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Abstract

Consider an m-state, irreducible, recurrent Semi-Merkov process (S.M.P.)
and a step function f(+) which takes on the value vi(i =1, ..., m) when
the S.M.P. is in state i. We study the integral of f£(-) Dbetween O and t.

The Laplace transform of the characteristic function of the integral is
obtained in a general form by use of matrix notation. In the case of a sta-
tionary Semi-Markov process the'transfbrm of the expected value of the inte-
gral is inverted in closed form. Asymptotic properties of the expected value

of the integral are derived by applying "Smith's Key Renewal Theorem".

1. DNotation and Assumptions

In this paper we construct a function defined on a Semi-Markov process
(S.M.P.). The notation utilized will be the same as that set forth by Pyke
(19612), We consider a double sequence of random variables, {(Jh,Xn),

n=0,1, ...}, defined on a complete probability space such that X° =0 a,s.,

i

Pla, = 3} a5, end g, =k X <x|J, ,=13}= ij(x) (n=1, 2, ...

and j, k=1, ..., n<® vhere m is the number of states.) The ij(x)

are non~decreasing and right continuous mass functions and satisfy ij(x) =0
m :

for x <0, ij(+m) = pjk’ and }: pjk = 1. Consider a step function taking
k=1
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on the value v'j if and only if the S.M.P. is in state j. The definite
integral, I(t), of this step function over the interval [0, t] is studied
here.

A general Semi-Markov process (G.S.M.P.) is as that defined above except
that there will be ancther set of mass functions Ejk(x) = P{Jy= &, X< x| J_= 3}
for the first transition. Pyke (1961b) has shown that the process is stationary

Lol ~ -1 A
if a’j = T]Juljj and ij(x) = ij'na J.: (l“ij(y))dy where ij(x) = ijij(x) 3

m
Hj(x) = z: ij(x), and, ij(x) = P{Nk(t) >0 [ Iy = j} with first and second
k=1

?? k4 Tt 3 -
moments bjk’ bjk’ nj’ nj > My and “jk respectively., Also, Nk(t) repre

sents the number of transitions to state k in the interval (0, t] and
m
N(t) = Z Nk(t). We let

k=1

Sjk(n) = {(mo, Qs eees an) | @, =, o = k} (1< @ <m, i=0,..., n)

be the set of all path functions with n transitions where Jo =j and Jn= k.,
Henceforth, a small Latin letter will represent the ILaplace-Stieltjes

transform of the function represented by the same capital letter, i.e.,

(-~}

qjk(s) ='f e'Stdek(t). Whenever the range of a subscript is omitted it will
o

be 1 to m inclusive. Square matrices of double subscripted terms will

be denoted by dropping the subscripts,eg., Q(t) = (ij(t)) with the argument

being omitted whenever it is obvious. We will also have use for the notation
[Q(t)][jk = Q,]k(t) . | ,
We will assume throughout that the Markov Renewal process (M,R.P,)

{(N,(5), oo, N (t)), t > 0} is irreducible, i.e,, there is only one



communicating class of states, and that ﬂj < @ or equivalently that the
M.R.P. is positive recurrent since m is finite. It follows from the defi-
nition of a positive recurrent M.R.P. that CYPR the mean time between visits
to state J, 1is finite. Again, for ease in notation we will assume that
each ij(t) is non-lattice, This latter assumption would only be required
in the expyession for ask(t) in the stationary case and in the application

of Smith's (1954) renewal theorems,

2. Distribution of the Integral

J In order to detérmine the distribution, R(y:t), of I{t) for a G.S.M.P.
we consider a path function of Sjk(n)' The transitions times T,, Ty, sev
determined by the given path function satisfy 0 < Ty < ... < Th <t. We
have

(2.1) Ijk(n:t) = v.r + val(we- ) e by (- Tpop) * V(6 = 7))

J @)1

and the corresponding mass function
Rjk(Y’n:t) = P{JN('t) = k, Ijk(n:t) s ¥ l JO = j} .

The various number of transitions in the interval [0, t] are mutually exclu-
sive events, hence the joint distribution of Ijk(t), the value of the inte-
gral when Jo =j and JN(t) =k, is

®

Ry (yit) = ) Ry (y,mit)
n=0

from which one obtains the marginal distribution



m

Rj(y:t) = z Rjk(y:t) .
k=1

The desired distribution is then given by

m

R(y:t) = Z 2R, (y:t) .
3=1

We evaluate the Laplace transform of the Fourier transform of Ijk(n:t).

