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Two dimensional spectral analysis

by
Louis J. Cote
Purdue University and

Midwest Applied Science Corporation

Introduction

A quick sketch of multidimensional stationary stochastic processes was
given by Bartlett [1] sec. 6.5. The theoretical aspects are a special case
of the work of Karhunen [5], Parzen [7], and others. A skeleton discussion
of the statistical estimation problem was given by the author and others in
[8], but more complete work is, to our knowledge, lacking. We present a theor-
etical sketch of two dimensional stationary processes with some possible uses
of their spectra. Then we will give details of the statistical estimation of
two dimensional spectra. We proceed to discuss measurement errors and finally
give a summary of the formulas used in computation.

The major part of this work was sponsored by the Land Locomatioh Laboratory
of the Army Tank-Automotive Center, Warren, Michigan and appears in a report [6].
The measured spectra were obtained for part of a study on the traversability
of open ground by vehicles sponsored by the Land Locomotion Laboratory. Most
of the practical problems discussed here were met in the processing of this

data. Results of this study will appear in a future report of the Laboratory.

Representation

Suppose h(x,y) is a stationary stochastic process having second moments.
Stationarity will mean that for any finite set of points, {(xi,yi): i=1,2,...,k},

the random variables {h(xi,yi)} have a joint distribution which is invariant



under translation, i.e. it equals that of the random variables {h(xi+ h,y,+ k)}
for any (h,k). There is no difficulty applying Karhunen's analysis, [5] p.k2,

to this case to arrive at the representation
-} (-] . 4

(1 hxy) = [ [ PO ) .
L0 -0

In this W(A,s) is a complex valued orthogonal increments process of zero meen,
to be specific, if Aa.b denotes a difference operator and complex conjugates

ere denoted by * ,

@) B{(a,W(Au))} = EL(W(A+a,u+b) = W(k+a,p) - W(A,utb) + W(Au))} = O
Mtash

E{Aabw(hl’“l)Acdw("Z’u'Z)] =0 for b <
By * P 2

2
E{lAabW("’u)' } = AabF(Ml&) .
This representation is useful in applications to vibration problems because
of the choice of orthogonal functions e2T(MX *U¥) nion £it with the differ-

ential equations of vibratory motion. We assume in this paper that h(x,y) has

real values so that
(3) h(x,y) = %{h(x3Y) + h*(x:Y)]
o o0 .
<[ [ AmOx uYlagrunu) « v
-0 -l
where V(A,u) = W#(-\,-u). The random function defined on the half plane,

>0, by 3HwW(i,p) +V(A,s)] is an orthogonal increments process whose

variances are



B{ 8 [9008) + VOLu)T[%Y = HEC |8 W000) (B + E{A W00 )8, V¥ (A0 )}

+ B{A % (L) V(e)} + EL|a Vo)

We have used the notation V(\,u.) to make it clear that
BV o) = A_, W (=A,-u) .

Fram this we see that the two central terms are zero and that the required

variances are

(&) o Fu) + 8, F(-A,0)] .

When F(A,u) 4is continuous for y = 0 there is no ambiguity, but otherwise
we must define the half plane so as to include the positive \-axis and
exclude the negative. We will henceforth assume that F(\,u) is absolutely
continuous everywhere so that it has a density function which may be written
ls(x ,p,)|2 since F(A,u) has the samé properties as a distribution function.
We may take s{\,u) to be the non=negative square root, whereupon aW(A,u)
may be replaced by s(\,u)dZ(\,u). We will say that the orthogonal increments

process Z(A,u) has unit variance. The representation (1) becomes

o0

¥ omi(Ax + py)
(12) ny) = [ [ SMAEFEs0 ) e .
-0y -0
Equation (3) suggests that because of h(x,y) being real valied we may
restrict ourselves to orthogonal increments functions that are conjugate~symmetric
through the origin. 1In truth the integral must be defined in a peculiar way with

the differentials going in opposite directions below the A~axis, If we collapsed
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the region of integration to a half-plane this difficulty would not be present,
but then in changing variables we would have to pay attention to the shape of
the region of integration. We may work with the conjugate-symmetric W(\,u)
(which is only orthogonal increments in the half plane) if we restrict oure
selves to transformations which preserve symmetfy about the origin, and also
use the entire plane as a region of integration., ILet us consider a linear trans-
formation which will suffice for our purposes,

We note that an orthogonal increments process is really given by its differ-
ences Aabw(h,u), or equivalently by its integrals over measurable sets,
j dW(A,u). We take W(k,u) to be conjugate-symmetric so that its irtegral over
éAset is the sum of the integrals over the part of the set that is in fhe half
Plane with the part of its reflection through the origin in the half plane with
the conjugate taken of the latter, Now consider a non~singular linear trans-

formation

)‘=a,ll§.+a.12n g:bllk+b12p.
b = 8578 + a5l M= byyd + byops .

