On Non-Dis‘sipative Markov Cnains

by

Paul T. Holmes

Department of Statistics
Division of Mathematical Seciences
Mimeograph Series No, 8u4

July 1966



On Non-Dissipative Markov Chains

by
Paul T. Holmes

Purdue University

I. Introduction

A Markov chain is non-dissipative if almost every path function
eventually enters (and remains in) the set of positive recurrent states. -
In section II we give a short discussion of discrete parameter none
dissipative chains including a new proof of the celebrated theorem of
Foster and Kendall. Section III contains generalizations to the con-

tinuous parameter case.

II. Let X = {Xn, n=0,1,2,...} be a Markov chain in discrete time
whose (minimal) state space I consists of the non-negative integers.
Each random variable X = is defined on the probability space (Qsr,P);
w vrepresents an element of {2 . The transition probabilities are

assumed to be stationary, i.e.,

P(X ,, = j]xn =i) = Pij i, 3el n=0,2,2,...
where
[es]
pij >0, 2: pij =1 i, jelI .
3=0
(n)

Tne nestep transition probabilities are denoted by p whnere

ij
(0) _ (1) _ , S -
Pij = 6ij and pij pij . As usual, the Cesare limit of
{p(n) ® is denoted by i.e
ij "'n=0 ig > /v

=

n

s 1 (v) ..

nij—i.lfm Zpij i, Je I .
v=0



We recall that "ij >0 if and only if j is accessible from i and j 1is

=

a positive recurrent state; and that Zj "ij <1 for every i (see Cimng

3=0
2], p. 32).
Concerning tne limits ﬂij there are tiree possibilities, namely:
(a) ™5 =0 for all i ,and J ,

(-]
(v) ™5 >0 for some pair i,j , but Z Mg <1 for some X,
Jj=0

«©
(c) L oMyt 1 for all i .
j=0

Foster [5] has dubbed these three types of ehains dissipative, semi~dissipative,

and non~dissipative, respectively. It is clear that a Markov chain is dissipative

if and only if all its states are either null recurrent or nen recurrent, Every
irreducible positive recurrent Markov chain is non-dissipative, In view of the

standard theorem on the determining system of a Markov chain (see Chung [2], p. 33)

[--J
and the equally well known fact that for every i and j n ij =z M j H
k=0

(see Brarucha-Reid [1], p. 32), it follows immediately that a Markov chain is
dissipative if and only if the only non-negative convergent solution
{xys% 5000} to the system of equations

[.=]
=\

X =4 %Pij
3=0

is the zero solution X = (0,0,.,..) . (This is theorem 2 of Foster [5]).



Iet D denote the set of positive recurrent states in the chain, and
* *
let £ (i,D) = 1>(xn e D for some n = 0,1,2,...1}{0 =1i) , i.e., £ (i,D)
is the probability wnen starting at state i of eventual absorption into
some positive recurrent class, Chung [27, pp. 35 and 37, has shown that

[oe]

*
£ (i,D) = E: U Hence a Markov chain is nonedissipative if and only

j=0
if f*(i,D) =1 for ever i , i.e., if and only if almost every patn function
eventually enters D . We note that if a Markov chiain is non-dissipative,
then D 1is non-empty and there are no null recurrent states at all in tue

¢nain.,

Let u = {u(i)}:=o be a (finite valued) funtion on I. u is called

a super regular function if

¢o
(1) (i) > ) b, uls)
J
for every i . A non-negative super regular function u is properly

divergent if u(i) = as i=-e .

Theorem 1: In any Markov chain, if a properly divergent super regular
function ekists, then

(a) there are no null recurrent states in the chain,

(v) ever& positive recurrent class is finite, and

(c) the chain is non~dissipative.

Proof: Suppose tne set E of all null recurrent states in the cnain is non-
empty. Then there is a nmull recurrent class C<E and C is infinite. -
Tnerefore, u=® on C ., But it is well known tiiat a non-negative super .
regular function on a recurrent class must be identically equal to a constant.::

(see e.g. Karlin [8}, p. 142 or Holmes [7], p. 10). This is a contradiction.



L

Hence E 1is empty. Similarly, if a positive recurrent class F is infinite,
then u- @ on F whicih provides another contradiction.

