cases will be included here. ’

In vhat follows a single set is chosen from each residue class of
sets. Henceforth =n denotes a mapping that does this, for exampie B/)\

is taken into ® by wn. If f is a real-valued 3 -measurable function

A
on X, then £ defined by
A
f(a) = [{x:£(x) >0a}]
is a random varisble in the sense of 2.1 with values in ‘B /A. If

g(x) = supfo:x ¢ ﬂ(%(a))}

then g and f differ on a set of A-probability zero. This illustrates
the assocjation between a ‘B-measurable function A{A,+]|Q,93) and a
random variable *ﬁca/x([A]) which takes values in <3/A. Therefore, if
ﬁcﬁ/x is a conditional probability on &./n and A(-,x) on O is de-

fined by

Ma,x) = swios x e 2((ig (A1) (@),

the work will be limited to showing A(*,x) is a probability measure

on @ for each x in X. When the set functions A(",x), x in X are
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probability measures, this class will be called a class of probability
measures on & associated with ﬁ@/x' This definition of A(+,*) is

used in the following theorem.

Theorem 3.4. ILet ‘@ /). be such that there is a mapping

s B/ -93 so that the ciass of images under =x 1is a o-
field. Then the class {A(*,x): x ¢ X} is a class of proba-
bility measures on & associated with lﬁﬁB/x'

Proof. Denote for convenience the subset ﬁ(Glca/x([A]))(a))

by S(A,q), then
AM(A,x) = sup{a: x e s(4,a)}.

It is evident that 0 <A(A,x) <1 for all A in@ and x in X. Al-
so MA,x) =1 for all x in X.

Let ANB-=¢, then by C.P.k
s(A U B,@) = U (s(a,p) n s(B,a-)).
B
To show that A(A U B,x) = A(4,x) + A(B,x) we must show that

sup{a:x e U(S(4,8) n s(B,a-B))} = sup{a:x e 5(A,a)} + sup{a:xeS(B,a)}.
>
It ab is in the set of numbers on the left, there is a Bo 80
X € S(A,Bo) and also S(B,ao-[so), that is B is in the first set on
the right and ab-so is in the second. Thus the sum of the suprema on
the right is larger than 05 and therefore larger than the supremum on

the left. To show the other inequality suppose ai and ab are in the



L7
first and second sets on the right, respectively and that one of them

say . 1is not the supremum. Then there is, in the dense set of real

1
numbers, a B >0, such that x e S(A,BO). Then also X € S(B,ot2+al-50)
since a2+al-Bo<x2. Consequently x € g(S(A,ﬁ) n S(B,al-!ae-ﬁ)) 50
al+ cz2 is in the set on the left.

[+o]
Let B 1B, then s(B,a) = U S(Bn,a) (this follows similarly
n=1

to the proof of C.P. 5 from C.E. properties). In order to show

rB) = lim(Bn) we will show
n

supf{a:x e S(B,a)} = lim supf{o:x ¢ S(Bn,a)}.
n

If o is in the set on the left hand side, x € S(B,x), that is there

is n such that xeS(Bn,Ot) so o< lim A,(Bn,a). Thus
n

A(B,x) < lim L(Bn,x). The other inequality is obvious since
n .
M(B,x) _>_)«.(Bn,x) for all n. Thus A(B,x) = lim x(Bn,x) and the proof
n

is complete,

The problem of when such a n exists is open to investigation.
In the discrete case there is such a = so0 the discrete case in proba-
bility is covered by theorem 3.4. The other important case that we will
consider, summarized in theorem 3.5, will not be proved here because it
is a special case of theorem 3.1ll. But, so‘ that its intuitive value is

not lost it will be given in the appendix.