The (E,7) plane may be represented on the (\,u) plane by use of an oblique
set of axes; b,,A + by =0, the E-axis etcs A rectangle in the (g,7)-plane
becomes a parallelogram in the (A,u)-plane, If a set lies in the upper half
plane of the (£,7)-plane then it lies on one side of the gE-axis as represented
in the (A,u)-plane. Consequently it is disjoint from its reflection through
the origin and the integral of daW(A,u.) over it is the sum of random variables
which are uncorrelated, Using this it is easy to show that the process which

we shall denote W(allg +aoM, a5+ a22n) and which is defined as having

differences equal to the integral of aW{A,u) over the images of the iectangles,



is an orthogonal increments proceéé in the upper half (&,7))-plane, Its vari-
ances are given by differenées of the fuhction gotteh in a similar way from
F(A,p)s which we denote F(allg +apl, 85€ + aysN) o This new orthogonal
increments process is also conjugate-symmetric,

We will assume that our stationary process is given in terms of a conjugate-
symmetric orthogonal increments process with absolutely continuous F(\,u). In
representation (la), the process Z(A,u) is conjugate symmetric, and the spec=-
tral function |S(l,u)l2 will be symmetric, The mean and suto~-covariance funce

tions of h(x,y) are derived as usual:

(5) E{h(x,y)} =0

R(s,t) = Efh(x+s, y+t)h(x,y)} = r f Is(,p) |2 2milistut)y g

Because of the symmetry of |s(K,u)|2 through the origin, the integrals may be
written as cosine transforms and/or taken over the upper half plane and doubled,

R(s,t) is also real and symmetric and the inverse transformation formula holds
s} (o] .

(6) 150 P = [ [ R(s,0)e2mOemblag g
0w

In use the independent variables (x,y) could be two space coordinates,
as when dealing with roughness of a surface, They could be space and a time
coordinate as for a line process that is chamging with time., Parallel tracks
across the surface or points moving on the line with equal uniform speed will
give correlated one variable stationary processes, Using the rough surface
example, lot a line be given by the parametric equations in terms of distence

from a point (xo,yb):

(x5) = (x,,7,) + (2,8)s Frpf =1,



The surface heights on this line are

(7)  k(s) =h(x, +a s,y +Bs)

= r r s(hspJexpfamil (x + as)h + (v + Bs)ulld 2(h,u)
<7 [ s enpiznixrey ) expfmi(on seudedd Z0i) .

Let us transform

E=ak + By A =of + B
N=8\~-op B = BE - of

®  xs) =] [s(o + on.85 - omdemplemil(xg + 7 B)E + (8 = v}

8% 7 (e + BN, BE - oM)

=] M s(ag + a0, 85-om)explamilx ovy B)E +

«CO «lD

+ (2 B-y )M} dz(ak+BN, BE-0M) .
Consider now the process in one variable s B, given by the differences

(s2]

A, U(g) = I s{o€ + BT, BE - o) explemil(x o + ¥ B)E + (x B = y )]}

-0

dn[Z(d(g‘fa) + BM, B(E+a) - oM) = Z(cE + BN, BE - oW)] .

The expected value of A aU( €) is zero, and for two non=overlapping intervals
(gl, g+ al), (§2-, g * a2), the integrals are defined by differences in
Z(Asp) over disjoint sets. Thus the U(E) process has orthogonal increments,

The variance of A U(g) is



E+a

i

thus the U(E) process may be represented by

|s(eg + 81, BE = am)|® an ag

Jf (s(eg + BT, BE - om)|® an 2(g)

where Z(gE) is a one variable process with orthogonal increments and unit vari-
ance (see p.2. This is an conjugate symmetric process in one variable,), From

this the stationary process for heights on the line may be represented as

(9) k(o) = [ ™ [ [stae + om, pe - am)(Ben az(e)

The spectral density of k(s) is, therefore, an integral of the two dimensional
spectrum,

Dr. H. Akaike of the Institute of Statistical Mathematics pointed out to me
that the two dimensional spectrum may be reconstructed from the set of line
spectra for lines in all directions. The relafion is most easily seen from the
connection between the two dimensional covariance function and the line covari-

ance functions Re(u) for lines making an angle @ with the x-axis:

R(s,t) = R retan t/s Q/sg + té) .

This result may be useful in estimating two dimensional spectra from the data
taken by profilometers or other devices for rapid measurement of line profiles

or spectra,



If two parallel lines are traced on the surface

2.1

(20) C(xY) = (xuy) + (@B)s o+ B

(x,y) = (x2,y2) + (@,B)s, (x2:YQ) (Xl,yi) + (B,~x)d .