For n>» 0 we let

iijk(n:t))

i

(2.2) ij(w,n:t) E(e

« ot WTn T2 iwI.. (n:t)
Y [ e 9 an( )
sen j OIl,Tl,-..,CYn,Tn

L]

‘o ‘o o
sjk(n)

where de(a'l’ Tys ere > s 'rn) is the probability that the transitions

o to @; oceur in the interval (-ri, Tt dTi], i=0,1, ..., n and
o, = k given ¢ 0 = j. By the conditional independence of the G.S,M.P.,

given the random variables Ji’ i=0,1, ..., n, we have that
(203) de(Q’l,'l’l)“‘9dn,Tn) = deal(Tl)'-'ann-lk(Tn" Tn_l)(l'Hk(t"Tn)) .

From (2.1) and (2.2) we obtain, upon taking the laplace transform of (2.2),

-]

-5t
j’o e ‘ij(w,n:t)dt

(2.4) A{2(sw)

#H

L T (eiyday g (emiv, ) e

' 192 %
S:jk(n)
L) g 3 ‘. -l -, -
q“n-:,“n(s lwva,n_l)(svlka) (1-hy (s-iwrvy )



for n »1l. In the case n = 0 we have

(2.5) Ag;)_ = (s-it\rvj)'l(l-”};k(s-ika)) .

By letting

(2.6) Pyp(8:0) = Dy (s=timvy) = b4y (5=t ) ™ (1by (s-1wvy))
and

(2.7) qjk(s,w) = qjk(s-iwvj)

with similar expressions for ij and Ejk’ we obtain in matrix notation

(2.8) | A(n)(s,w) = E(s,w)qn'l(s,w)r(s,w) (n>1)
= T(=,w) (n = 0)

where 6,jk is the Kronecker delta and ¢°(s,w) is the identity matrix.

Since the spectral radius of ¢(s,w) is less than one we have that

©
Z qn-l = (I-q)'l. The above derivation yields:
n=1

Theorem 2.1: Given & G.S.M.P. and the integral Ijk(t) defined on this

process, then

(2.9) A=T+q(I-q T



where Aj represents the Laplace transform of the Fourier transform of

k
Ijk(t) .

Corollary 2,1 For an ordinary Semi-Markov process (0.S.M.P.) vhere

~/

q = q, and the integral Ijk(t) defined on this process, then,

(2.10) A= (I-q)_l r .

Corollary 2.2: For a stationary Semi-Markov process (S.S.M.P.) and the

integral Ijk(t) defined on this process
(2.11) A = W0 N (p-1)(1-0)"r
. -1
where W o= (ij(s-xwvj) ) and N = (ijﬂj) .

The proof of Corollary 1 is trivial and the proof of Corollary 2 follows from
@ =1N(p-a), B =T1"N(z-h),
and
T = w102 (1-h)
where h = (6jkhj) .

The inverse Laplace and Fourier transform of Ajk gives the desired

distribution function Rjk(y:t) and, as mentioned previously,



m m
R(yit) = ) ) 8y By(yie) .
J=1 k=l |

3. Joint Distributions.

The determination of the joint distribution

e)<y | 35 =3, 1(0) = 0}

resulting from the two intervals (O, tl] and (tl, tl+ t2] is a straightfor-
ward generalization of the technique utilized in the previous section. In
this case a double Laplace transform is required.

A typical path function belongs to the set

Siicr(fs8) = leguoy, ey o, lag = 3, o = &, Uprg = T

where f and g are the number of transitions in each respective interval,

The transitions for this path function occur at Tl,..., Tf+g where

<T, . <...<
0T S eee STty <Tp, <. % Trg S8 ¥ 5 -

We now set

(3.2)

Ijk(f:tl) = VT val(Te- Tl)+"'+vaf(tl' Tf)

(3.3) I.(g:t,) = Vaf(7f+l' ty )4y, .

