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1. Introduction and Summary

The purpose of the present paper is to consider selection problems for the
multinomial distribution. In some situations the experimenter may be interested
in selecting a subset containing the cell with the highest probability based on
a set of observations. ‘The main problem is to define a selection rule which
selects a small, non-empty subset such that the probability of including the
cell with the largest cell-probability is at least equal to a preassigned num-
ber F*.

Let pl,pz,...,pk‘ be the unknown cell-probabilities in the multinomial

k
distribution with Z p; = l. lLet XysXpyeees Xy be the respective observations
1l
k
in the k cells of the distribution with & X, = N. Let the ordered cell-
1

probabilities be given by

1.1 < < eee < .

(1-1) Pray P2y S o0 SPig

The pairing of the ordered p[i] and the ordered or unordered X, is not
known. The goal of the experimenter is to select a subset containing the cell

corresponding to p[k]. A correct selection {CS}? is defined as the selection

¥
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of any subset of the k cells which contains the cell with the largest proba-
bility. In the case of a tie one of the cells with the largest value is
considered ''tagged'' and the selection is correct if this ''tagged'' popula-
tion is in the selected subset. This restriction becomes necessary and mean-
ingful for comsidering the infimum of the probability of a correct selection
where the worst configuration is the limit of configurations with P[k] >jp[k_l].

It may be pointed out that the above subset selection formulation for the
multinomial distribution is different from the ''indifference zone'' selection
of the best cell given by Bechhofer, Elmagharaby and Morse (1959) and Kesten
and Morse (1959). 1In the latter formulation due to Bechhofer, an ''indiffer-
ence zone'' in the parameter space is specified, the number of observations
needed is tabulated and the final decision is the selection of a single popu-
lation which is asserted to be the best population. The present formulation
follows along the lines discussed, for example, for other discrete distribu-~
tions by Gupta and Sobel (1960), Gupta {1966), Nagel (1966).

In the subset selection problem, the size or the number of cells in the
selected subset is a randem variable which takes values 1 to k inclusive.
One meaningful criterion of the efficiency of such a selection procedure is
the smallness of the expected value of the size of the selected subset. Thus
the evaluations of the expected size or the expected proporticn in the se~
lected subset become relevant and are given in this paper.

The solution for the problem of selecting a subset containing the cell
with the smallest probability cannot be obtained from the previous solution
for the largest case. Therefore, similar investigations have been carried
out for the smallest cell-probability selection. The procedures proposed in
this paper depend on the largest or the smallest order statistic in & multi-

nomial sample and hence the first two moments of these order statistics have



been evaluated and are given in this paper.

Section 2 of the paper describes the selection rule for the maximum cell-
probability case and discusses the infimum of the probability of a correct se-
lection. It is shown that the infimum takes place for configurations of the
type (0,0,,44,0,0,D,4+0,p) where g <p and the number of zeros in the above
configuration is not known. Formulae are derived for the expected proportion
in the selected subset. Section 3 deals with the selection problem for the
minimum cell-probability case. A selection rule is proposed and its efficiency
is studied by deriving appropriate expressions for the expected proportion.
The infimum of the probability of a correct selection is studied and from the
numerical evaluations it appears that the minimum takes place when all cell
probabilities are equal. Section 4 of this paper discusses the order statis-
tics of the multinomial distributions and formulae for the first and second
moments of largest and the smallest are given.

Table 1A gives the expected proportion, the probability of a correct se-
lection, the probability of selecting any of the cells with smaller probabili-
ties when the cell probabilities for the configuration p, p,...,pA, where
A > 1. From this table for A = 1 one can obtain the infimum of the proba-
bility of correct selection and the configuration for which it is obtained.
Table 1B gives the minimum D to satisfy the condition that the probability
of a correct selection >p¥* (a given number). Tables 2A and 2B have same
entries as Table 1A and 1B except that theydeal with the minimum probability
case. Table 3 gives the expected value and the variance of the largest and
smallest order statistic in a multinomial distribution with cell-probabilities
PsPssesypA where A > 1. Table 4 has the same values as Table 3 for the con-

figuration p/A,p,...,p where A > 1.



2., Selecting the Subset Containing the Cell with the Largest Probability

Let xi(i = 1,2,...,k) be the observed numbers in the ith cell and let

in= N. Then the rule R for selecting the subset to contain the cell with

the largest probability is as follows.