‘Theorem 3.5. If X is the set of real numbers, & the Borel

sets of X, 93 a g-subfield of @& , and A is a probability
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on @, then there is a class of probability measures on Q. as-

. . A
sociated with “CB/L'

Theorems 3.4t and 3.5 are adequate for practical purposes, but
theoretically the investigation must go farther. This leads to the con-
sideration of perfect fields, compact measures, and perfect measures
which will be taken up shortly. But first a useful tool will be intro-
duced.

Although it is not necessary (see the proof of theorem 3.5 in the
appendix), it is convenient to use a lifting, described by theorem 3 of
Maharam [17]: If (X,93 ,\) is complete, that is subsets of sets with
A-probability zero are events, a representative set R(x) c X can be
chosen for each class x of measurable sets modulo null sets in X,
in such a way that R(x) is measurable and in the measure class x,
R(0) = §, R(-x) = X-R(x), R(x A ¥) = R(x) A R(y), and therefore,

R(x Vy) = R(x) V R(y). For other results on liftings see Ionescu
Tulcea ([8] and [9]).

There is no great loss in assuming completeness and we do it

throughout the remainder of this work. Iet x be a lifting on 43/x

and define A(-,x) on G by

Ma,%) = swlox e x(iqy, ([41))(2))]

where ﬁQB/h is a conditional probability in the sense of section 2.4.
A lifting differs from the mapping = of theorem 3.4 in that the
set of images need not be a o-field. Thus such sets as

u(s(a,B) N s(B,a-)) need not be imasges under x but there is always
B
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an image under = which is A-equivalent to such a set. Making appro~

priate changes in the proof of theorem 3.4 we have the following results.

Lemma 3.6, If A N B ={, then there is X, in 93,
x(xo) = 0 such that for x not in X

MA U B,x) = A(48,x) + A(B,x).

Corollary 3.7. If G. is a countable field, there is X,

in 43, k(Xo) = 0 such that for x not in Xo,x(°,x) is

finitely additive on ( .

Lemma 3.8. If A tA, then there is X infﬁ%,x(xo) =0

such that for x not in xo,supx(An,x) = A(A,x).
n

In theorem 2.1 we used the fact that the field & was perfect to
make an extension, this brings up the question of the connection between
perfect fields of sets and compact classes which is studied briefly be-

low.

Theorem 3.9. If TR is a perfect field of subsets of X, 43
is a compact class.

Proof. Let Bn be a sequence of 3 such that

n ’ =)
n Bi + $, n=1,2,... and suppose Bn = ¢, then
i=l n=l

=}

(&4 C C c
X = ngl B, = B U(Bl N 32) U (BlﬂBzﬂ 33)u .ee

where the components of the union are disjoint. This means there is

e o c . .
n, such that n >n_ implies BiN..NBANB ,, = d (v. Slkorskl [23]).
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Then B ,, 3B, M..NB  and so BN ... an=(Bln... an)rrB cB

+1 1 n+l " n+p’

inductively Bn+j:>Bln ees Bn’ n> n, and Jj. Hence

«
N B= BN «ce NB= ¢ in contradiction with our original assumption.
n=1

Theorem 3.10 is a partial converse to theorem 3.9.

Theorem 3.10. If €3 is a countable field of subsets of a set

X with the property that B is a compact class, i3 is a per=-

fect field of subsets of X.

Proof. Let 4 be an open basis for a topology on X, then the
sets of <3 are both open and closed. Iet G be an open cover of X
and assume the sets of G belong to % . since ‘3 is countable there

is a sequence B, of Q¥ for which

® C C C
X = ngl B, = BU (13l n 132) U (Bl NB, N B3)U...

where each component of the union is in 5% . Then since QB is a compact

class,
c c c
B, N (B,U By) N (BU B By) Meee = ()

implies that

c c cy _

By N (BUBY) Neee N(BU «ee U B, _,UB) = )
no n

for some n. It follows that N B = ¢, hence X = Bj’ that is

j=1 9 3=1

X 1is compact.
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Iet A be a maximal ideal in 43, A = {Bl,BE,...}. If
U B =X, X=B Uaes« UB. € A, in contradiction to A maximal.
n n n.
n=1 1 J
w0
Hence there is a point x in X - U Bn' Let Ax be the maximal ideal
: n=1

determined by x. Since each Bne Ax’ AC Ax and thus any maximal -

ideal in 93 is generated by a point.

