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SEMI-REGULAR FUNCTIONS IN MARKOV CHAINS
by
Paul T. Holmes

I. Introduction

Iet {Xh, n=0,1,2,...} bea Markov chain in discrete time whose
(minimal) state space I consists of the nonnegative integers. Each
fandom vériable Xn is defined on a probability space (Q, F, P);;w
represents an element of Q. The transition probabilities are aésumed
to be stationary, i.e.,

P{X 1= jIXn= i} = Py 1,3€T n=0,1,2,...

where

[oe]
P. s > O, Z Pij = l i,jeIo
=0"

The matrix of trensition probabilities will be denocted by (pij)a

The n-step transition probabilities sre denoted by p(g?, where

i

5(0) _ (1) _ ‘, s
Pij- = sij and Pij- = pijo The following quantities will be uged

frequently:
«©
* (n) ..
pij = z Pij 1)J€I
n=1
n . . ) . .
f§j) = P{Xn= 3, Xv £ j for v=l,.o.,n~llX0=1] i,jeIl n = 1,2,000
2]
* (n) -
fij = Z fij‘ i,jel.

n=1



Note that fﬂ') =Py je

Following Chung [5] we d_efine"a class of states to be a set of tv}o
or more mutually communicating states or a single state which does not
communicate with any state. Recall that two states i and J belong
to the same recurrent class if and only if :E‘z = f;:‘i. = 1; and that a

J

class C is nonrecurrent if and only if the series

©
Z Pg) = Pij * 85
n=0
converges for some pair of (not necessarily distinct) states 1 and
in C.

In section II we consider super and sub regular functions and meas-
ures. These functions are important in the study of Markov chains for
many reasons. In particular, it has been known for some time that the
existence of certain types of functions defined on the state space I
can give information gbout the ché.racter of irreducible Markov chains.
We have, for example, the well known result of Foster (theorem 7 of this

paper) and the following two theorems which cen be found in Foster [15]:

Theorem: 1In an irreducible Markov chain a sufficient condition for re-
currence is that there exist a sequence {yi} such that

@©
yizji:opijy_j, 140 with y; —> e as 1 —>o,

Theorem: In an irreducible Markov chain, if there exists a solution

©
{y.} to the system of equations y, = T ¥, p,, such that y, # O
i) 4o 174 i



and .;O |yil < =, then the chain is positive recurrent.

g

We ﬁill discuss some general properties of super regular functions
and super regular measures and present some theorems of the type just
mentioneds It is common in the literature on Markov chains to classify
stateé and classes of states as recurrent, nonrecurrent, equitable, etc.
One purpose of the present discussion is to see how these types of chains
can be characterized by means of super regular functions and measures.
Many of the results are applications of two fundamental inequalities
which are stated as theorems 3 and L.

In section III super regular functions will be used to study a par-
ticular type of Markov chain (non«dissipative) which has the property
that almost every path function eventually enfers the set of positive
recurrent states. The principal tool here is the relation between super
reguler functions and martingales established in section IT.

Section IV is concerned with certain sets of states, called sojourn
sets and almost closed sets, which are of interest in the study of the
asymptotic behavior of the path functions. We will present some results

about these sets and show their relation to super regular functions.



Ii. Regular and Super Regular Functions on Measures

A real (finite) valued function u on I is called a super regular

function if wu(i) > pij u(j) for every i. u is a regular function
. j .

if u(i) = TP 3 u(j) for every i; and u is a sub regular function

if its negative is super regular. (An unrestricted sum will be assumed
to be over the entire state space.)
A real (finite) valued function u on I is called a super regu-

lar measure if u(J) >3 p(i) P4 for every Js3 p is a regular measure
i ,

if u(3) = ¢ u(i) P, ; for every Jjs; and p is a sub regular measure if
1
its negative is super regular.

Suppose u is a nonnegative super regular function. Then

(i) 2 2oy wk) 2Ty, Doy u(d) = 2T pypy g uld) = (-;) u(y)
Tk . Tk 3 . 3k .

for every i by the Chapman Kolmogorov eguation. Repeating this we con-

clude that

1J

u(i)z'};P..u(J 2Tp (2) u(J) .,ZZPJ(_?) u(j) > ... >0

for every i. This relation will be useful in many of the theorems to
follow.

If i and Xk ©belong to the same communicating class then there

(@) o o,

ik Therefore

exists an infeger m such that p,

u(i) > ngJ' U.(J) >p( ' u(k) and we see that u(k) = 0 if u(i) =



It follows that a nonnegative super regular function u defined on a

communicating class C is either identically zero or always positive

on C. Similar statements can be made about super regular measures.
Iet u be a nonnegative super regular function and let

w(i) = u(i) - ¢ Py u(j). The letter w will always represent this
: J

difference in this paper. If we imagine u(i) to place an evaluation
on the state i, then w(i) gives us the difference between the eval-
uation on our present position (known to be state i) and the condi=-
tional expected evaluation after one more step in the Markov chain.