Let {X ,n=0,1,2,...} be the original chain {X n = 0,1,2,...} re-
stricted to start at state k , i.e., Xko = k with probability one (k is
arbitrary but fixed). Consider the functiomal process {u(an), n=0,1,2,...} .

We note that

@) Eu)] = ¥ % u) < ul) <
=0

and
1) Bl p) | XgreeaXe = Blulx ) % 1 =
;,Zo Pt g u(i) £ uwx )

(The inequality in (i) comes from iterating the defining relation of super
regularity; the first equality in (ii) follows from the Markov property and
the dnequality in (ii) from super regularity)., Hence {u(Xk n_), n=0,1,ee¢}
is a nonenegative super martingale; A convergence theorem of Doob [3], p. 32k,
tells us that there exists a non~negative random variable v such that

-u(ik n) = v with probability one as n=-= o , and O0<E(v) <« , We know
that there are no null recurrent states in the chain, Iet T =I«D be

the set of all pon-recurrent states, Assume T 4 9 . (If not, tien D = I
and there is nothing to prove.) We want to prove that f*(k,D) =1 , If

k € D we are done. Assume k4 D and let B = { X,(w) ¢ T for every nl
The subset of B for which {an(w)} is a finite subset of T has probability
zero, Hemce for almost every w e B v(w) = lbmuﬁﬁnlﬁnﬂ equals + o ~by the
proper divergence of u , Therefore, B zéféwnull set, since otherwise
E(v) =« , This shows that D is noneempty and that f*(k,D) =1 , But

K was arbitrary. The result follows. QED



Theorem 1 was originally proved by Foster [5), p. 81, for thne special
case u(i) = i , and subsequently generalized to its present state by
Kendall [9]. The proof herein presented is new. A partial converse to this
theorem has been given by Foster [6], p. 588.

It is clear that if a properly divergent super regular function exists,
then tnere is a finite set C of states such that all transitions out of
C are of probability zero - we need only let C be the set of all states
at which u achieves its minimum, or let C be any positive recurrent
class. It does not follow, however, that D is finite. As an example
consider the Markov chain in which every state is absorbing and let

u(i) =1 .

Remark on how fast a function can diverge and still be super regular. Let

u be a positive super regular function and define

1 u i
%3 “ u fJ Piz
0

The matrix of the qij's is sub=stochastic. z: qij <1 implies that

J=0
qij -0 as j=® forevery i . Hence u(i)pij -0 as j— o for
every i , i.e.,
u(i) = o ()

pij

as Jj =« for every i . We see that u cannot go to infinity faster

than the slowest row probabilities go to zero.



We state another interesting theorem (due to Mauldin [10]) which
gives a sufficient condition for a Markov chain to be non-dissipative.

Proofs can be found in Mauldon [10] and Holmes [7].

Theorem 2: In any Markov chain, if there exists a super regular function u

«©

such that 1im influ(i) ..Ez pij u{j)] > 0, then the chain is non-dissipative,
i -
d=0

In another vein, Ciung [2], p. 37, has shown that a Markov chain is

non-dissipative if and only if the series in J

@ n
RCNEIHD
J v=1

converges uniformly with respect to n .

Example 1: A one dimensional random walk on the nonnegative integers with

an absorbing state at zero. =1, If i + 0 , tuen P: 341 = P> o,
. 2

Poo 1

p = r,p =qg>0,witn p+r+q=1. In this case D = {0}

i,i i,i"'l

and every other state is nonrecurrent. ILet wu(i) =i . Then

[ee)
Y, Pog u(3) = u(0) =0,
j=0

and for 1% 0

Y. Pys ud) = q(i-1) + 71+ p(i+1) = +(pq) = u() + (p=q) .
J=0
Therefore, if p < q , u is super regular, Clearly u is properly di=-
vergent. Hence, by the theorem of Foster and Kendall, we have the well
known result that if p < q then eventual absorbtion into the zero state

is certain, regardless of the initial state.