Return now to the problem of classes of probability measures as-
sociated with a conditional probability on a Boolean algebra. The
theorem that follows is not new (v. Sazonov [21]), but the proof is dif-
ferent and more natural in the present setting.

Let (X, @ ,).) be as in the preceding sections. Let &3 , bea
subfield of & s 93 s 2 o-subfield of & for which every subset of a
A-null set in(ﬁe is in CBz. Then exactly as in section 2.4, there

is a conditional probability &% 5 o0 G (B 1)/’“ into o[ (Rg/x],
2

vhere (@ 1) 1is the o-field generated by Q3 1

Theorem 3.11l. If ?143 M is a conditional probability on
2
& ( (\31)/7\-; %1 is a countable field, and hlfB is compact,
1
then there is a class of probability measures on G3 (B 1)

N
assocjated with “(BQ/x'

Proof. If n is a lifting on “Bz/h, define

MB,x) = supf{a:x ¢ n((ﬁ(\g /A.([BJ))(O‘))} vhere B is in B 1+ B cor-;
2

ollary 3.7, A(*,x) is finitely additive for all x outside a A-null

set., Since 7\.' Q is compact, there is a compact class € such that
1
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for every B e &3 ; theredis C  in € and B in Q3 , such that

BcCcB and rB) = sgp x(Bn).

By lemma 3.8, for all x outside a A-null set,

»(B,x) = sup )»(Bn,x).
n
a3 , countable implies that A(+,x) is also compact for x not in
a A-null set. lLet N c (\32 be a A-null set for which A(*,x) is a
compact, finitely additive measure on CBl for x not in N. For

B in 43, define

MA,x), x¢N

n(a,x) =

A(4), xelN.

But p(°,x) can be extended to a probability on (3( CBl) ; for each

x (v. Marczewski [18]). The proof is complete.

Actually the family {p(*,x):x € X} is equi-compact on PR 1+ A
family {p(+,x):x ¢ X} of finitely additive probability measures on a
field 93 of subsets of X is equi-compact if there is a compact class
& of subsets such that for every A in 3 and for every 7 >0
there is B in 93 and C in @ such that Bc Cc A and p(A-B ,x) < 1
for every x in X. With this it can be seen that if k(',-IGB(CBl),ﬁ(BQ).
is a regular conditional probability on G} (<R l) x X and (Bl is an

arbitrary fieldand if » {«,x| C:Sl, "\32) is an equi-compact family,
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then xlqg is compact. But this is outside the scope of this work.
1

The problem of finding probability measures associated with a con-
ditional piobability on ; Boolean algebra of measurable sets modulo the
null sets is equivalent to finding a regular éonditional probability on
the product of the measurable sets with the point space in the conven-
tional theory. This problem and its converse has been studied for years,

it is hopeful that the present work may be of assistance in the solution

of this problem.
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SUMMARY AND CONCLUSIONS

This work is divided into three chapters. In chapter 1l some of
the properties of the Stone space of a Boolean algebra are adapted to
the problem of conditioning and it is shown (theorem 1.4) that there is
always a regular conditional probability relative to a full o-subalgebra
of Baire sets.

Chapter 2 contains a treatment of conditional probability on a
Boolean algebra. For this a generalized integral is defined (section
2.2) and the standard theory of integration is shown to hold for it.

A new defintion of probability is given (section 2.2), and conditional
expectation and conditional probability are defined (section 2.4). The
properties of conditional expectations and conditional probability are
given in theorems 2.12 and 2.13, respectively. It is pointed out that
there is no regularity condition for conditional probability on a Boo~
lean algebra. Integrals in section 2.2 are defined with respect to cer-
tain mappings, an example of which is conditional probability and the
conditional expectation of a random variable is shown to be the inte-
gral of the random variable with respect to conditional probability
(theorem 2.14).

