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In many stochastic processes, applied in such fields as Queueing, Counter
theory, Biology, Traffic flow, etc., the random variable of particular interest
is the maximum of the process during a certain time interval. The maximum
length of a waiting line is of obvious interest in the design of the waiting
room. A left-turn lane, for instance, should be designed so that it rarely
exceeds its capacity, lest it interfere with the thru-lanes. In Epidemic theory
or counters, again the maximum of the number of infectives or the maximum of the
active particles, during a given length of time, are good measures of the viru-
lence of the epidemic or the radiation.

Unfortunately the distribution theory of extreme values is very complicated
in all but the simplest cases.

In this paper, we will describe a situation, which occurs frequently and may
be put to good use in numerical calculations and in some cases also in theoretical
work. In section 1, we formulate the problem. In section 2, we indicate how a
general computational method can be developed to get numerical results on extreme
values. 1In section 3, we study the GI|M|1 queue and the Type II counter, to
indicate how certain simple features of particular problems can be used to get the

extreme value distributions more directly.
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I. Formulation 9£ the Problem.

It is known that many processes, arising in applications can be studied in
continuous time, in terms of an imbedded semi-Markov process.

As a typical example, we cite the MIGil queué and its generalizations
L }J. 1r §n denotes the queue-length after the n-th departure
and Xn denotes the length of time between the (n-1)st and the n-th departure,
then the process {(gn, Xn), n>0, X = 0} and €, equal to the queuelength at
t = O+, is a semi-Markov process. The process {E(t), t > 0} of the queuelength
at time t can be studied very simply in terms of this imbedded semi-Markov pro-
cess. The queuelength {E(t), t> 0} has an additional feature, which enables
us to study its maximum over [o,t] directly in terms of the imbedded semi-Markov
process, Between successive departure-points the process E(t) is non-decreasing,
so that the only variables we need to consider in studying the maximum are the
§(tn-), where tn = Xl + ceet Xn, n > 1. But the queuelength before a‘departure
end immediately after a departure are simply related to each other by the service
policy, In the M|g|r case B(ty-) = 1 + E(t +) .

Therefore the maximum of g(t) can be related very simply to the maximum

of a semi<Markov process.

II. The Maximum of a semi-Markov Process.

Let the bivariate process {(gn, Xn), n > 0} be a semi-Markov process on the
non-negative integers, which is regular for all initial distributions. We refer
to Pyke [ ] for formal definitions.

Let its transition matrix Q(.) be given by:

(2) Qg lx) = Plx  <x, § =5 ] g, =1}, i,520.



Let N(t) denote the number of transitions in (o0,t] and let J(t) = gN(t) .

We note that:

(2) e®)=OJTEth)=mm{g”u,%@p

so; setting 6(o) = €, Ve get:

(3) P{6(t) <k, J(t) =3 | 8(0) = §_ =1}

e, S ks veus Byre) S8 Byegy =d | & = il

o«

il
o~

P{E < k;.uo, Ey(e) S ¥» Sy(ey = 35 N(8) = | & = 1)

n=o0

and the latter probabilities are of course simple taboo probabilities. To avoid
trivialities, we assume i<k, j <k.

Let Rij(n,k;x) be the probability that in time x, exactly n transitions

occur between states i1 and j, without a visit to the set {k + 1, k¥ + 2,...},

then
() Rij(ooksx) = 655 [1-H (0], B(x) = ) o)
j=o
and
Rij(n,k;x) =
Z Q g ¥y * e oG 4 * [2-8]x) .

O _<_ il’ie"..’in-J_ <k



Let kQ(-) denote the matrix obtained from Q by truncating it after the (k+l)st
row and column, and let H( ) be a diagonal matrix with diagonal elements

Ho(x)y.}. Hk(x)) then:
(5) Ryy(niesx) = [ @) % [1 - W],

where the matrix-multiplications are performed, using convolution multiplication.
(see Pyke [ ]) .