We have chosen the points (Xl’yi) and (x2,y2) to be perpendicularly opposite
on the lines which are a distance d apart.

The cross covariance of the heights on the two lines is

Ryp(u) = E{k (s+u)i;(s)} = Efh(x +a(s+u), v +8(s+u) Ia(x,+as, y,+8s))

R(xl'32+“u’ yi'Y2+Bu) = R(-Bd+ou, od+Bu)
=J f s (hops) | Pexp{ 2mi (MBI auodupu) Jar dy

=I [ Is(hsp) [Pexp{2ni(-ABHa)d + 2ni(\d+uB)u} A\ du .

Ietting

Ao +uB = § B = TB = A
- A8 +po =1 B+ Mo =p

2e2ni(ﬂd+§u)

Rp() = [ [ |s(za-mp, £84m0)] ag an

= I Bmigu [ f |'s(ga=18, §B+ﬂd)|2 e2mitd dﬂ] ag .

The quantity in the square parentheses is a formula for the co-~spectrum of the
simaltaneous stationary random processes, kl(s), k2(s), in terms of the two

dimensional spectrum of the surface roughness, This function need not be real,



but it is conjugate~symmetric, The representations of the two line processes
both look like (9), but there are two simultaneous orthogonal increments
processes Zl(g), Z,(g) which have uncorrelated differences over non-overlap-
ping intervals, but those differences over the same int\erval (g,€+a) have

covariance

(-2]

e

This rapid sketch is an attempt to indicate how stationary processes in

2 e2niﬂd

s(Ex~1B, E8+Ma)]| andg .

-0

two parameters can be represented and manipulated for practical work, The

Simple problems used here for illustration give stationary processes in one
variable whose spectra and co-spectra may be computed from [s(a ,p,)|2 « Curved
lines and non-gniform velocities will of course, lead to non-stationary processes.
In the Gaussian case these will be given completely by the two dimenéional spec-

trum and simple questions may find answers in manipulations such as these,

Estimgtion of spectra

Ours will be a two dimensional analogue of the usual method of spectral
estimati_.on from evenly spaced measurements as given, e.g, by Blackman and

Tukey [2]., The data will be gotten by measuring h(x,y) at points

i= 1,25000, n

(g + (1=1)ay, v, + (3-1)a) * .
: = 1.2
J = 1,204, ny

We abbreviate

By = k(e (1), vt (3,) .
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The covaryiance estimates are

-8 n =b
(22) Tap = (n -a)(n =b) 24 }: 1+a,3+b 1,3. 0<acg Dys 0<bv< my
i=1  3=1
n n
B (o, -af(n ~b) Z Z 1+a,J+b 1,3. T Z@<0,0<b< y
i=l-a j=1

The maximum lag numbers are normally less than one half of the numbers of data
points in each direction. The definition (12) is extended, for convenience in
writing formulas, to the lower half of the grid of all possible pairs by making

it symmetric through the origin;

(13)

= T

r-a,--b a,b *

It is evident that the expected values of r, ake R(an,bAy) (5), so
that they are unbiased estimates, Their statistical characteristics will depend
on the number of terms averaged, This number varies in each and is largest for
the smaller lags, The choice of the maximum lag numbers is mede with an eye to
keeping the mean lagged products statistically reliable at the larger lags,

It is natuial to attempt an estimate of !s(h,u)]g by means of a Fourier
series in analogy to (6), Then the estimate of a spectral value would be a
linear combination of the covariances:

m m

(1) }Z }E Yob Tab .

a--m b—~m
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Since the r's are symmetric through the origin, the w's can be taken that
way also (by redefining as %(wab + W_a_b)) so the sum mey be cut in half for
computational purposes, As with the one dimensional spectral analysis the w!'s
will be modifications of the Fourier coefficients suggested in analogy to (6).
The statistical properties of such linear estimates are derived easily as in the
one dimensional case,

m m

x y

(15) E{f} = z Z Wop Rlady, bA)
== =Ll
% v

L) J: J: ls(bu)lze@{%i(aAXMbAyu)} an du
b

a

I: J‘:!s(k’u)lz[z % Wabe@{zni(an“bAyu)}]d}‘ % .