)
£+1

(Tf+2' Tf+1)+"’+vf(tl+ to- Trrg



and form the Fourier transform

tl+t2'f t, T T
(3.5) ¥y (ywy,f,mityty) = Z [

I

t
Sjkr(f,g) 1 1

2

f+g I lI T I
o 0

0

iw, T, (f:t,)+iw, I (g:t,)
173k 1 27kr 2
e . de(al,l»Ql ,df'l'g,‘rl’.."’rf'*‘g) L]

The double Leplace transform

o

-S.t -5
(£,8) _ [~ "S1f1 2
(3.5) Bsr ™ = Io e T dy Jo e

ts

ijr(wl’wé’f’g:tl’t2)dt2

may be evaluated, using the substitution u, = Tf+n“tl’ n=1, ..., q %o

yield

(3.6)  A%8 - (40" (o 50 apm )Ty, (RE2 1)

whi . = S., W. ﬁi = ~s. W,
ere QJ Q.( 3? J)’ Q.J Q.( 3° J)
', =I'(s,, w, F: ‘F S., W,
J ( j’ J)s J = ( J, J)
5., = S.,-iw_.V for j=1,2; k= 1l,.es, M.

dk T ik

It rema2ins to evaluate Agiég) for the three cases f =0, g2 1;

f>1,g=0; and f =0, g= 0. These terms are

(3-7) Ajkr(o,g) = 6jk(s]_k- st)-l[(Eg' El)qg-lra]kr



-]_J

~ £ -]
(3.8) Byer(£50) = 8, Loy "y (sgy- 8 ) IT, - T

) _1~ ~
(3.9) Ajkr(o,o) = sjkskr(slk- s2k) [ré- rl]kk .

By summing the terms of Ajkr over all values of f and g we have the
desired result.

All through the abéve results one can observe coupling terms resulting
from the interval in which the point tl is located. The three different
types of coupling intervals result from the three various types of intervals,
i.e., those associated with agk(t), ij(t), or l-Hj(tl+ ty- t). The remain-
ing part of the coupling terms, (slkv SZk)-l’ is determined by the state k
which the process is in at tl .

In general, the expression for Ajkr will not factor into a product of
“two terms, one being a function of 8, and Wy and the other of Sp and LY
since the contributions to the I-process from each interval will in general
not be independent. Conditional independence holds in the case where the
elements of the transition matrix are of the form

~ ALt
(3.10) Qp(t) = Qup () = pyy (1e )

where
n
Ay >0, ijk=1 (G=1, co., m) .
k=1

The derivation of the n-dimensional joint distribution is a straighﬁfor-
ward generalization of the 2-dimensional case, The heavy notation encountered

prohibits further derivation, however, the general form can be discussed. 1In
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this case there will be n adjacent intervals with n - 2 interior end
points, i.e, tl, tl+ t2, caes tl + ::. + tn+l‘ There would be 2" indivi-
dual tefms contributing to the desired ILaplace transform with each term made
up of a product of elements of matrices. Theré would be first order coupling
terms appearing wherever only one interior end point lies in a transition in-
terval, second order coupling terms wherever two interior end points lie in
the same transition interval, and ete. The exact form of these higher order

coupling terms can be derived in an analogous way.

L. Moments of the Integral

The Leplace transform of the first two moments of the integral are
determined by differentiating A with respect to w and simplifying where
possible. In the case of a S.5.M.P. the mean of I(t) is determined explic-
itly by ihverting the transform. Throughout, the single and double dot no-
tation will be used for the Pirst and second derivaiive with respect to w,

Before proceeding further we give the Tollowing lemmas,

Lemma L4.1: @iven a matrix q(s,w) as defined in(2.Zl then

(k1) (1iQ)™t = (1)t 4 (1-)7L .

Proof: The qjk(s,w) are all analytic functions for Real (s) > 0., 1In the

o

‘domain of analyticity of w z: qP_l converges uwniformly and henhce can be
. o

be differentiated term by term. Thus

[oa]

(129)™F = Z g™t

n=
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expanding the é?'l terms and changing the order of summation gives the

desired result.
m

Lemma 4.2: Given a matrix I'(s) = s'l(ﬁik(l - zz qkj(s)) where (I-q(s))
J=1

is a nonsingular matrix and if we let e represent & m x 1 column vector

with each element equal to 1, then
(.2) (I-q(s))-lf(s)e =% .

