On the Expected Value of a Stopped Submartingale

bу

Y. S. Chow*

Department of Statistics

Division of Mathematical Sciences

Mimeograph Series #80

July, 1966

Research supported by National Science Foundation under Contract No. GP-4590

(4)
$$E|_{t}| = \sum_{k=1}^{\infty} \int_{[t=n_k]} |x_{n_k}| = \sum_{k=1}^{\infty} \int_{D_k} |x_{n_k}| = \infty .$$

The proof of (a) is completed.

(b) The "only if" part if well known. For the "only if" part, note that the condition $\sup E|_{\mathbb{X}_n}|<\infty$ implies that $\lim \mathbf{x}_n=\mathbf{x}_\infty$ a.e., $E|_{\infty}|\leq \sup E|_{\mathbb{X}_n}|<\infty \text{ and } E|_{\mathbb{X}_t}|<\infty \text{ for every stepping rule } t. \text{ Put}$ $y_n=E(_{\infty}^{\mathbb{X}_m}|_{\mathbb{X}_n}). \text{ Then } (y_n,_{\mathbb{X}_n},\, \infty\geq n\geq 1) \text{ is a martingale, where } y_\infty=x_\infty.$ For $\varepsilon>0$ and $m=1,\,2,\,\ldots$, let

(5)
$$t = \inf \{n | \tilde{x}_n \leq y_n + \varepsilon, n \geq m\}.$$

Obviously, t is a stopping time and $P[t \ge m] = 1$. Since x_{∞} is finite a.e. and $\lim y_n = \lim x_{\infty}$ a.e., $P[t > \infty] = 1$. Hence (1) holds and since $(y_n, x_n = 1)$ is a closed martingale with the last element t_{∞} ,

$$\text{Ex}_{n} \leq \text{Ex}_{t}^{*} \leq \text{Ey}_{t}^{*} + \text{e}^{*} = \text{Ex}_{\infty}^{*} + \text{e}^{*} .$$

Therefore $\text{Ex}_{\infty} \ge \sup \text{Ex}_n$. Similarly, $\text{Ex}_{\infty} \le \sup \text{Ex}_n$. Hence (6) $\text{Ex}_{\infty} = \sup \text{Ex}_n$.

Now we grove that $(x_n, x_n, \infty \ge n > 1)$ is a submartingale. Put $A_n = [y_n < x_n]$. If $PA_n > 0$, then

$$\int_{A_n} x_{\infty} = \int_{A_n} y_n < \int_{A_n} x_n - \epsilon$$

for some $\epsilon > 0$. Let t = n on A_n , and off A_n , define (7) $t = \inf \{ m | y_m < x_m + \epsilon, m > n \} .$

As before, we can prove that t is a stopping rule and $P[t \ge n] = 1$. From (1), we have

$$Ex_{\infty} = Ey_{t} = \sum_{k=n}^{\infty} \int_{[t=k]} y_{k} < \int_{A_{n}} x_{n} - \varepsilon + \sum_{k=n+1}^{\infty} \int_{[t=k]} x_{k} + \varepsilon$$

$$= Ex_{t} \le \sup Ex_{n}.$$

which is contradictory to (6). Therefore $PA_n = 0$ and

(8)
$$x_n \leq y_n = E(x_{\infty} | \mathcal{F}_n) \quad a.e.$$

By a theorem of Doob ([1],p. 325), (6) and (8) imply that x_n 's are uniformly integrable. Hence the proof is completed.

The proof of (a) is simpler than that of Dubins and Freedman, and the proof (6) is an adoption of D. Siegmund's approach for martingales.

References

- [1] Doob, J. L. (1953). Stochastic Processes. New York, Wiley.
- [2] Dubins, L. E. and Freedman, D. A. (1966). On the Expected Value of a Stopped Martingale. Ann. Math. Stat. 37, 000.