The relation of the theory developed in chapter 2 to the conven-
tional theory s presented in the third chapter. One of the aspects of
this is to show there are numerical values properly associated with

probabilities and conditional probabilities as defined in this work,



and it is done in chapter 3. The relation of compact classes to perfect

fields of sets is also discussed briefly.
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APPENDIX

A Proof of Theorem 3.5

This proof is a combination of ideas used in theorem 9.4 of Doob
(5] and prop. 3.3 of Varadarajan [24], adapted to the setting of the
present work. The proof will be preceded by the following lemma.
lemma., If rl,ra,... is g distinct enumeraticn of the ra-
tionals in the interval (0,1), A is any real number, and
if there is a class of subsets B(A, r;) of a set X such
that B(h,ri) :>B(x,rj) if 1, < r; and
i) B()»,ri) c B(u,ri) if A <y,
11) B(A,r,) = g B(h,ry) If A A,

iii) X = g B(r,r;) if A te, and $ = QB()‘n’ri) if b e

for any s then for every x in X there is a probebility

measure on the Borel sets of the real line given by
F(\) = sup{ri:x € B(h,ri)}.
Proof. Iet us consider a particular point x.

1) If A<y, B()\.,ri) c B(u,ri) for all r,, that is F(\) =

sup{ri:x € B(h,ri)} < sup{ox € B(p,ri)} = F(u).

2) If Ay s B(A.,ri) = g B(xn,ri) for all r,, that is for each r,

for which x ¢ B(h,ri), X € B(kn,ri) for some n, or equivalently,

ry S.F(hn) for some n. Thus F(A) < sup F(Ln). Moreover, equality
n
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preveils since the reverse inequality is obvious from 1).

3) 1If Mteo, X=U B(hn,ri) for all r;, that is for any r;  there
n

is n, such that n >n_ implies r; < F(xn) <1 so that sup F(kn)=l.
n
Similarly if A { ==, d=n B()\,n,ri) for all r,, that is for any r;
n
there is n for which x ¢ B(hn,ri). But B(xn,ri) on) B().,n,rj) for all

r; < r, so 0< F(Ln) < r;. Then 121‘ F()\.n)= 0.

From 1},2), and 3) above it is clear that F(\.) is a distri-
buticn function for each x in X. Each distribution function gener-

ates a probability measure on the Borel sets of the real line.

Notice that there is no restriction on X in the proof. This

lemma corresponds to the wide sense notion and the proof of theorem 9.4

of [5].

Theorem 3.5. If X is the set of real numbers, & the
Borel sets of X, 93 a o-subfield of a3 s and )\ is a
probablility on & » then there is a class of probability
measures on (. associated with QCB/A,: G |a - a[B/A].
Proof. (cf. Varadarajan [24h For r <0 or 1<r, let
B(h,r) =X or (b, respectively where N\ is any rational. Let
T1sTpsese be as in the lemma. By induction we will show that there
are sets B(L,rl), B(h,re),... in <3 such that i) (ﬁ(g/)“([(-m,k]]))(rj)=
[B()..,rj)], and ii) B(A.,ri):‘ B(h,rj) if r, < Ty For convenience let
i) = ﬁqg/h([(-oo,x]]). Let B(r,r;) be any set for which

(a(k)(rl) = [B()\,,rl)]. Ir B(L,r‘l),..., B()\.,rn) have been constructed
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to f£it i) and ii), B(A.,rn_l_l) is constructed as follows. ILet

ri < eee < rs be the arrangement of TyseeesT, in increasing order.
1 n

Choose B such that (L()))(r +1) = [B]. There are three possibilities

n

1) s ril, in which case let B(A.,rn_l_l)

2) riu< T < riu+i’ some p = l,.s.,n=1l, in which case let

=B U B(A,7; ),
1

B(k,rn+l) = B(k,riu) U (B(x,riu+l) N B), and 3) rin <r .., in which

case let B(h,r ;) = B N B,z ). Then (B(M))(r,,;) = [B(M,z,,,)]
n

in each case. By induction the sets B()\.,rl), B(),,rz),... are found
satisfying i) and ii).