Let {ZO,Zl,Z } be a sequence of random variables defined on

2,\109
the probability space (9, F, P) with E(Ian) <o, N =0,1,25000,

and suppose that to each n = 0,1,2,... there corresponds a o-field

F (a sub g-field of F) with the following properties:

(1) FyCF 4 n=0,1,2...

(ii) Z, is an F  measursble function n = 0,1,2;...

(iii) E(Zn+l|Fn) < 2, with probability one n =0,1,2,...

Then the sequence {Zn,Fn, n=0,1,2,...} 1is called a super martingale.

A special case of a celebrated convergence theorem of Doob [10] is the

Super Martingale Convergence Theorem: Suppose {Zn, Fn’ n=0,1,2;000}

is a nonnegative super martingale. Then there exists a nonnegative ran-

dom variable Z such that lim Zn= Z with probability one, and
n—> o

E(Z) < =,
For our purposes observe that if u 1is a nonnegative super regular

function such that E[u(XO)] < ®, then



(1) EB[w(x,)] = B{E[w(X )|X;1} = £ E[u(X)|xF 1] P(X 1)
_ _ _ { _ _

i) < T u(i) P(XO= i) = E[‘u(xo)] < o,
LT g , .

_ (
o *JE pif;) u(3) B(x,

and

(1) E[u(X )%y, e osX ] = BIw(X ) [X ] = 2oy 5 u(d) Sulx)
. . | 5 Xy _ _

where the first equality in (ii) follows from the Markov property and
the inequality in (ii) from supér regularity. Iet F_ be the smallest
o-field with respect fo which the random variables Xb”’"’xn are meas-
urable. We see that fu(Xn), Fn, n =0,1,2,s0.} is a nonnegative super
martingale and the above sfated convergence theorem applies. All these
considerations will be expressed in the sequel by the statement: The
functional process {u(Xn), n=0,1,2,...} is a super martingale.

If the Markov chain.is irreducible, it is possible to translate
results sbout super regular fuhctions t0 corresponding results about
super regular measures by a well known device (called duality) which is
described in detail in Kemeny and Snell [16]. This method usés the fol-
lowing theorem which is due to Kendall [17]:

Theorem: An irreducible Markov chain admits at least one positive super
regular measure.

Iet a(°) be a positive super regular measure. If u is a super
regular function, then u(i) = u(i)/a(i) is a super regular measure
with respect {0 a new Marko§ chainiwith-transition probabilities ﬁij

given by



. _ofd
Pis = a(3) Psi?
since

r.Y

. 1 . u(j) _ .
T u(l) iy = 5y fpji u(l) S&%} = u(J)o

1

A mapping of super regular measures into super regular functions can be
defined in a similar fashion. The new chain with transition probabili=
ties ﬁij has the property that it is nonrecurrent if and only if the
original chain is nonrecurrent.

The following theorem provides a description of the behavior of the

iterates 3 p§§) u(j) which were discussed above. The theorem is due
- j .
to Feller [12].

Theorem: If u is a nonnegative super regular function, then

a(i) = lim Zpér}) u(J)
B Nt .

exists for every i. Moreover, a is a regular function. It is the
maximal regular function which is dominated by u; i.e., if b 1is a regu-
lar function such that b(i) < u(i) for every i, then b(i) <a(i) for
every 1. | | | |
Similar results are true for sub regular functions, and for super
and sub regular measures. For u a finite nonnegative sub regular func-

tion we find that lim by pgq) u(j) is the smallest regular function
Nne=> o j id- .



that is greater than or equal to u(i) at every state i. For p a
Tinite nonnegative super regular measure it turns out that

.'L'i.m Z} p.(l) p( ) is the maximal regular measure which is dominated by

Mo

Theorem 1: Suppose u 1is a nonnegative super regular function such that

T u(l) <o, and let a(i) = lim Zp(J? u(J) Then a(i) = T 3 u(j)

12 (v (n )
where =x,. = lim = ¥ DP;.° 1is the Cesaro limit of the p 's. (We
iJ n 1d-
n—> o o y=1

know that 0 <a <u and that a is regular. Now we see that a = O

if the chain has no positive recurrent states.)

Proof:

n"‘"> ® 3 n—> o

a(i) = lim ZP( n) u(j) = lim % Z Z pg\.") uéjj
- J

= lim Zn Z :(LX u(J) -Zlim m%— Z (") u(a) ~Zﬁiju(j)
J

v=1 w1l J

by the dominated convergence theorem. QED
If the chain is irreducible, then in order for the convergence con-=
dition of the theorem to hold the chain must be nonrecurrent unless u

is identically zero. (This follows from Corollary 1 to Theorem 3).

Theorem 2: Suppose u is a nonnegative super regular measure such that

(i) <o, and let b(j) = Lim  yp(i) p( ). Then b(J) = ¢ n(i) 7 5o
i . . Ip——> i . . i .



(We know that 0 <b <p and that pu is regular. Now we see that

b(j) = O if the chain has no positive recurrent states.)

Theorem 3: In any Markov chain, if u 1is a super regular function which

*
is bounded below, then wu(i) > £ u(k) for every i and k.