From (3), we obtain:

(6) plo(t) <k, 3(t) =3 | g =1} =
). [kQ(n) * (1 -n )(x)]ij =

(1 - @M % @ - w0l

where the inverse is defined by the previous expression. In some simple cases,
v2 may use (6) to chbtain explicit expressions via Laplace-Stieltjes transforms,
tut in most cases one will have to resort to numerical integration in (4) to
obtain cyproximate values for the probabilities in (6). The amount of computation
involved is encrmous, since each value of k must be treated separately. In prac-
tical problems, where large values of k are highly improbable, it may be worth-
wnile to set up the computational apperatus required.
In the next‘section, we will show by two examples, how a more careful study
of the imbedded semi-Markov process may lead to simpler recurrence relations.
Baxter [ ] has obtained a decomposition of the transition matrix in the case

of Markov chains, which--vhen known-- leads to simple expressions for the extreme



value distributions and it is possible to prove analogous theorems to his for
semi-Markov processes, but again these would not lead to simplifications in

numerical work,

III. Special treatment in the case of the GI|M!1 gqueue and a Counter model.

In the GIIMIl queue, customers arrive according to a renewal process. lLet,
for simplicity, t = 0 be an arrival-epoch and let the distribution of the succes-
sive independent inter-arrival times be F(x). The service times are negative ex-
ponential variables with parameter w .

Using very much the same argument, we can also study a type II counter in
which particles have independent, identically distributed interarrival times with
a distribution F(x) and produce pulses with negative exponentially distributed
lengths, of parameter u .

In the queueing model, the queue-length behaves between successive arrivals
like a pure death process with death-rate W , Whereas in the counter process
the death-rate is B E(t) . This second process is computationally more irvolved.

It is obvious that the maximum o(t) = max E(u) is obtained immediately
after an arrival epoch.

Let §n be the queuelength immediately after the n-th arrival and let Xh
be the time between the (n-l)st and the n-th arrival, then (§n,Xn,n.2'O),

X, =0 1is a semi-Markov process and its transition matrix Qij(x)’ i,J>1 is

given by:

(7) Q;q(x) = r( e e Z %—‘i aF(u), i>1

o
v=1

and



_ -Wu (Ju . o s
Ql,j(x) = r e i-j'l'l 1 dF(u)a J > l’ i 2 Jj-1.

0, elsewhere .

fi

Q5 (x)
In the counter model, the transition matrix Q°(~) is given by:

~

(®) §u00 - [ e arw, 121,

X . . . .
ng(x) - Jo o~ (31 )uu aF(u) j‘: I~V dR;_l(v) ,

j>l,iaj"l.

ng(X) = 0, elsewhere

where Rﬁ(u) is the distribution-function, whose L-S-transform is given by:

(k> v):

+v+l]

© RV k+1,
©) f 5% dRS(x) - k E L [ w (k-or) _ Bk

st (k-ar) Blv+l, ~ + k + 1)

Flnltln

This distribution has a density, which is a known, but complicated polynomial in
e¥E

Let us denote the L.S. transforms of the Qij(x) - or the ng (x) - vy
¢ij(s) » The remaining discussion depends only on the fact that @ij(s) =0

for j» 1, i< j-1.

Derivation'gf the extremum distribution.

Let us assume that §o = 1. The first visit to state 2 will occur at some

arrival-epoch §2, the first visit to state 3 at some arrival epoch §3, ete.



Let §  Dbe the first entrance time into state k, with §l =0.

It is obvious that:
(10) P{d(t)fk ! g, = 1} =P[§k2t | g, =1} .

Now gk = Zl + Z2 + eee Zk-l’ wﬁere Zi is the length of time for which

o(t) = i . The variables Zy, k = 1,2,.,. are independent, by the semi-Markov
property, so it suffices to derive their distribution, to know the distribution
of oft) . Let gk(s) be the Laplace-Stieltjes transform of the probability dis-

tribution of 2., k = 1,..., then:

k’

o 1
0 v=j

We will now prove a simple recursion relation between the functions gk(s), k>1.,
Theorem:

| , -1
(12) g (s) = £(s + ) [1-2(s) + £(s4)]

and for k> 1

(13) g (s) =
k-1
e () 11 - 0 () = Y (9 65(6) on g ()T
3=1
Proof';

We first prove (13):
Consider the possible ways of going from state k to state k + 1 for the

first time in less than a time x.
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We can either perform'a number of transitions from state k +to state k and
then form k to k + 1, without going below k or we can stay in state k for
a number of transitions and then make a transition to some state J» 1<3i<k.
In order to reach state k + 1, we must then again go from J to j+1, from
J+1 to j+2, etec. to state k. Once we reach state k again, we are back
in the same situation as initially. If we express all probabilities associated

with these possible paths, we obtain in terms of L.S. transforms:

(1) g (s) =

k-1

<Pk,k l(s)

= O R = ) _Zl Ps(8) 85(8) woe gy (5) g ()
Jd=

which is equivalent to (13) .
If k =1, then we first make a number of transitions from state 1 %o itself,

followed by a transition from 1 to 2 . It follows that:

(15) gy(s) = gp(s) [1 - g ()7t
but
9,p(8) = £(s +u)
@1 (5) = J: &5 ie‘*“‘ 2 ar(x) = £(s) - £(s +)
If we setb:
(16) A =1, A(s)= 1 k> 1

g(s) ... g (s)? =



then

k
QD aS) =gy L (O - 9g(8) Ay ()
=1

is an alternative version of (14)

In some applications one is interested in the maxima of the process E(t) ,
between successive visits to the state 0O, We will hence also consider the
Probability that the maximum changes from k to k+l without an intermediate
visit to O,

Let Gk(x) be the probability that the process E(t) goes from state k to
state K + 1, without an intermediate visit to 0 or k + 1, in a length of
time < x, Iet gi(s) be the L.S. transform of G.(+) .

The seme argument as before leads to the recurrence relation:
*
(28) g (s) = £(s +n)

2
* iy +
gy(s) = l—f(s§s+ f%g+ﬁj

8e(5) = (L9 (30)™ @ 11 (5)

k-1
+ ) g (N g (e) & €y oe g(s)
j=2

for k>3.
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Let us set:
(19) By(s) =1
B(5) = (& +-» &)

then the latter formule leads to a linear recursion formula for the Bk(s) .
In the case of the GI|M|1 queue, we can easily obtain a generating function
for the Bk(s) as follows,

Forrmlee (18) and (19) lead to

(20) B,(s) =1
k-1
0,(8) By(s) = B_;(s) - ) O 3(s) Bs(s), E>2.
J=1
in which
(21) ev(s) = j@ e-(u+s)x % ar(x), v>0 .
)
set:
(22) W(z,s) = Z Bk(s)zk'l , Re 5 >0
k=1

then (20) and (21) lead to:

T(s4)

(23) W(z:8) = T Ty Tem ) ¥ Fewae)

where f£(-) as before denotes the L.S. transform of F(+) .



1]

f2)

€3]

4

Bibliography
Baxzzr,églen (1958). An Operator Identity, Pacific Journal of Math. 8,
p. 649-063.

Neuts, Marcel F. (1965). A General Class of Bulk Queues with Poisson Input,
Department of Statistics, Mimeograph Series No. 46, Purdue University.

Pyke, Ronald (1961). Markov Renewal Processes, Definitions and Preliminary
Properties, Ann, Math. Stat. 32, p. 1231-1243.

Takacs, Lajos (1962). Introduction to the Theory of Queues. Oxford Univer-
sity Press.



Unclassifled

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall repott is clagsified)

1. ORIGINATIN G ACTIVITY (Corporate autkor) 28. REPORT SECURITY C LASSIFICATION -
Unclassified
25 GROUP .
Purdue University

-§ 3. REPORT TITLE

On Maximum Values in Certain Applied Stochastic Processes

4. DESCRIPTIVE NOTES (Type of report and inclusive datsa)

‘TPechnical Report - June 1966

8. AUTHOR(S) (Last name, lirat name, initial)

Neuts, Marcel F.

6. REPIO RT DATE 74. TOTAL NO. OF PAGES | 7b. NO. OF REFPS
June 1966 11 4
Ba. CONTRACT OR GRANT NO. ga. CRIGINATOR'S REPORT NUMBER(S)
NONR 1100(26) ,
b PROJECT NO. Mimeograph Series Number Th
e - . 9b. OIH ER REPORT NO(S) (Any other humbere that may be assigned
: this report,
d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPL EMENTARY NOTES {2. SPONSORING MILITARY ACTIVITY
Logistics and Mathematlcal Sciences Branch .

Office of Naval Research
Weshington, D. C.

13. ABSTRACT

: We consider the problem of finding the maximum observation in [O,t] for a
class of processes having an imbedded seml-Markov process. In a particular sub=-
class which includes the GI|M|1 queue and some type IIL counters, we get more
explicit results.

DD |525'24 1473 | ' Unclassified

Security Classification