R: Select the cell with observed xi iff

(2.1) X, 2% . -D
where Xnax = max(xl,xe,...,xk) and D is a given non-negative integer.

It is clear that the sbove rule selects a non~empty subset of random size.
For D > N, the rule selects all the cells.

Using the rule R, the probability of a correct selection is given by

= ; - N
(2.2) P{CS|R} = F(k,N,D,P[l],...,p[k]) = 2 T Pry e Pl
Ey, =N :
viS ytD

i=l’2,-¢o,k

To find out for which vector (Prl]""’p[k])’ the expression (2.2) attains
its minimum, we use a similar method as Kesten and Morse (1959).
In (2.2), we put pri]+ PFJ]= q, i <J, and try to minimize the right hand

side as a function of P[j]. We rewrite (2.2) as

' Vs Vs v
(2.3) PfCs|R] = Z I prdy (@priq) = O pei. .
), E E1 IR O LI
Zv‘t—N n V‘b= L 7 1sd



Now putting vi+ Vj = m and summing over m, (2.3) becomes

N
(2.4) P{cS|R} = Z (;‘fl) Z J?;—'i'll'—,-

v

Vg
H P -~ '
8’ £+i:j (2]

m=0 Zv,=N-m gi,J
2F,3

[y Py pdieey) ]
y Lo ey PR

\JJ.S v D

m-vj_<_ \)k+D

or

N
(N-m)! Vs
(2.5) Pfcs|r} = Z<HN1> Z nNﬁ: T Pro T
M=y .Zv‘z:N"m £+i)j ’C £+I’J

G,
V. =y, Pr -
. [ Ei (m.) r J(l-r) J], where r = Lils 4
. \).j q =~—2
\JJS \)k+D
m-\;j_<_ \)k+D

Now there are two different cases:
Case 1. ] + k. Then the summation inside the square brackets goes from
m - (uk+D) to y+ D provided m - (Vk+D) < w D, otherwise this sum is zero.
Thus the expression inside the square brackets can be written as the difference

of two incomplete Beta function as follows:

(2.6)

1. v+ ey, <D-1 mey, ~D-1 +D
: k Yk Ve M
(vk+D):($-vk-D-l)g Jr [x (1-x) -X (1-x) }dx.



Now the integrand in (2.6) is non-negative for x > % and since r > %, (2.6)
is a decreasing function of r. Since the right hand side of (2.5) is a linear
combination of decreasing functions of r with non-negative coefficients, the
probability of a correct selection is a decreasing function of r. This means

if we keep the sum p[i]+ P[j] fixed, the probability of a correct selection

is a decreasing function of P[j]' Hence we have the following lemma.

Lemma 1. Keeping the sum P[i]+ Pr3 (1 £i <Jj <k), constant, the probability
of a correct selection as given by (2.5) decreases as we pass from the configura-
tion <P[l]"'"p[i]""’p[jj"'"P[k]) to (p[l]""’P[i]-e""’P[i]+€"'"p[k])
where 0 < € < Pp.ae

=Pra]
Remark: It may be pointed out that the result is true even if the order is dis-

turbed in the new configuration.

Case 2: J = k. In this case the summation inside the square brackets in (2.5)

extends from [m-g+l] to m and this can be written as
m L o=l M=q m-D+1
(2.7) 1= (meertl)( ) J' 07 (1-6)" %, o = FE2E
- r

which shows that it is an increasing function of r or p[k]. Hence using the

same argument as in Lemma 1, we have the following lemna.

Iemma 2. Keeping the sum p[i]+ p[k], 1 <1i <k, constant, the probability of

a correct selection as given by (2.5) decreases as we pass from the configura-

tion (P[l]’°'°’p[i]""’p[k]) to (p[l]""’p[i]+€""’P[k]-€) where

0<eg S;p[k]. [The remark given at the end of Lemma 1 is also true for Lemma 2.]
The overall minimum of the probability of a correct selection has to be

at a configuration which cannot be changed to one with a smaller probability by

using the procedures of ILemma 1 or lLemma 2. . = .o .=



Hence, we have the following theorem:
Theorem l: Iet P[i] be the ith ordered cell-probability. Demote by u the
smallest integer such that P[u]> 0 and let v be the largest integer such
that p[v] <:p[k]. For a configuration minimizing the probability of a correct
selection which is given by the function F(k,N,D;(p[l},...,p[k3)) defined in

(2.2), the following relations must hold:

v
<

(a) W

Furthermore, if u = k-1 then

Proof':

(A) Assume the minimum of (2.2) is obtained for a configuration with
u < vye Then by using Lemma 1 with i =y, j = v a worse configuration can be
constructed, a contradiction.