Example 2: A random walk on the nonnegative integers with an absorbing
state at zero. Here »__ =1. If i 4 0, then P; 441 = B3 >0,

= = = i | o i = {0
Pig =Ty >0, Py g1 Y >0, P34 0 if Ji-j| >1 Here again D = {0}

and every other state is nonrecurrent. Let wu(i) =i . Then

@ @

< . v Y =l ) :
L;pOj u(j) = 0 and P 5 u(j) = u(i) + (p:.L qi) for i3 0. Hence,
J=0 J=0

* *
if p; £q; for every i, tnen we have that f (i,D) = £, =1 for every
1 . In addition .

w(i) = u(®) - Y pu(@) =p; - q -

J=0

*
io
It is well known (see Feller [4]) that absorption

Therefore, if lim inf(qi

i= e

Pi) >0, then f.. =1 for every i

into the origin is certain if and only if the series

i‘ Q909

PyPose-Py

n=1

diverges, Foster [6] has shown that this condition is necessary and
~ sufficient for the existence of a properly divergent super regular function
in this case. (Actually, Foster considers only the case where r, = 0 for

every i , but his proof goes through in the more general situation).

Example 3: Now consider a two dimensional random walk, i.e., a Markov
chain on the lattice points (x,y) in the plane with integer coordinates.
If (x,y) %+ (0,0) we have probability % of going to any of the four
adjacent states (x,y-1), (x,y+1), (x-1,y) and (x+l,y). The state (0,0)

is absorbing., Here D = {(0,0)} and every otiuer state is nonrecurrent.



We enumerate the states as follows: (0,0) is state O , Now number all
those states (x,y) with lxl + lyl =1, then those with |x| + lyl =2 ,

etc. Define a function wu on these states by

1(0,0) = 0

u(x,0) = |x| +1 ir x40
u0,y) = |yl +1  if y 40
u(x,y) = |z} + |y| if x40

This u is regular and properly divergent. Hence eventual absorbtion
into the origin is inevitable. (This is not a new result. It follows
directly from a theorem of Polya. (See Feller [ﬁ])).

Finally, consider a symmetric random walk in three dimensions. Since
there are no recurfent states in this case (also from Polya's theorem), it
follows that there cannot be any properly divergent super regular functions.
In particular, tne functions u(x,y,z)=!x|+|y!+lz| and |

2

u(x,y,z) = (X2+ ¥+ 22)1/2 are not super regular.
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ITI. In this section we extend some of the results of section ITI to the continuous
parameter case.

Let X = {Xt’ t > 0} be a Markov chain in continuous time with state space
I=1{0,1,2,...}. The transition probability matrix P(t) = (Iij(t)) is assumed to

be standard and satisfy

P ()20, ) p(8)=1 4,561
§=0

P(t+s) = P(t) P(s), P(O+) =1 ,

for all s, t > 0. 1In addition, the states are all assumed to be stable 8o that

o py(6)-1
0>pj; (0) = Mm —H— =g =-q >-= iel
t 10
' (o) pij(t) )
O0<pi!, (0) = lim =S =q., <o® iFjel .
1 tyo P i

We further assume that matrix of the quantities qij is conservative ,

(
J

q;; =0, i e I), and that the gquantities qij determine the process uniquely.

ij

gITVfIB

This excludes from consideration those processes which can explode to + © in finite
time. Various necessary and sufficient conditions for these assumptions to hold have
been obtained and can be found, for example, in Chung [2] and Reuter [12].

X will be called non~dissipative if almost every path function eventually

enters D, the set of positive recurrent states.

We will prove a continuous time version of the Foster-Kendall theorem., The
equations analogous to the defining relation of super regularity (1) in continuous
time are

(2)

qij u(j) <0 iel

L3

J
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It will be shown that if there exists a non-negative solution u = {u(0), u(1),...}
to (2) such that u(i) - as i - o , then X is non-dissipative,

Every continuous time Markov chain X has an imbedded discrete time Markov
chain Y = {Yn, n =0,1,2,...} whose transitions consist of the successive state
changes in the continuous chain whenever they occur. The elements of the transition

.matrix R for the imbedded chain are

q. .
S O N
93
e ]
1d 0 if i=3 :

If a state is recurrent in the continuous time chain it is also recurrent in the
imbedded chain, and vice versa. However, this does not extend to the positiveness

of the recurrence. (For examples, see Miller [ 7).

Lemma: If Q u< 0, then wu is a super regular function for R .