The real valued function

m m

X y -
(1) WOw) = ) ) wgen eni(aapetau) =) ) ¥ 082 (ad A0 1)

a=-m b=-my a b

is often called the spectral windqw, If it were a Dirac §-function centered on
(xo,uo) the result of the integration (15) would be the spectral value
[s(xo,uo)lg. But, of course it is npt possible to choose the coefficients Vb
to effect this, In fact the window Wk,p) is continuous, periodiec, and
symmetric through the origin for all choices of Yope Its periodicity and
symmetry through the origin give rise to aliasing, Imagine designing the w!'s
so that the window has a peak over (ko,uo). Then it will also have a peak at

(~A_>=u_) because of its symmetry. This is no trouble since the spectrum
o’ Fo

is also symmetric. But this pair of peaks is repeated about all the grid points

L]



(x/n, z/by) in the (A,s) plane. Tt is R .
clear that after our points of estimation -,/4' R "
have covered the rectangle |i|< 1/2Ax s : PR D

lu i< 1/2Ay’ any further calculations will : : i

repeat estimates that already have been { I
obtained. Each estimate (14) has an expected ? [ IR

value which is a weighted sum of value of f o

[s(x,u)lz some near the point (ho,uo) and -»7;;
others quite remote. The remote values are "aliased" (a statistician says
"confounded") with the ones inside the rectangle of half a wavelength., We will
name this rectangle the "Nyquist rectangle". The experimenter must control
aliasing by choosing the spacing of his data points, i.e, the Ax and Ay 8o
that the spectral values, ls(h,p)[a are small outside the Nygquist rectangle.
We shall assume this is so in our discussion,

We wish to attain, as closely as possible, unbiased estimates of the point
values [s(h,u)|2 for different (xo,uo). It is clear from the continuity of
the function W(A,u) that we must average values of the spectrum from other points
near (ho,uo). In fact since the relation (16) is a Fourier series, its coeffi=

cients are integrals

i 1
20, aAy

(27) W =80y [ [ Ww) cos 2n(iae + uhyb) A du .
-2y gﬂy

These coefficients are zero for |a]® m o] > e If we hope to make W(\,p)
small except in the neighborhood of (xo,po) then the area in which it is non-
negligible must cover both positive and negative parts of the cosines with fre=-

quencies higher than mx,my. For this to be so, the area of the non-negligible
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values of the window must be about that of the rectangle les l/2Axm.x ’
< 1/2Aymy'.

Another remark that can be made on general principles is that the estimates
(14) are linear combinatibns of a finite number of r's (2mxmy+ m + my+1, to be
exact) and thus an equal number (perhaps less in singular cases) of f's will
be a linearly independent set., All other values are functionally dependent on
these, We may therefore restrict our computational effort to obtaining a nune
ber of spectral estimates edual to the number of covariances, We shall see
later that it is advantageous statistically to space the estimates so that the
windows do not overlap significantly. Then combined with the observation in the
preceeding paragraph we are led to choose our points of estimation to be equally

spaced within the Nyquist rectangle, Since the boundaries of the Nyquist rectangle

are reflections of each other through the origin, we choose our points as follows:

- r | _
(18) Ap = 155;1‘i73; =04 1,22, wees £ By

S

B = iﬁm + 1L)A 5

¥ y

+
=]

03i l,i 2y see =

In one sense the closest we can make W(\A,u) come to a Dirac function
centered on (Ar,us) is to make it the finite part of the Fourier cosine series

of the Dirac function, i.e. to use
Vop = AxAy cos 2n(anxr + bAyus) .

The window function is easily calculated using Formula 428 of Jolley [L}, or

by putting the cosines in exponential form.



1k

m m
X y
(19) Wk,u) = 24 }E AxAy cos 2n(anhr+ bAyps) cos 2n(anx + bAyu)
a=-m_  b=-n
X y

= .A.J.‘éi‘l [ Z z cos 2m(aA (A *+ A) + vA (g + 1))
a b

-+

o [~

}E cos an(an(xr- A) + bAy(us— u))]
b

Beby sin 2m(m + A (A, +A) sin 2m(m + 2 (bt 1)

2 sinma (A + X) sin rrAy(u3+ B)

. Bed,  sin 2m(m, + )8, (A= A) sin 2n(m + %)Ay(u.s-p.)
2 sin nAx(kr— A) sin nAy(us- ™)

In case (Xr+ A) or one of the other frequencies is zero, the ratio of sines
is to be interpreted as the ratio of the arguments, e.g. as (2mx+ 1); W(A,p)
has peaks at (xr,ps) and its reflection through the origin., The shape of the
peaks may be inferred from the graphs of the corresponding one dimensional
window plotted in Blackman and Tukey [2] or in Hamnan [3], for each of the sine
ratios is half of the one dimensional window function., The window takes large
negative values near the peak which gives it rather poor characteristics. It

is common to consider modifications of it in the form
4 -— " —
(20) Wl o= AxAy d_, cos 2"(an7‘1~ + bA&”S)’ d_a,_b = d‘a.,b .