(B) Assume for a worse configuration p = v = k-1. Then by Lerma 2 with
i = k-1 a worse configuration can be constructed which again leads to a con-
tradiction.

According to this theorem the worst configuraticn is of the type

(2.8) (Cjeves0u8,P5000,2), 8 <D.

Let r be the number of positive p[i]'s. The overall minimum then can be

found as

(2.9) min F(k,n,D;p) = min (min F(k,n,D; (054405055 yDyeee,yD))
E . I‘=2,-..,k J;<p <..]:-
r =" = pal



where 5 = 1-(r-1l)p.

For configuration of type (2.8), (2.2) can be rewritten as

ZZ N! ﬂvk-r+;pN-vk-r+l
] (=]

(2.10) F(k,N,d;(0ye0e,0,5,D,000,p)) = 7
» vk-r+l””vk.

Ty =
v, N

v£5 Y
z= -I‘+l, ee -,k

which obviously is equal to

F(rJN:D5 (S:P:- «+»P)).

Hence it is not necessary to consider the cases where r is less than k,
when the problem is already solved for all smaller values of k for the same

N and same D. Hence we have to consider only vectors of the type

(s,pyeeesp)y s = 1-(k-1)p

for which (2.2) becomes

N-v.
N! V1
(EGH) F(k,N,D,’(S,p,..-,p)) = z \jl: A \)k= B8 P l =
' . Zy, =N .
R R
viS %D

i=l’2,l.t,k

Ne-v

N o '
_ ) y (N' "1) (N-vy = ) ! Vi V1
B v 4 vV, -' K4 ! S p
0 L N Yk 2 Yk-1
=0 > vy, +D k-1
1 Yg= vy 5y limy -
jop 1 1™ %
VS w D
i=2,ooo,k-l
1 1
where i <p S-E:I .
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It should be noted that expression in (2.11) is connected with the coefficients
Ar(m,t) given in Gupta (1963). (2.11) is a polynomial in p, the minimum of
which can be found by differentiation. This was done numerically and it turned
out that the minimum usually took place at one end of the interval in question,
£ E%I . For the parameter values D = O(1)k, x=2(1)10
and N = 2(1)15, it happened only once that the minimum was attained in the in-

i.e. for p = L or for p =

terior, nemely, for the case k=3, N=6 and D=be In all the other cases the
worst configuration for Xx,N,D can be found in the tables giving the probabili-
ties of a correct selection in slippage configuration with A = 1, in the follow-
ing way: Look for the smallest value of F(r,N,D;(%y...,%)) for all r <k.
Let r¥ Dbe the corresponding r. Then the worst configuration with one excep=

tion, is found to be (o,...,o,%¥,...,%¥).

Hence we are able to evaluate the
minimum D value which, for fixed N,k and P¥, guarantees that the proba-
bility of a correct selection is > P*¥. This is done by following the proce-
dure given above and by consulting the tables of the probability of a correct
selection (Table 14) for the equal probability case. These minimum values of

D are given in Table 1B.

Expected Size (Proportion) in the Selected Subset

For the procedure R, the size 3§ of the selected subset is a random vari-
able which can take on only integer values frem 1 to k inclusive. For any
fixed values of N, k and P¥ the expected size of the selected subset is a
function of the true configuration p = (Pl’pz""’Pk) and this function in
analogy with the power function of tests of hypotheses can be regarded as a
criterion of the efficiency of any procedure which satisfies the same proba=
bility requirement inf PfCS} > P*., It is easy to see that the expected size

= k (expected proportion) is given by
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k
§j P(cell i is included in the subset)

i=1

(2.12) E(8)

1 Vv

_ ! 1 Yk

B Z VvV I.-. ! pl tee Pk B\)
so oy L Yk 2

where Bv = pumber of vi's > D. PFor any D whether it satisfies the

- vmax

P* condition or not, the above function can be computed as follows. Count the
number Bv by considering all possible outcomes VyrVpreees Vs Zvi= N i.e. by
considering all partitions of N which satisfy vy > Vmax'D’ one can evaluate

the expected proportion in the selected subset. For the configuration with

2 = (D,psese,pA) A > 1, (2.12) simplifies as follows.