Proof': We may assume, without loss of generality, that u is non-
negative, since adding a constant, say =inf u(i) if inf u(i) is nega-
tive, to a super regular function yields a super regular function. Pick

any state k and fix it. Now

u(:.) >Zp . u(g) > Py u(k) (1) u(k)
J

n
Assume u(i) > Z f(\’) u(k) for every i. Then

v=1

w(i) 2) By, ud) = oy ul®) + ) by u(d) 2
o | R

D w0+ T nyy o 02 e
e vl | |

n n+l
(vtl) _ Z (v)
z o u(k) = Iin’ u(k)
v=l1 ' v=1
for every i, since I p.. f(\’) = f(\’ﬂ) Hence, by induction,

k. ik - ¢

ke

N
u(i) > ¢ fj(_l‘{’) u(k) for every N, and this implies that, for every i,
. v=1 .



u(i) > fj.fk u(k). QED
Corollary l: 1In a recurrent class the only super regular function which
is bounded below is a constant.

Proof: By the theorem we have that u(i) g;fik u(k) for every i.
By recurrence f:k =1 for every i and k.. Therefore; u(i) > u(k)
for every i. But k was chosen arbitrarily. We conclude thét u. is
a constant function. QED

We remark that the property of recurrent chains established in this
theorem does not characterize recurrent chains. It will be shown in sec-

tion IV that for a certain type of nonrecurrent Markov chain the only

bounded regular functions are constants.

Corollary 2: Let u be a nonnegative super regular function and let

w(i) =u(l) - ¢ D5 u(j). Then A = {i:w(i) > 0} 1is a set of nonrecur-
o L . .

rent states.

Proof: Iet i De an element of A and suppose 1 is recurrent.
Then i 1is an element of some recurrent class C. But u is constant
and w therefore identically zero on C. This contradicts i e A. QED.

We remark that it' is not true that w(i) = 0 implies that i is
a recurrent state. This can be seen by considering Foster's theorem
(Theorem 7 of this paper) which shows that in a nonrecurrent chain there

exists a function u with the property that w(i) = 0 for all i % 0.

We define
e(n) = P{X = js X + i for =1 o n=l|X = i}
ij n F) v goony O
i,jel n = 13239063
(0) _ (1) _
130 T b1yr Sy T Pyy

10



=+ ]
* (n) .
eij = z eij. i,jel.

n=1

*

The quantity eij is the expected number of times the Markov chain,
starting at 1, visits J before returning to i. It has been studied
in Chung [5] under the notation €5 and in Chung [L4] under the present

* %
notation. It can be shown that e,. e,.
ij “ai
*
communicate; and 0 < eij <o forevery i and j in the same class.

>0 if and only if 1 and

Derman [8] has proved that in a recurrent class the only nonnegative reg-

*
ular measure p is given by p(i) = c &

and c¢ is a nonnegative constant independent of i.

where h is any fixed state

Theorem 4: In any Markov chain, if p 1is a nonnegative super regular

¥
measure, then p(j) > u(k) e, for every j and k.
: -

Proof: Choose and fix a state k. Now

w(3) 2 ) u(2) pyy 200 7y = (k) )

n
for every Jj. Assume p(J) >u(k) T el({,\]')-) for every Jj. Then
. . Wl

u(3) ZZu(i) Py = p(k) Py +Z p(i) Pys 2

i ' ' itk
n n+l
5+ T T bt a0+ § ol o
lk\)-—l v=1 v=1



for every Jj, since I eéz) P.. = e£?+l). Hence, by induction,
i &0 J
. I (v) '
(3) > u(k) 21 Sy for every N, and this implies that, for every J,
: V=

p(3) >uk) e:j= QED

Corollary l: In a recurrent class the only nonnegative super regular
measure is given by p(j) = p(k) e;j where Xk is an arbitrary but fixed
state, | |

Proof: By the theorem we have that u(J) > u(k) e:j for every J.

*
Let y(3) = u(3) - ulk) €13 For every Jj we have

D ¥(2) pyy = Y uidpyy- wlk) ) ey pyy Su3) - nlklegy= ¥(3)

i i

by the super regularity of pu and Derman's theorem. We see that y is
*
alsc a nonnegative super regular measure. But y(k) = 0, since & = 1
: *
by recurrence., Therefore, y(j) = 0 for every J, and u(j) = u(k)ekj

for every Jj. QED

Corollary 2¢ If C i1s a recurrent class and p 1s a nonnegative super

regular measure on C, then Z}x(j) converges or diverges according as C
J .
is positive or null.

Proof: This follows immediately from a corollary to theorem 6 page

*
49 in Chung [5] which states that g 3
J

¢onverges in & positive recur-

rent class and diverges in a null recurrent class. QED
We next consider the concept of an equitable class and show that

such a class can be charscterized by the nature of the super regular

12



functions and measures defined on it. We also state a proposition which
demonstrates the equivalence of several properties of a recurrent class
of states.

A class C of states is called equitable if eij = 1 for every 1
and J in C. Chung [h] has shown that an equitable class is recurrent,
and that a recurrent class is equitable if and only if the transition ma-

trix (pij) restricted to C is doubly stochastic.

Theorem 5: In an equitable class all nonnegative super regular functions

and measures asre constants.