From (19) we can see that the cosines in (20) and (16) form an orthogonal set

under summation
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m m
X y
aj bk aj! bk!?
(21) Z Z cos 211(2m d 4 ) cos 211(-3‘]—— + )

X+l 2m +1 2 X+l 2m +1
a=em_  b=-n y Y
X y
(o if JE+3 or k$+k

= ) %(2mx+ 1)(2myﬁ 1) if j=+3* and k = + k?

(me+ l)(2my+ 1) if j=j'=k=k'=0

where all four + signs are taken the same way,
With these relations we may compute the formula for the window Wr(h,u)
gotten from coefficients (20), It is the convolution of the window W(k,w)

with the Fourier cosine series of the coefficients d By convolution, we

ab*
mean, not the integral, but the finite sum over the lattice points (18). If
the modified window, W'(A,p) is to be zero at'points remote from (hr,ps)
.the finite Pourier transform of the coefficients dab cannot be large remote
from the origin, Commonly this finite set of values is such that only few of
thém around the origin are non zero., It is also usual, in the interest of

economical computation to take the 4 independent of the (r,s), In this

ab
way they may be applied as multipliers to the covariances after which an ordine-
ary cosine transform is computed, thus accomplishing (1k), or the computation
of (1k4) may be done as a cosine transform and the resulting f's "smoothed"
by convolving them with the cosine transform of the da's., If a little care is
taken at the boundaries, both methods are arithmetically equivalent, Because
of the form of the elementary window (19) if we use products of the one dimen-
sional spectral smoothing coefficients, their effects in modifying the window
can be assessed from the discussion of the one dimensional case, For example
the counterpart of the Hamming window is gotten by smoothing the spectrum by

running average with

€ab = 88y 3 8 7 5k, & €1 7 -23 ¢
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Statistical reliability of estimates,

To this point we have discussed only the expected value of our estimates
based on linear combinations of covariances., The form of the estimate is
virtually completely given by requiring certain desired properties of the ex-
pected value, Let us now consider the statistical variability of such estimates,
The work follows closely that done in Blackman and Tukey [2] for the one dimen-
sional case and thus we shall only give a sketch,

Consider two spectral estimates (or one estimate denoted two ways)

(22) f(l) Z Z ag.‘lb-) Tab? f(z) z Z ES%) Tab *

cov {f(l), f(e)} =Zzzz w(l) cov {rab’ rcd}
abcad

The covariance of two r's may be found in terms of the spectrum by a tedious
calculation based on the assumption that the expected iralue of the product of
four values of h(x,y) is given in terms of the spectrum by the formula that

would hold if the stationary process were Gaussian:

(23) cov [rab’rcd} = 8 J‘ I J J K(aw,n ~ la]) K(agw,n = Je]) -
. K(A Z,n, = |b]) K(A Z - lal) -
+ cos 2n(anw’ + bAyz’) cos 2n(chw' + dAyz') .
o |s(w-w?, z-z')!:2 ls(w+x«r’,z+z’)|2 dw dw'dz dz! ,

sin 2mxn

where K(x,n) = m
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The sine ratio K(x,n) is an even, periodic function with peaks at

x=0, + %, + 1, ete. The width of a peak is determined by n. The product

of the sine ratios in the integral has the effect of restricting the integra-
tion to the region near w =0, z = 0, and to other such hyperplanes outside

the four dimensional Nyquist rectangle, The degree of concentration depends on
the various sizes of n, - [a[, etc. We will take m and m.y small enough

so that the approximation of n, - ]al etc, by common values NX, ete, will be
satisfactory, This choice will depend on the rapidity of variation of the
spectral functién Is(k,p)lz. With this approximation we may replace the covari-

ances in (22) with the integrals (23) and take the sums inside the integral signs

to get
2

(2k) cov {f(l) f(a)} ~8 J~ I I I Sin ZnAwa) (lvln ama z N N) .

31n 2nAX sin 2nAyz

. W(l)(w’,z') W(2)(w’,z') .
2 1 1 2 ] s
o |sGr-wt,z-2")|% |s(wiw?,zz )|© aw aw? dz az .