N ! Yk
(2.13) ) =p" ) —7—rA "B .
\)l-ocnvko 2
Zv, =N
i
Using (2.13), values of expected proportion were computed for different values
of A>1 for fixed values of N, k and D and are given in Table lA.

Probability of a Correct Selection and the Probability of Selecting a Non-Best

Cell.. in the Slippage Configuration

For the configuration (Dyes.;D,Ap), we have

- t
(2.14) P{CS|RY = pN Z ——,-—N-—-—,- Auk .
Vayseeo .
17 Y%
Zy. =N
1
Vi< v tD
i=l)2)coo,k

From (2.13) and (2.14) one can obtain the probébility of selecting any fixed

of the non-best equal-probability cell by the relation
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(2.15) E(s) = P{cS|R} + (k-1) P{Selecting a fixed non-best cell|R}

Table 1A also gives the values of the probability of a correct selection and

the probability of selecting any fixed non-best cell. By consulting these one can
determine the minimum N, which for fixed P¥ and fixed number k of cells
in some slippage configurationswill make the proﬁability of a correct selection
> P* and keep the expected proportion <y where vy 1is a preassigned number

between O and 1. 1In Section 5 we illustrate this numerically.

3. BSelecting a Subset Containing the Cell with the Smallest Probability

Using the same notation as in Section 2, the rule T for selecting a sub-
set to contain the cell with the smallest probability is as follows.

T: Select the cell with observed x:.L iff

(3.1) x. <x. +C

where xmin = mln(xl,xe,...,xk) and C is a given non-negative integer. For
C >N, the rwle T selects all the cells in the selected subset. The proba-

bility of a correct selection is given by

(3-2) P{cs|T} = G(k,N,C; Pr137ee7Priy)
_ z w1 *k
| Vtesewgd ST1] CC Prxy *
Zy,= N
VminZ V17C

Proceeding as before by putting jpri]+ p[j]= q, 1 <Jj, we obtain
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\Y)

N
(3:3) Resin} = ) Q) ) R Y Eyrtant]
m=0 z\),,:N-m £+i,j L S¥1l,d V'Z Vl._c

where r = p[iJ/q < 1/2 .

Again, there are two different cases
Case 1: -1 + l. By slight modifications of the arguments in the corresponding
case in Section 2, we prove the lemma.
Lemma 3. Keeping the sum P[i]+ p'[j], 1 <i<Jj <k, constant, the probability
of a correct selection in using the rule T as given by (3.3) decreases as we
pass from the configuration (P[l]"'"p[i]’°"’p[j}""’P[k]) %0
(P[l]’ . ..,p[ij-e, . ..,p[j}+e, ...,p[k]) where 0<e< P[i]'

Remark: ILemma 3 is true even if the order is distuzed in the configuration.

Case 2: i = 1. Slight modification of the arguments in Section 2, correspond-
ing to the case Jj = k, leads to the following lemma.

Lemma 4: Keeping the sum p[l]+ P[j]’ 1 < j £k, constant, the probability of
a correct selection in using the rule T as given by (3.3) decreases as we
pass from the configuration (P[l]""’Pfj]""’P[k]) to
(p[l]+e,...,p[j]-e,...,p[k]) where 0 < ¢ Sjp[j].

The same remark as at the end of Iemma 3 also holds for Lemma k.

In obtsiping the overall minimum of the probability of a correct selection,
we look for the configurations for which this probability cannot be decreased
by using the procedures of ILemma 3 or 4. Hence we have the theorem.

Theorem 2.
In using the procedure T, the probability of a correct selection given by

G(k,N,C;p[l],...,p[k]) in (3.2), is minimized at a configuration (prlj,...,p[k.!)
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given by

P, £=1y¢00,k=1
(3""‘) P[}.’,] =- .
- 1-(k-1)p, =k

Proof: Assume the minimum takes place for a configuration which is not of the
type defined in (3.4). Provided k > 2 there exists a smallest positive inte-
ger u <k such that P[l-l] >P[1]' Applying lemwa 3 with 1 =p and j =K,
leads to a configuration with smaller pi'obability, a contradiction.

For k = 2 any configuration is of the type described in (3.%4), and,
furthermore, by Lemma 4 the worst comfiguration is: (1/2, 1/2). This completes
the proof of the theorem.