Theorem 6: A recurrent class C is equitable if and only if the only
nonnegative super regular measures are constants.
| *
Proof: Suppose C is equitable. Then p(i) = p(k) &y = n(k)
for some fixed k and every i in C, and we see that p i1s a constant.
Now suppose that all nonnegative super regular measures are constants.
h (1) (k) x ¥ or i. Theref oo
Then M=p(i) =4 €y = M i or every i. erefore, eki =
for every k and i in C. Hence C 1is equitable. QED
Dermen [8] makes the following definition: the states of a recur-
*
rent class € are equally likely if ok

C, where 0 is a fixed state in C. This is equivalent to C Dbeing

= 1 for every state k in

equitable. Hence we have the

Proposition: In a recurrent class C, the following 4 statements are
equivalent:

l. All states in C are equally likely,

2. C 1is equitable,

3. (Pij) restricted to C is doubly stochastic,

k. All nonnegative super regular measures are constant.

13



We conclude the discussion of equitable classes with an example.

Let Y be an integer valued random varisble and let py= P(Y=i),
- o <1 ew We will assume that 1 is the greatest common divisor of
all the values of 1 for which p; > 0, and that E(Y) = 0. Let

Y, Y ,X,... be a sequence of independent random variables identically
1’72

distributed as Y. Define

n
SO=O’ Sn= Z Yk’ n=l,2,ooo °
k=1

A result of Chung and Fuchs [7] shows that the stochastic process
{Sn, n=0,1,2,...} 1is a recurrent homogeneous Markov chain with state

space I = {.00,-2,-1,0,1,2,...}. Moreover, the transition probabilities

are given by

p,. = P(S

y - 3l8, = 1) = Bty = 30) =3

Jg=i

so that {Sn, n=0,1,2,...} has stationary independent increments. We

observe that

Zpij =ij=i =1
1

i

for every Jj, i.e., the transition matrix is doubly stochastic, and it
follows that this chain is equitable. It is clear in general, from this

consideration, that a recurrent Markov chain with stationary independent

1



increments is equitable, and that this property is not affected by whether
the chain is positive or null.

Any irreducible finite Markov chain is positive recurrent, but cer-
tainly msy be non-equitable. For example, the chain with I = {1,2} and

transition matrix given by

L 1
2 2
3 L
L in
is positive recurrent, but
[s-] © .
* n-1 14 2 Z n-1_3
€12 Z Pp(Pyp)” T =53 =5 and ey Ppor(Pyy) 7= 3
n= n=

* %
so that it is not equitable, (ell= e..= 1 by recurrence). It is not

22
the case, however, that a recurrent equitable Markov chain necessarily
has stationary independent increments. Consider the finite chain with

I={1,2,3) and transition matrix given by

'y Y iy
3 3 3
L 1 1
3 6 2
L Y 1
3 2 6

This chain is positive recurrent and equitable (because the transition

matrix is doubly stochastic), but it does not have stationary independent

15



increments.

We femark that an infinite Markov chain with a doubly stochastic
transition matrix cannot be positive recurrent (see Feller [10]).

The following theorem was first proved by Foster [15]. Hié method
was to meke the zero state absorbing and to work with the resulting modi=

fied chain.

* Theorem 7: An irreducible Markov chain is nonrecurrent if and only if

there exists a bounded nonconstant solution to the system of equations
* Y = . .

X R IC AR
' J

Proof: Suppose there are no bounded nonconstant solutions to ¥,
that is, every bounded solution to * 1is of the form u(i) = c. Define

u(i) = fi

0 for 1 + 0, and u(0) = 1. This function satisfies *.

Henée f;o = ¢ = 1 and the chain is recurrent. Since there-is aiways
at ieast one bounded super regular function, nemely u(i) = 1, it follows
that I nonrecurrent implies that there exists a bounded nonconstant so-
lution to *. |

Now suﬁpose that there exists a bounded nonconstant solution to *.

It must occur that either (i) u(0) > % Po; u(J) or (ii) u(0) <g Po; u(j)e.

If (i) holds, then u is a bounded nonconstant super regular function

andvtﬁe chain must be nonrecurrent by corollary 1 to theorem 3. If (ii)
holds, let (i) = -u(i) for every i. Then v 1is a bounded noncon- '
stant super regﬁlar funétion and the chain is nonrecurrent for the éame

reason. QED

Theorem 8: Iet p be a nonnegative super regular measure and let

v(j) = n(3) - (i) Py 5 If p(j) <o, and if there exists a state i

16



which leads to J such that v(i) > 0, then Jj is nonrecurrent.