Proof: If 0>Qu, then

(o] [e2) [~
1 y v Y3 44 v
0> = .. u = -— U, +~—~—u, = A .
—q 4 %5 Y Z a; 9 g M Z Tig YT
J':O j:o

3=0
J$i

Therefore,

If u is a non-negative solution to (2) and u(i) »~ as i — «, it follows from
the lemma that u is a properly divergent super regular function for the discrete

parameter Markov chain ¥, and consequently, that the Foster-Kendall theorem
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applies to VY.

et N be the set of null recurrent states for X, and let D Dbe the set of
positive recurrent states for X. PFurther, let T be the set of null recurrent
states for Y, and let 9 be the set of positive recurrent states for Y.

We now have the following information at our disposal:

NUD=7US9, 7= ¢ , each class in 9 is finite, and almost every path
function of Y eventually enters (and necessarily remains in) 9. It follows that
almost every path function of X eventually enters (and necessarily remains in)

N U D, If we can demonstrate that N = ¢ the proof will be complete.

Assume N is non-empty. Then there exists a communicating class N' C N
and N' is infinite. If the X process starts at a state k ¢ N', then (with
probability one) as time progresses the X process must pass through every state
in N', -and indeed must hit each state in N' infinitely often. But k is also
an element of 9 and is consequently in some closed communicating class 0' cC 9,
and 9' is finite. This provides a contradiction, Hence N' 1is empty. We sum-

marize this discussion as a theorem,
Theorem 3: If u = {uo,uly...1 is a finite valued non-negative solution to the

system of inequalities Z qy; 9,0, 1=012,..., end lim wi) ==,
J=0

1=

then X 1is non-dissipative.

Remarks: 1. In this section we nave insisted that a > 0 for every i.- This
means that there are no absorbing states in the chain (see Cnung [3], p. 181).
If a state i Thappens to be absorbing we can modify tue Y process by making

i absorbing for Y also and thne above given analysis will hold. 2. It is

possible to snow, using some results of Reuter {137, tnat if u is a non-negative



12

solution to Q u < O, then u >7 u, where [ 1is the sub-stochastic matrix of

the quantities m. = lim pij(t). It is clear, however, that the mere exist-

-t-)oo

ence of a divergent solution to u > mw u is not enough to guarantee non-
dissipativeness. As an example consider
a Birth and Death process on the non—negative integers with an absorbing

state at zero. For such a process the @ matrix is

0 0 ) 0 0

0 b ~(>\.2+u2) ?\2 - 0
0 0 b3 - gtus) *3

and tne transition matrix of the imbedded Markov cnain Y is

1 0 0 0 0
_ 94 0] Py 0 0
0 P, 0 Y2 0
0 0 0
43 P3
kl
where p, =3—>=— =1-¢q. (i>1). [See Karlin [9], p. 189 and p. 202].
i Al t g i -
In the case of a linear growth Birth and Death process where By =0y, An =n A,

and p < A, the probability of absorption into state O when the initial state
is m given by (%)m which is less than one for every m > 1 (see Karlin [9],

p. 203). For tnis process the guantities “ij are given by:
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= = i > '
Too 1, Toi O for i~>1
. . oy i,
T = P(absorption into state O(Xo=1) = (%) ,ido0
= i i 4
ﬂij 0 i + 0, j = 0.

and there are numerous non-negative divergent solutions to u Z u, e.g., just
take uo = 1 and un =n for n.z 1. 3. We conclude with é remark about
the relationship between the non-dissipative character of. X and that of its
discrete skeletons.

For h> 0 let Xh = [th, n=0,1,2,...} be the discrete skeleton of
X at the scale h. Xh is a discrete parameter, aperiodic Markov chain and
has one-step transition probabilities pij(h)’ and n-step transition prob-
abilities pij(nh)' The classification of states in each Xh is the same as

in X.

Theorem 4: If, for some h > O, Xh is non-dissipative, then X is non-

dissipative. Conversely, if X is non-dissipative, then so is each Xh,h > 0,

Proof': Assume Xh is non-dissipative for some h > 0. Let

Ay = {w: Xhh(w) e D for some n = 0,1,2,...}. P(Ah) = 1, Suppose w is
such that Xt(u)) ¢ D for every t > 0. Then xnh(w) ¢ D for n = 0,1,2,...,
ie., w ¢ A,- Hence Plw: Xt(w) ¢ for every t>0} =0, and X is non-

dissipative. The converse is obvious. QED
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