We are assuming that |s(h,p)[2 is small outside the Nyquist rectangle, and we
assume further that it is not rapidly varying with respect to the width of the
peaks of the sine ratios, We may, then, approximately carry out the integration

over w and 2z to get

(25) cov (f(l), f(2)] ~8 I I w(l)(wl,zl) W(z)(W,,Z')'S(W',Z')lh

dw' dz'

1 1
2N 2N
L Ay
The integral of the sine ratio, or Fejer's integral, may be found in Titchmarsh,

(93, »p.l13,
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Formula (25) reveals that if two different window functions do not overlap,
i.e, if each is small where the other is large, the corresponding spectral esti-
mates are essentially uncorrelated, For the situation where f(l) and f(z)

are the same estimate, the formula is still valid and gives the variance of T,
(26) Var {f} = Z-ZJ%—EP I j [W(w,z)[s(w,z)lz]2 dw dz
Xyxy

This result is used to indicate the statistical reliability of the proce-

dure in the following way. The spectral estimate

W

(27) £

ab rab

It
p [~
o [

is a quadratic function of the data and as such has a distribution which is well
approximated by a distribution of the gamma type., Chi square tables may be used
to calculate confidence intervals on f using the degrees of freedom formula,

2
, (E(£})

d.f. = Var 127 .

A simple approximation to this may be found by taking W(A,u) to be a "verfect"

rectangular window and letting mx/nX = m.y/ny = g
1 - g\2

(28) d..f. =4 Z(T) °

Prevhitening,

With some applications the general shape of the spectrum will be no surprise
to the experimenter, TFor example, roughness spectra of ground profiles are
usually very high near zero frequency and fall off rapidly as frequency increases

in any direction, In this kind of spectrum the behavior of |s(k,u)|2 around
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the origin is anything but slowly varying and we may expect difficulty in esti=-
mation. A procedure given in Blackman and Tukey [2], called "prewhitening"
may be used@ to avoid these difficulties, For the two dimensional case prewhiw

tening proceeds as follows., Coefficients

c L]
a,B’ X~ - X y -

are specified, We will take them so ¢ = ¢ » From the data, h,,,
"Q',"-B oy B 1]

we compute
d_ - a
X y
2 D D N
(29) ij ity j+B So,B
a=-dx B=-dy

for 4. +1<ic< n.-d, dy* 1<j< n - dy . There are _(nx- 2dx)(ny- 2dy)
items of the modified data. This data is analyzed as above, yielding covariances,
réb and spectral estimates féﬁ « If, as is usually done in explaining this
Procedure, the random variables h{j are represented in terms of (la), the true
spectrum ls'(h,u)lz of the h{j is seen to be a product of [s().,u.)]2 by

the "spectrum" of the coefficients ch « But such an explanation is glib, The
prewhitened data and the old data are presented ag mathematically equivalent,

and the reader is apt to wonder what has been accomplished, A treatment in terms

of the arithmetical operations of spectral estimation is more revealing,
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nx-2dx-a ny-Zdy-b

. s 1
t . s ' !
(30)  rlp = TGy Z Z Bita,j+b B3
XYY Vi j=a4l
X ¥
d d
(n'-a)(n'-bf Z Z Z z Birota, 34840 Cal
i 3 a—-d e
a 4,
) Z Z Bity, 3+6 Oy6
y=-d_ 6=-d

= (n}’c-a)%n;r-b) Z Z ap z Z c'y6 Z Z hi+a+a,.j+B+b hi+‘v,j+5
o B 8 i J

il - - t T
We have abbreviated n. 2dx and ny Edy and n and ny « The sums

n;-a n&-b
e N
(n;-a)(n§-57 i+ota, j+HB+b Tity,j+6

i=dx+l j=dy+l

are approximately those of

ra+a-y s b+B=§

except that some products on either end are omitted., Some compensation is made
by dividing by the number of terms actually present., This is the first devia-
tion of the arithmetic from the ideal .and it is probably minor in practice,

It makes the notation simpler if we extend the range of definition of the
Cup b0 all pairs of integers by making them zero for |a| > d_s 8] » dy .

Then the limits of summation may be ignored., Let o=~y=E and B~6=1)



21

c

(31) Ty ), Sy, T8 TatE, bH)
3

=)
o )

)
Y
#'Z Z Pen Tatg, b4 .
g1

Now this is the same sort of running average, or convolution, as (29), but done

with the covariances and using coefficients

(32) Pgn = 24 %, c§+y’ T+ CY5 .
Y

These are the summed (not averaged) lagged products of the coefficients used in
prevhitening, Since all possible pairs are used, they are not truncated as are
the covariances which they resemble., The range of subscripts, (g,7)) which
covers the non zero values of the p's is |g] < 2d_, [nl < 24, «

Let us consider the spectral estimates given by the simple Fourier cosine

transform of the rab .
m m
X y _
t - ag  bf '
f&B = AxAy E: E: cos 2n (2m e +l) Tl e
== b=-m x y
X ¥