Proof: Let b(j) = lim ):u(:..) p()
. n—> o i

o >u(j) = Z [Zu(l) p; Zu(l) P<n l)] +b(J) =
" n=0 i '

Z Z[u(l) “Z (k) pkl]p( n) +b(J) = Z ZV(:‘L) p§§)+ ‘b(j?,

n=0 1 n=0 i

Therefore,

o > z Z V(l) p(n) ZV(i) ZP(n)

n=0 i i J

n)

Hence, if there exists a state i which leads to (so that péj_ is

not equal to zero for every n) with v(i) > 0, then z pga) <o and
: : n=0

J 1s a nonrecurrent state. QED

Corollary: An irreducible Markov chain is nonrecurrent if and only if
there exists a nonnegative super regular measure u such that

p(k) > ¢ (i) Py, for some state k.
] .k

Proof: Assume such a measure u exists. Then k leads to
for every j and v(k) > 0. Hence the chain is nonrecurrent by the
’ *
theorem. If the chain is nonrecurrent, then p(i) = Pos satisfies the

conditions. QED

Theorem 9: Suppose u 1is a nonnegative super regular function such that

lim u(i) = O, Then lim

7 = O for every k for which u(k) > 0.
i=>o . Jomz> }

17



Proof: Fix any state k. By theorem 4
u(l) >f u(k) >p(") u(k)

for every v and every i. Hence

U.(:L) >=—- Zp(\’) u(k)

vw=1

for every n and every i, and we see that

n

u(i) >11m ;1{ Z u(k) u(k)
. - .

for every i. But O = lim  u(i) > lim L u(k). Therefore, if

u(k) >0 we have lim x,, = 0. QED
PR ik

We remark that Ilim 0,
ik

= 0 for every i since T ﬂik <1l for

every 1i. Now we see that if there exists a strictly positive super regu-

lar function u such that lim u(i) = 0, then lim
i=> o . k== o

“ik. = 0 for

every k also.

18



III. DNon-Dissipative Markov Chains

A Markov chain is called non-dissipative if T “ij= 1l for every i,

d
Equivalently, the chain is non=-dissipative if, for every i,

1=£(1,D) = P{X ¢ D for some n = 1,2,...|X= i},

where D is the set of all positive recurrent states in the chain. See
Chung [5], page 35, for proof of this equivalence. We note immediately
that if a Markov chain is non-dissipative, then D is non-empty and there
are no null recurrent states at all in the chain.

A nonnegative super regular function u will be called properly
divergent if u(i) => o as i—> «.

The followiné theorem is a generalization of one due to Kendall [18]
who proved that if a properly divergent super regular function exists,
then the chain is non-dissipative. Foster [13] had previously proved the
same theorem for the special case of u(i) = i. The terms non-dissipative

and properly divergent are due to Foster.

Theorem 10: In any Markov chain, if a properly divergent super regular
function u exists, then

(a) there are no null recurrent states in the chain,

(b) D is finite (if non-empty), and

(¢c) the chain is non-dissipative.

Proof: Suppose the set E of all null recurrent states is non-empty
Then there is a null recurrent class CcE and C 1is infinite. There=~
fore; U=—> on C. But u must be constant on C by corollary 1 to
theorem 3. This is a contradiction. Hence E 1is empty. Similarly, if

D 1is infinite; then u = o on D which provides another contradiction.

19



Consider the Markov chain {an, n=0,1,2,...} which is the orig-
inal chain {Xn, n=0,1,2,...} restricted to start at state k, i.e.,
Xk0= k with probability one (k is arbitrary but fixed.) The functional
process {u(an), n=0,1,2,...} is a nonnegative superAmarbingaleo It
follows from thé super martingale convergence theorem that there exists
an o function v such that u(an)—a-% v with probability one as
n——>o, and 0 <E(v) <w. ILet T = I=D be the set of all nonrecurrent
states in the chain. .We know that there are no null recurrent states at
all and that D if non-empty, is finite. We want to show that
f¥(k,D) = 1. If k € D we are done. Assume k is not an element of
D. Lef B = {ws an(w) ¢ T for every n}. The subset of B for which
{an(m)} is a finite sﬁbset of T has probability zero. Hence for

weB viw) = Lim u(an(w)) equals + o by the proper divergence of
. n=> o .

u., Therefore, B is a null set, since otherwise E(v) = . This shows
thet D is non-empty (and hence finite) and that f*(i,D) =1l. But k
was arbitrary. The result follows. QED ” |

Remark on how fast a function can diverge and still be super regular.

Let u be a super regular function. Then

al s
is a (sub stochastic) transition matrix. § qij <1 implies that
: J

q 5 —~>0 as j == o for every i. Hence u(j) P; 5 —>0 a8 Jj=> o

for each i, i.e., u(j) = o(P—l-=) for every i. We see that u cannot
. ij.

go to infinity faster than the slowest row probabilities go to zero.

20



The state space of the Markov chains under consideration is denoted
by I. Iet A be an arbitrary subset of I. Let X denote the Markov
chain. Define a new Markov chain X(A) by making each state in I-=A
into an absorbing state, i.e., X(A) =.X stopped when, if ever; a path
leaves A, so that after a path reaches a point in I-A it remains st
that point throughout all later steps. The primary result in the re-
mainder of this section is due to Mauldin [19] and is stated below.

The proof uses a series of lemmas which study the properties of the dif-

ferences w(i) = u(i) = ¢ piju(j) and the Markov chain X(A) when I-A

is a finite set.

Theorem: In any Markov chain, if there exists a function u such that
1im inf w(i) > 0, then the chain is non-=dissipative.
We precede the lemmas and the proof of this theorem by some examples

of non-dissipative Markov chains.