Proof: ILet (I-q)?k denote the jkth cofactor of the (I-q) matrix. The
ith element of (I—q)"lFe cen then be written as

m
-1

m m
s"l{de'b(I-'Q_))TlZ Z (I‘Q):i(akj“qkj)

oot =1 k=1

= S-l

which holds for all i. Thus we have the desired pesult.

Lemma 4.3: Given matrices I'(s,w) = (5jk(s~iwvj)'l(l-hj(s-iwvd))) and

a{s,w) = (qjk(s-iwvj)) where (I-q(s,w)) is nonsingular, then

(+.3) (a(s,w)(T-a(s,w)) T (s,w) + B(s,w))e] _ = 1 s™r(s)ve
where v = (6jkvj) .

Proof: TLemma 4.3 will allow us to write the left-hand side of the above
equation as (s'lé(s,o) + f(s,o))e where we have set w = O after the

differentiation. The Jjth element of this vector becomes
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m n n
. - AT - .}
1), agp(s,0) + 1vys™2(1- ) a () - 57T ) d(s,0) = dvgs RO
k=1 k=1 k=1

Since this holds for all j we have the desired result.

Lemma 4.1 can now be used in the differentiation of equation (2.9) to
give
(b.2) A =T+ og(1-9)7 + o(z-0)™ @ (T-)™'T + g(T-)' T .

Utilizing Lemmas 4.2 and 4,3 in post multiplying (4.%) by the column vector

e and then setting w =0 gives

N . =15 .7, -l
(h.5) hel o=18"(C+q-g)vel
since (F + Snl Z)e I w0 = i s-lf‘ v e ' w=0 *

Equation (4.5) implies that the vector of Laplace transforms of expected

values conditioned on the initial state is
_l ~ ~ “l
(L.6) s [I(s) + a(s)(T-q(s)) " T(s)v e .

Under the hypothesis of Corollary 3.1 or 3.2 for a 0.8.M.P. or S.S.M.P. we

obtain respectivelys:

(4.7) s-l[(I~q(s))'lF(s)]v e
and

(4.8) s+ 1 e-1) (T-(s))" () Iv e .
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Pre-multiplication of the above expressions by the vector, a, of
initial probabilities gives the Laplace transform of the unconditioned

mean of I(t). In the case of a S.S.M.P.

a = u'lﬂ where u'l = (uii, coes “g;)’ thus
i 2
(4.9) f e'StE(I(t))dt =5 u"ln ve .
o

The validity of this statement can be seen by observing that we have a

positive recurrent class for which

nm
-1
M35 = P ]Z e Prac
where Bkk is the mean time between visits to the state k in the corres-
pording Markov Chain (c.M.C.)(Pyke 1964). The c.M,C. is also positive recur-

rent (Pyke 196la) so the vectors

Blp-1)=0
, m
and wHp-1) = (), 85m(p-1) =
k=1 '
From (4.9) we obtain
m
(4.10) B(1(t)) = (WM vet =t ) u;;.'njvj .
j=1

The techniques used above can be also applied in deriving the second

moment. In the case of a 0.5.M.P. Wwe would have



1k
(h.11) he | 4e0 = (igs'e(l-q)‘lr‘ voe +2 i s'l(I-q)“1(i(1-q)’1r-s‘]i)~ére|W:O

The first term on the right-hand side of this equation fits into the pattern
developed in the derivation of the first moment. The second term, however,
defies further simplification, Similay situations arise in G.S.M,P., and
S.S5.M.P,

Although it is not obvious, it appeaxrs that these results could be in
agreement with the complicated type variances that Pyke (196L) and Jewell (1964)

present for the asymptotic distribution of general functions defined on a S.M.P,

5. Asymptotic Properties of the Integral

The asymptotic distribution of functions, in general, defined on a Semi-
Markov sequence has been resolved by Pyke (l96h). Application of these results
-% ,
gives that ¢ 2(I(t) - tA) converges in law to a normal random variable with

. 2
zero mean and variance ¢ vwhere

m m
o = Mgk .Zl(vj-A)“‘};“;;'*' %Z Z Z (vy-A)py by (v,-a)
5= |

3=1 stk rik
. -1,-1 , ,
' nr“jjarr(ﬂsk* Brr™ Bsr)
with 02 being independent of the arbitrary state k.
The remainder of this section will be devoted to an alternative deriva-
tion of the asymptotic mean value of the integral. In this derivation, some

of Pyke's (1961b) results and the renewal theorems published by Smith (1954)
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will be used. The case of a 0.S.M,P, will be the only one considered since
the contribution to the integral from the visit to the first state is neg-
ligible.