Fram the convolution formula for finite Fourier series, we have, since

] - . :
r,p 18 a comvolution of Pob and Top 2
e
(33) b = o Top

where taﬁ is the cosine transform of the pab's and ﬁmﬁ is the cosine trans-
form of the rab's. Therefore all that need be done to find f&ﬁ from f&ﬁ is

calculate the cosine transform of the Py and multiply f;a texrm by term by
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its reciprocals. Actually the computation is usually dome with f&ﬁ not the
cosine transforms of the covariances, but the spectral estimates made with some
more suitable window. This is the second deviation from the ideal and probably
the important one in practice,

Prewhitening has a real effect on practical results, Far from doing some=
thing and then undoing it, some part of the information in the data is removed
completely, To indicate this let us consider a mode of prevhitening which is
appropriate to data taken from a terrain profile. The areas measured were
200 ft. by 200 ft. (61 m by 61 m) and there were 100 by 100 grid points,

The finiteness of scope prevents any effective observation of frequencies smaller
than 1/200 cycle per ft. The sizes of ground height variations with wavelengths
this loung or longei;ionsiderable, in fact they are dominaﬁt over any of the wave=-
lengths within the scope of effective measurement, Such height variations appear
in the finite record as trends., In our effort to remove these trends we resorted

to a prewhitening with coefficients ¢ which, in effect, subtracted from

of
each point's height the average of all the heights (including itself) in a square
surrounding it. It is easy to show that when h(x,y) has a linear trend this

removes it., To be exact, if we have two ground profiles which differ only in
8 (x,y) - 8@ (x,y) = ax+ By +c )

then they will be reduced to the same prewhitened data., The linear trend has
been removed and is not brought back by the correction of the spectral estimates,
It is simple to construct coefficients that remove any polynomial trend, even
though this trend may appear as one or two cycles of a low frequency wave in the

finite data.
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Errors ig the data.

No data is free from the possibility of gross errors and noise, As a
first approximation to the effect of errors let us take them to be independent
of the randomness in the data itself, We write

; = (1)
(34) Bij = Biy * 8y

where hgi) are the grid point values df the random process we would like to
observe, and aij are the errors made in reading the values at each point,

The covariance estimates of our data are

(1) n(1) o x)

_ 1
(35) ab ~ (hx-a}(ny—ﬁ) Ej E: [ ita,j+b i, i+a,j+b 6i,j
a b

+ h(l) + 8

i,j Si+a,j+b ita, §+b 6i,j] .

The two central terms have expected value zero due to the independence of h§§)
and aij. Their actual values, though perhaps small in usual practice, contri-
bute somewhat to the statistical error in the covariance estimate,

As a first case supposé the 5ij are all zero except for two relatively

large values at (il,jl) and (12,32). From (35) leaving out the central

terms, we have

T
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@j g
' 1°1 2v2 .
— if (a,b) = (0,0)
() _ Y
(37) ra‘b - &. . 6-
' 191 todp . s s s R
if (a,b) = (11-12,31-32) and if

(nx'iil'igl)(ny’lji“ng)
lil'iglf o s ljl'jglf Oy

0] octherwise .,

The unsmoothed spectral estimates of rgg) are

(8) _ Z ' .(8) a bB
fozB = A4 Z Top ©OS 2m (2mx+l + 2my+l)
a b

2 2
P19, ¥ %1y, %13, %15,
= AxAy n_n * (n_~1i,-i,])(n_-T3. =3 1) *
Xy x 71 72 v d1=do
11,1, e 31=3,|B
175 313, ]
T mmr Y ma
X y

The first term is constant over the entire spectrum and is like the effect of
reading error, The second term is present only if the two anomalous points are

close enough together to be within the maximum lag rectangle of size m, by my

Prewhitening and smoothing of the spectrum tend to blur these effects somewhat.
Some of our one dimensional ground profile data had occasional errors of one foot,
caused by blunders in recording the levels while surveying., These errors were
about three times the average absolute variation in height but nevertheless caused
a noticeable periodic wobble in the spectral graph and pips on the covariance
curve., The data was searched and the anomalies corrected with resulting improve=

ment in the appearance of the spectral estimates.
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A type of random error that can occur in two dimensional data was reported
by Pierson et al, [8]., This is a directional error caused by the method of
carrying out the measurements of hij' In the case of surveying, for example,
the surveyor may set his level and measure several complete lines in the y
direction. Then he may move the level, record its new height, and measure
several more, The errors in measuring level heights form, let us suppose, a
stationary random process in the éx direction, but they are constant in the ¥
direction., That is to say the 6ij are constant in Jj., We denote them by 51.
The covariances r(a)

ab

ally covariances of the one dimensional process, si. Such a covariance gives

are also constant in their second subscript and are actu-

rise to spectral estimates

(8) _ z Z () ag b
fap” = By To | C08 AW (m=y + opar)
a b X y
- _sinmp z (8) e
= AxAy in o ra cos 21 2mx+l
2my+1 a

These are zero for (integral) B $ 0. Therefore the estimates are concentrated
on the M\ axis of the spectral graph. The effect of spectral smoothing or modi-
fication of the window is to spread these away from their axis positions., Pre-
whitening has very little effect since the running average operation on the data
preserves the constanc& of this error in one direction.