Example 1l: A one dimensional random walk on the nonnegative integers

with an absorbing state at zero. 1. If i 0, then P; 4= P >0
2

Poo ©

Py g =T Py 3.1 = ¢ >0, with p+r+q=21. In this case D = {0}

and every other state is nonrecurrent. Iet u(i) = i. Then
Z Po; u(J) = u(O} = 0,
J

and for i § 0

Zpij u(d) = q(i-1) + ri + p(i+l) = 1+(p-q) = u(i)+(p-a).
p , . _ . _ _
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Therefore, if p < g, u is super regular. Clearly u is properly di-
vergent. Hence; by theorem 10, we have the well known result that if
P < g then eventual asbsorbtion into the zero state is certain, regard-

less of the initial state.

Example 2: A random walk on the nonnegative integers with an sbsorbing
state at zero. Here Pog = l. If i + 0, then Pi,i+l= p; >0,
Py 4= Ty >0, Py i1™ Y > 0, P; 4= 0 if |i-3j| > 1. Here again D = {0}

and every other state is nonrecurrent. Iet wu(i) = i. Then

?pOj u(j? = 0 and ?pij u(j? = u(i? + (pi~= q:.) for i { 0. Hence,

if p; <q; for every i, then we have that £%(i,D) = £¥, =1 for

every i by theorem 10, In addition
W(l? = u(n.) - zpij u(J.) =D - g
J

Therefore, if lim  inf(g.- p.) >0, then f¥. =1 for every i by
%= Py ? i

fomd> o 10
the theorem to be proved. It is well known (see Feller [11]) that ab~-

sorbtion into the origin is certain if and only if the series

o
X 4q950 04,
& PyPyee Py
diverges. Foster [14] has shown that this condition is necessary and
sufficient for the existence of a properly divergent super regular funce-
tion in this case. (Actually, Foster considers only the case where
= 0 for every i, but his proof goes through in the more genersl

situation).
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Example 3: Now consider a two dimensional random walk, i.e., a Markov
chain on the lattice points (x,y) in the plane with integer coordinates.
If (x,y) £ (0,0) we have probability %= of going to any of the four
adjacent~sta£es (x,y—l), (x,y+l), (X°l,y) and (x+l,Y) The state (0,0)
is absorbing. Here D = {(0,0)} and every other state is nonrecurrent.
We enumerate the states as follows: (0,0) is state 0. Now number all
those states (x,y) with |x| + |y] = l,‘then those with |x| + |y| =

etc, Define aAfunction u on these states by

u(0,0) = 0

u(x,oj = |x| +1 if x40

wo,y) = |yl +1 1 yio

u(x,y) =|x| +|y|] 4if x4+ 0 and y 4 o0,

This u 1is regular and properly divergent. Hence eventual absorbtion
into the origin is inevitable. (This is not a new result. It follows
directly from a theorem of Polya. (See Feller [llj))

Finally, consider a symmetric random walk in three dimensions.
Since there are no recurrent states in this case (also from Polya's
theorem), it follows that there cannot be any properly divergent super
regular'functions. In particular, the functions u(x,y,z) lx]+|y|+|z|

2 1/2

and u(x,y,z) = (x + ¥ 2 are not super regular.

Lemma 1l: If u is a nonnegative super regular function, then

inf w(i) =
i .

Proof: Suppose inf w(i) > 0. Then w(i) is bounded away from

zero, say, w(i) = u(i) - Ejpiju(j) >e >0 for every i. Hence
. 3 .
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u(xn) - E[u(xnﬂ}lxn] > ¢, foea,

E[u(X lxn‘] <u(x) - e, and

)
E[u(Xn_l_l?lXO] = E{E[u(Xn_l_l?IXn]lXO} < E[u(Xn?[XO] - €
Similarly,
E[ugxma?lxoj = E[u(Xn+l?lX0] . e < E[u(xn)lxo] - 2¢ .
Continuing in this way we see that, for any positive integer k,

E[u(xnﬂ:}lxoj < E[u(xn?lxo‘]--- ke.

Now let i0 be an arbitrary state. We have

(n)
1.3

E[ugxmk?lxo =11 < ‘E[’u(Xn?I X 1.7 ke = ZP ;

u(j)-ke < u(io)=ke
3 o e
which is negative for a sufficiently large k. This contradicts the as-
sumed nonnegativeness of u. Hence w cannot be bounded away from zero.
QED

In a similar fashion it can be shown that if u is any bounded non=--

negative sub regular function, then Py u(j) - u(i) cannot be bounded
3 . ,

away from zero.
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Lemma 12: Let {Xn, n=0,1,2,...} be a Markov chain with state space
I=1{0,1,2,...} and let u be a nonnegative, super regular function

such that E[u(xo)] < o, Then, with probability one, lim inf w(xn)=o,
‘ n—=> o .