Let €= (NUB(,7;))° and D=y nBM,r). Inwvhat fol-
i i

lows the properties C.P.1~C.P.5 of ﬁ Q /h are often used and will not

be explicitly stated. Note [X] = (é\(m))(ri) = V(ﬁ(}\.))(ri). But
: A

(@)(r;) = [B(ro7;)] so [X] = V[B(r,x,)], and
- A

(9] = (a("”))(ri) = o‘; A (ﬁ(h))(ri+ 1/m) so if r, is given there is
- om=l A J
0<r+ 1/m < r,, conseguently (41 = A(ﬁ(x))(fi-!- 1/m) > A(ﬁ(k))(rj)
. A by

= A[B(h,rj)] = [N B(),r.)]. Therefore [C] = [D] = [$].
) ) g

Let

u (Bruc), w>o

U (8nz) nD°),  msgo.
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Then, if u >0, [A(U:ri)] = v [B()\.,I‘i) ucl= v [B(X:r )]
A <pu A<

= hz (@) (g ) (ﬁ(u))(rj)=[B(u,ri)]- I u <0, [A,r)] =
u | |

v [0z, ) nNoy= v [B(r>x;)] = [B(w,r )3
A <K A<p

For r; <rJ, and if u >0, A(u,r YU A(u,r >=( U B()\,,r N u
A< u

(U BlwrDuc= U (B0u,zy) UBM,T)IUC= U Br,r;)uc=alu,r;),
wWu : A<upu Ar<pu

and if p <0, Afw,r;) U A(u,rj) u (B(r,ry) U B(x,r )) nD°
A <pu

= U B(x,r ) n o° -A(p,r) Taus  A(u,r.) D A(u,r,) for r.<r..
»<u i’ dJ 1 J

For r; fixed, A <y, then if 0<%, AQ\,r;) = U (B(v,r, )UC) <
v<A

U (B(\;,r ) U c) = A(u.,r ), and if A <0, A(x,ri) =
v<h

u (B(v,r)ﬂD)c §] (B(v,r)ﬂD)c: U (B(v,r)UC), but
v < : v<p v<u

Aw,ry) = U (B(wxy) ND°) or U (B(v,r;) U C) depending on
v<upu v <

whether p <0 or p > 0. Thus A()..,ri) cA(u,ri) when M <.

Let u,tp, then if 1 <0, U A(ugr) =U( U (B(y,x)M)) =
: - n nx< Ky :

U (B(r,r; ) n o° ) = Afu,r,), and if p >0, UA(u )T )=
A<p

( v A(u,r))u( U Alp,r.))= U Alp,r,)=
n >0 0T np <0 0T nep >0 n 1

u_ (U Blur)uc)) = U (Br,) U C)=alu,r;). There-
n:p.n>0k<un - A <u

fore gA(“n’ri_) = A(p,ri) where My M R
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Note also that lim A(u,r;)= U(B(r,z;)UC) = U B(r,x Ju(n U B(x,ri))c
o r - A i i

DU B(x,ri) u (U B(}\,,ri)))c = X, and ,Jim A(u,ri) = ﬂ(B(h,ri)nDc) =
A A o A

N Bz N (U N 13(>v,ri))c < nB(r,z;) n(n B(A,7,))° = b
A i : A X

If u is irrational let A(p,ri) = U A(x,ri), vhere A is
A< u

rational. Then the sets A(p,ri) have the properties listed in the

lemma. The proof is terminated with the application of the lemma.