If we let

rj(t) = Io y de(y:t)

then (4.7) and (2.6) yield the vector

1

( fm e'Strj(t) dt) s'2(I—q(s))'l(I-h(s))v e

(o]

s"2(u(s) +1 )(T-h(s))v e

where mjk(s) is the Laplece-Stieltjes transform of

M (t) = BN (e) | 5, =3) .

Integration by parts gives

°

(| e'stdrj(t)) = s Hm(s) + I)(T-h(s))v e
o)

for which the inverse transform is

t
(5.1) (r5(6)) = (z+u(e)*(| (-nE)M T v e
Q .

where the convolution of twq matrices A and B is defined as
' m
* =
A%B= () Ay *By) .
J=1
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We now determine the asymptotic properties of the elements of the

matrix (I + M(t)) * B(t) where B(t) is a diagonal matrix with

B (t) = l j (1~H (x))dx which is a distribution function of some non-neg-
ative random varlable. Assuming that the moments ﬂa and ﬂ" are both

finite we define
. te -1
(5.2) By (6) = 2NN 7HUCe) - By(6))

where U(t) is the unit step function with jum@ at zero, This function will

serve as the kernel in the application of Smith's renewal theorem.
Considering only visits to state J we see thatb Mﬁj(t) is a Renewal

function where the time between transitions to state j‘ has the distribution

G j(t), thus

1y 1
& il nees

(5.3) B.(6) % (M..(t) + 1) = 2 + 9 - Jd__ 4 5(1)
J JJ M35 2u§j 2lgHs5

for large values of t.
In order to determine the asymptotic value of Bj(t) * Mij(t) we

observe that
ky(6) % My (8) = ky % Gy (8) * (5(6) + U(t))
and hence

A ] . C(6) =G, () uit =t
(5-) imkg(6) g (8) = 0y () 13y = w3



since i and J communicate. Using (5.2) in (5.4) gives
-1
. . * M..(t) = M. .(t) - !¢ KT
(5.5) By(t) *105() = My 5(8) = Mt (204005507 + (1)
for large values of +t. Now since
.. = Q.. * M.. ..t
My5(8) = Gy 5(6) * M. (%) + G 4(t)

we have that

52

e M
t Jd ij

(5.6) M. (%) = + - +o(1)
+d M5 2u§j Ms3

for large values of +t. Substitution of (5.5) into (5.4) and (5.3) into
(5.1) yields

(5.7)  E(I()) = a(ry(s))
Jd

m m
- -1 1 -1 - 11 -1 -
- t'zlujijleujj(u..(mjj) 137 (20,7,
J= J=

m
-1
JA WM. L, F
Z B3y MagMyvs + (D)
J=1

J

m
i=1
i

for large values of +t.

We note that the first term on the right-hand side of (5.7) is the ex=

pected value for the stationary case,

17
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6. The Case of Jumps at the Transitions

The model which was described in section 1 may be altered to allow for
8 real valued jump, rjk < @, to take place at the point of transition from
state J +to state k. Modification of the previous notation wiih a pre-

subscript r to indicate the alteration gives

(6.1) I, (n:t) =v, 7. +r. + ... +7 v (t -T) .
r-jk ji Joy % 1% % n

The evaluation of the distribution of the integral rI(t) is similar to
that used in section 2. Hence, only the necessary notation and the final

results will be shown here.

Let
iwr. iwr,
~ k> - Jjk
A =€ Tay @nd oag =e gy
then
® iw_I(n:t)
(6.2) AP [ estye T )at
Q
~ n-l
= rqrq' T (n 2 l)
= r‘ (n = O) N

It is easily shown that p(rq) < 1, hence

(6.3) A=T+ o1- 71 .



In deriving the expected value of rI(‘b) we have that

(6.4) Ae lw=0 = (i s"l(F+z(I-q)~lr)v e +1i s'l(r Je +

r Jk

+1 S'lE(I-q)'l(rjkqjk)e) !

w=0
In the case of a S.5.M.P. we obtain
m
(6.5) E(rI(t)) =t u 575 + tZ Z “3;, 3xF 3k .
j=1 J=1 k=1

19
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