Proof: I Pi,ju(j) = E[u(}{n_*_l)l}{n = 1] and this does not depend on
J' . .

n. Hence W(Xn) = u(Xn) - E[u(Xn+l)[Xn]. For every n we have that

E[u(Xn?] = izn[ﬁ(xn?[xO'= 1] B(X, = i?= f >j:p§?u(j?r(xo=i) <

¥ u(i) p(XO= i) = E[u(xo)] < @, Therefore, E[w(Xn)] exists and
i S

E[W(Xn?] =E[u(}§n?] : E[u(xn+l)], Furthermore, iix_n_} mE[w(Xn)j exists

and equals 0. Hence, using Fatou's lemma,

0 = lim E[W(Xn)] > E[lim inf w(xn)].
1 ——s> @ o n=—> o« .

and this implies, in view of the fact that W(Xn) is & nonnegative ran-

com variable for every n, that lim inf W(X = 0 with probability

)
n—> o o
one. @ED

Corollary: If the sequence of random variables W(Xn) s 1 =0;1000 18
a.5. uniformly bounded, then with probability one, w(X ) =>0 as
n —>» o, [We note that this will be the case if u is bounded since

0 <w(il) <u(i) for every i.]

Lemma 13: Iet u be a super regular function. Suppose there exists a
non-empty finite set B of states such that w(i) =0 if i € B and

w(i) >0 if i e I-B. Suppose also that lim inf w(i) = ¢ > 0. Then
Lo > o

the chain is non-dissipative.
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Proof': Consider the process [an, n=0,1,2.00}s k is an arbi-
trary but fixed state. E[u(xko)] = u(k) < @, By lemma 12,

lim inf w(X_ ) = O with probability one. Let
Il ==—=> © .

N = {w: ldm inf w(xkn) + 0}, and let w' ¢ N. If the sequence of states
n—= o ,

{x (*)};_, runs through an infinite subset of I, then

lim  inf WX (0')] 2 Lin  inf w(i) = e >0, s {X_(0')]}]_, takes
n=—= o . . g e— o . .

on only a finite number of values. But lim inf w[Xn(w')] = 0. Hence

n—> o .

there exists an integer N(w') such that 'W[Xn(w'] = 0 for every N(w'),
i.e., an(w') ¢ B for every 'n > N(w'). Therefore, for every w' € N |
the path function {an(w')};=o eventually enters B and remains there
throughout all the remsining steps. Tt follows that D40 and
f¥(k,D) = 1. But k was an arbitrary state. The result follows. QED

Iét A be an arbitrary subset of I. Define h¥(i,A) =
P(Xne A for some n = 0’1’2’°°°IX0= i). This functiéﬁ is'closely related
to the function £*¥(i,A) previously défined. In particular
h¥(i,A) > £%(1i,A) for évery i and every set of states A. Hence a
Markov-chain is ﬁon-dissipative if and only if h¥(i,D) = 1 for every
i (since D is a closed set of states). h*(i,Aj is.a super regular
funétion} regular if 1 € I-A. The foliowing lem@a concerning the func-=

tion h¥ can be found in Doob [9].

Iemma 14: In any Markov chain, h*(Xn, A) has limit one along almost
every path function of {Xh, n=0,l,s..} which hits A infinitely
often, and limit zero otherwise.

Corollary: Iet A be the set of all recurrent states in the Markov

chain. Then h*(Xn, A) has limit zero along every path function of
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{Xn, n=0,1,2...} which never hits A, i.e., which remains always in
the nonrecurrent states. Stated another way, this says that

1lim h*(Xn,A) =1 or O according as X  ever hits A or not.

n—> o . :
Lemmas 15 and 16 are originally due to Mauldon [19]. The proofs

are newv.

Lemma 15: Let X = {Xn, n=0,1,2,...} be a Markov chain with no null
recurrent states. Fix any state k, and consider the Markov chain

% = X(I - {k}). Then X is non-dissipative if and only if X is non-
dissipative. |

Proof: That X non-dissipative implies i non=-dissipative is
clear., Suppose i is non-dissipative. Iet D Dbe the set of all posi=
tive recurrent states for X. Then Dy {k} 1s the set of all positive
recurrenf states for io The path functions of i differ in behavior
from those of X only when they reach the state k. If k € D, then
D is the set of all positive recurrent states for % and since i is
non-~dissipative, almost every path function of % enters D. Therefore;,
almost every path function of X enters D, and we conclude that X is
non-dissipative.

Now suppose that k ¢ D. Iet B, = {w: Xh(w) ¢ D for some
n=0,1,200..} and B, = {ws Xn(w) = k for some- n=0,12,000}. Now
£%(1,D) = P(By|Xy= 1) = 1 - P(B] n‘Bglx(): 1) - P(B] N By|%X, = 1) =
P(BUB,|%,= 1) = B(B] N By|X, = 1) = P(BuB,|X = 1) - P(B,|X,= 1) -
P(B§|X0= k) = f*(i,Du {k} - f?.fk[l-f*(k,D)]o This is .proved by the.method
of First entrance (into k). But X is non-dissipative. Therefore,

£%(1i,DU {k}) = 1 for every i, and, putting i =k, we get

f*(k,D) = l—fﬁk[l-f*(k,D)]. However, since k £ D, k is a nonrecurrent
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kk
that £*(k,D) = 1. Substituting this in the relation

state for X, and f£¥_ < 1. Therefore, solving for £¥(k,D), we conclude

£%(1,D) = 1—f§k[1=f*(k,b)], it follows that £¥(i,D) = 1 for every i.

