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The proof of (a) is completed.
(b) The "only if" part if wvell known. For the "only if" part, note

that the condition sup E[xn[ < implies that 1im X ='XE a.e.,
E|. ] < sup E]xn[ < ® and Elxt] < o for every stepping rule t . Put
v, = E(Kmlgn) . Then (yh’gn’ ©>n>1) is a martingale, where Y, = x, -

For ¢>0 and m=1, 2, ,.., let

(5) t = imf {n]ﬁn <y +te, n>m} .

Obviously, t is a stopping time and P[t > m] = 1 . Since x_ is finite
a.e. and lim y, = limx_a.e. , [t > ] = 1 ., Hence (1) holds and since
(yh,ﬁn n> 1) is a closed martingale with the last element t.s
’ , =5 .
Exn < Ex,c < Eyt + e X, T €

Therefore Ex, > sup Exn . Similarly, Ex < sup Exn . Hence
(6) - BEx = sup Exh .
Now we prove that (25,?n, @>n>1l) is a submartingale. Put
A = [yh < xh] . If PAn > 0, then
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‘for some €>0 . Let t=n on A, and off A , define

(7) : t

3 <
ing {mlym X+ e,'m >n} .
As before, we can prove that t is a stopping rule and P[t >n] =1 . From

(1), we have
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wirlch is contradictory to (6). Therefore PA =0 and

(8) x <y, = E(xa]?n) a.e.

By a theorem of Doob ([1],p. 325), (6) and (8) imply that x,'s are uniformly
integrable. Hence the proof is completed.
The proof of (a) is simpler than that of Dubins and Freedman, and the proof

(6) is an adoption of D. Siegmund's approach for martingales.
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