As in the previous section the problem is now reduced to minimization of

a polynomial in one variable. On substituting (p,...,p,q), q = 1-(k-1)p, in

(3.3) gives

Z ! N %

(3.5) G (k,N,C5p,4045050) = e 2%

Sv=N
Ve
> w(C
Vo= Vmin

Numerical evaluation of (3.5) for 0 <p < 1l/k, k = 2(1)10, N = 2(1)15 and

C = 0(1)4 showed that the overall minimum actually takes place for p. = q = i-

1l 1 1
(E} E‘:-“;EL

Expressions for the expected size of the selected subset in using T can

i.e. the worst configuration is

be obtained in the same manner as those for R. For the configurations
(p/AsDyeeesp) with A > 1, which include the slippage configurations, tables

were computed for the expected proportion, the probability of a correct
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selection and the probability of selecting any fixed cell with probability p.
These values are given in Table 2A. Using Table 2A for the case A =1, we
have computed the minimum value of C such that the probability that the rule
T selects the cell with the smallest probability is at least equal to a pre-
assigned number P¥*. These minimum values of C are given in Table 2B.

4, Order Statistics from the Multinomial Distribution

Both procedures R and T are closely related to the largest and the
smallest order statistics from the multinomial distribution. In considering
the correét selection, the random variables of interest are Xﬁax' X or
Xﬁin- X where X corresponds to the cell with the largest or smallest proba-
bility and Xmax and Xmin are the largest or the smallest order statistics
from the remaining (k-l) random varisbles. Hence, it is of interest to ob-

tain the moments of X and X . . The moments of these order statistics
max min

can be written as follows

. ' vl vk .
h"nl XJ = Z ———;N;:—— ces J .
(k1) (X ) vty ! Prij Pre]  Vmex
zv”=N
vhere y = max(vl,vz,...,vk). By replacing X . and v _ by X, and

Vpin? OBe obtains the formulae for the moments of the smallest order statistic.

If we use the configuration (p,p,...,p,pA) with A >1, (4.1), reduces to

iy N! N, %
(k.2) E(Xmax) - }: vpteeey !t PA T vy
Zvo=N

Using (h.2), we have evaluated the expected value and the variance of the lar-

gest order statistic for the configuration (p,p,...,p,PA), A > 1. We have also
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considered the configuration (p/A,p,...,p), A >1 and evaluated the corres-
ponding mean and variance for xmax by using an expression similar to (4.2).
These moments are given in Table 3A and 4A, respectively. Tables 3B and 4B,
respectively, give the corresponding values for Xﬁin for the same two con-
figurations by using the appropriate formulae. It should be pointed out that
the worst configurstion for rule T is of the type (p,P,..«;PA), A > 1

Agein the worst configuration for R reduces to onme of the type (pfA;DjseeesD),

A > 1. This is one reason why we chose these configurations.

5. Examples to Illustrate the Use of Tables 1A and 2A

In some problems the experimenter may wish to design an experiment i.e.,
he wishes to determine the minimum N (this is equivalent linear cost per ob-
servation model) such that for configuration (p,...,p,pA) with A > A, the
probebility of a correct selection > P* and the expected proportion in the
selected subset <y, 0 <4 <1 where P*¥ and + are preassigned and when
the rule R is used. Table 1A can be used to solve this problem. As an ex-
ample, let P¥ = .95, y = .4, k=3 and Ay= 3.0 ‘then from Table 1A, we find
that the pairs (N,D) that satisfy the above conditions are (14%,0) and
(12,1). Hence the minimum value of N is 12. Similerly Table 2B can be used

to design experiments when rule T is used.
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Table 1B

p*

= 75

For given values of Kk,N and P¥, the following table gives the

minimm D such that inf P{CS|R} > P*.

' N
k 2

6 7.8 9 10 11 12 13 1 15

2 0 2 1 2 3 2 3 2 3 2 3

3,00!,10 l 2 2 3 3 3 3 3 3 3 3
P¥ = ,90

K 3 2 6 7 8 9 10 1 12 13 1 15

2 2 L 3 4 3 L 5 L 5 b 5

3500010 | 2 b 4 4 & L 5 5 5 5 5




Table 2B

P* = .75

For given values of k,N and P¥, the following table gives the

minimum C such that inf P{CS|T} > P*.
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