If the §'s are independent random variables, their covariances would be
zero except at the origin and the spectral estimates would consist of a ridge on
the A axis of equal height all along, The surveyor'’s level setting error, on
the other hand, gives in the first approximation, independent random variables,

al’d2"°"ah/b which are repeated b +times each Ops0ysesnsQys0psees .
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The covariances of this sequence are:

n/o
(6) _ 1 z 2
r, = & b oy
=l
n/b n/b-1
(8) _ b-1 Z 2, 1
1% o1 % Fax ¥ ¥4y
i=1 i=1
n/b n/b=2
L(8) _ Db-2 Z °’2+"2—Z v o
2 n-2 i  n-2 i 7i+2 ¢
i=1 | C =

From the mutual independence of the ¢'s +the latter terms are likely to be small.

The first terms are largest for réa) then decrease steadily to become zero after

51

of this type of error will be given by a sum of b cosine terms of low frequency

(more terms of the second kind appear then also). The spectral estimates

beginning with the constant one. They will not be constant as for independent
errors, but will still be concentrated on the ) axis.

An error in data acquisition which is the sum of two independent directional
effects gives a spectral error composed of a ridge on each axis, The spectral
smoothing or modification of the window spreads these ridges but in the plain
cosine transform of the covariances, the high values are on the axes of the
spectral graph only., If thié transform is computed and printed out the detection

and correction of this kind of error is easier.

Field Results.

Figures 1 and 2 are two of a series of twenty 2-dimensional spectral esti-
mates made from ground profile data measured with rod and level. The measSure-

ments of height were made at 2 f£t, by 2 ft. grid points in a 200 ft, by 200 ft.



27

square, The maximum lag number in both axes was 20 so that the degrees of

freedom for each estimate, given approximstely by formula (28), are 32, The

units on the axes are cycles per foot and the heights are (f’c.))"r or square

feet per cycles per ft. per cycles per ft. Note that the contours are not at
¢

equal height intervals but exponentially increasing,

The spectrum in Figure 1 is from data taken at Ft. Carson, Colorado., It
shows two ridges, one on the horizontal axis and the other about 60° to it. The
latter ridge, which is mostly in the higher frequencies, is roughly at right
angles to the general slope of the ground on which the measurements were taken,
This spectral ridge indicates that the ground has, to some extent, ribs of
width 14 f£t, and less which run up and down the slope. This is a miniature of
the appearance of mountain Slopes as seen, for example, in aerial photographs
and is what one might have expected. The expected correspondence between spec=-
tral ridge and ground slope occurs in a large number of our‘measured spectra,

A few spectra have ridges which are not in accord with the ground slope., An ex-
ample is the axial ridge in Figure 1, which extends into the long wavelengths,
Several other spectra have ridges which indicate that the ground is ribbed across
the slope. Explanation of these awaits further scrutiny of the data,

The data for Fig. 2 was taken at Ft. McClellan, Alabama,

The dominant part of it is sympetric and is in accord with the observation that
the ground profilevhas no definite slope, the square having been laid out in a
draw, The extension of the .02 contour of the Spectral surface along the horizon-
tel axis is possibly due to the directional measurement error described above,

If so the error must arise from a more complex situation than we have discussed
since the ridge is wider than would have resulted from smoothing high values on
the axis only. The variance of this presumed error is somewhat large as compared

to presumed errors in our other data. Because this kind of error was unforseen,
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we failed to keep adequate records of the surveying operation and so may have
lost our chance to explain this spectrum.

A comparison of the two spectral charts shows that the McClellan spectral
surface is everywhere above that of Carson which indicates that the ground was
much rougher at McClellan, This is supported by visual observation. The results
obtained at our twenty sites are in good agreement with visual observation. How-
ever our purpose is to put ground roughness into quantitative terms for engineer-
ing uses. Qualitative discussions such as we have been giving serve a purpose,
but the real value of the spectra will be shown only by future work.

I would like to express my gratitude to Mr., Ronald A. Liston of the Land
Locomotion Laboratory, ATAC, for his support of this project and for many confer-
ences leading to an understanding of the real problem., Also thanks go to my
colleagues and co-workers, J.L. Bogdanoff and F, Kozin, whose thoughts on this

problem I can no longer separste from mine,
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