QED

Corollary: Iet X be a Markov chain with no null recurrent states and
consider X(A), where I-A is finite. Then X(A) is non-dissipative

if and only if X 4is non-dissipative

Lemma 16: Let X be an arbitrary Markov chain and consider X(A), where
I-A 1is finite and no state in I-A is null recurrent. Then X Aand
X(A) have the same null recurrent states, i.e., if i is a null recur-
rénf state for X, then i 1is a null recurrent state for X(A), and con-
versely. |

Proof: It will suffice to demonstrate the result for I-A = {k},
a singlte state. The state k is not null recurrent for X or X(A)o
Suppose i + k and i leads to k. Then 1 is nonrecurrent for X(A)
and is not null recurrent for X (since if it were it could not lead fo.

k which is not null recurrent). Suppose i % k, and i does not lead
te k. Then the character of .i_ is the same in both chains. Thus X
and X(A) have the same null recurrent states. QED

The theorem of Mauldon follows.

Theorem 17: In any Markov chain, if there exists a function u such

that 1im inf w(i) > 0, then the chain is non-dissipstive.
i==> o o

Proof: Suppose u is super regular and that 1im inf w(i) = ¢ > 0.

i o ..

There exist at most a finite number of states, say a set J = {jl’ooogjm} c I,

such that w(jk) <e/2, k = 1,00.,m. Suppose J = or if J ¢, that
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min w(jk) =§ >0, Then w(i) X6 >0 forevery i e I, and w
k=l,aoo’m .

is bounded away from zero. But this cannot happen by lemma 1l. There=
fore, + b and there exists at least one state jk € J for which
w(jk) = 0. Hence the set B = {i ¢ I: w(i) = 0} is non-empty and finite.

The result follows from lemma 13. Now assume that lim inf w(i) = ¢ > 0,
> :

but u is not super regular. ILet A = {i ¢ I: w(i) >0} and define
X(A) as above. Properties of lim inf assure us that I-A is finite.
The transition probabilities for the Markov chain X(A) are given by

Pij = pij A 1 e A, and

Pij = aij if i e I-A.

Consider the function wu for the Markov chain X(A). For i ¢ I-A we

have
D Byy w(3) =) 8y u(3) = u(),
3 J

and for 1 e A we have
2.8y (0 = ) opy u(s) Sula).
J J

Hence u is a nonnegative super regular function for X(A) and the set
B=1{ieI:w(i)=0 for X(A)} c I-A is finite and non=-émpty.. By the
proof of lemma i3 X(A) and cénsequently X (by lemma 16), have no null
recurrent states. X(A) is non=dissipative by lemma 13. it follows from

the corollary to lemma 15 that X is non-dissipative. QED
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IV. Almost Closed and Sojourn Sets

The previous resulbts, in particular theorems 10 and 17 are concerned
with a situation in which almost every path function of the Markov chain
under consideration eventually enters and never leaves a certain set of
states, e.g., the set of all positive recurrent states in the chain. In
recent years there has been considerable interest in the classification
and characterization of sets of states that are entered infinitely often
by a set of path functions with positive probsbility, but not necessarily
probability one.

The first work along this line seems to have been done by Blackwell
[1] in 1955; some of which will be described below. Further work has
come from Brieman [2], [3], and Chung and Derman [67.

Feller [12] has also contributed to the analytic study of these
sets. We will define these sets and study some of their properties,
putting particular emphasis on thelr relation tc super regular functions.
We conclude with results which give some knowledge about the behavior of
a super regﬁlar function in the evolution in time of & Markov chain.

Iet A be an arbitrary set of states. We define (Chung [5])

L(A) = lin sup{mzxn(w) e A}

{w:Xn(w) € A for infinitely many n},
n—> .

and

L(A) = lim inf{wzxn(u;) € A}

{w:X (w) € A for all but a finite
n—=> @ .

nunber of n}.

The set A will be called a sojourn set (Chung [5]) if P{L(A)} > O,

and will be called almost closed (Blackwell [1]) if 0 < P{L(A)} = P{L(a)}-

Clearly every almost closed set is also a sojourn set. We note that in
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an irreducible recurrent Markov chain the only sojourn set is the entire
state space which is also almost closed. In general, every closed set
of states is also almost closed.

A set A of states is called transient if P{L(A)} = 0. In a re-
current Markov chain the only transient set is the empfy set. In a non-
recurrent chain every finite set is a transient set. In a non-dissipative
chain the set I-D is transient, and D is (almost) closed.

Exggglé of a sojourn set which is not almost closed;

Consider a Markov chain with state space I = {0, + 1, + 250..}
which consists of three communicating classes: I, = {o0ey=3,~2,=1}
which is nonrecurrent. I, = {0} in which O is an absorbing state,
and I3 = {1,2,3;:00} which is recurrent. We assume an initial distri-
bution {pi, ~o < i <o} such that g p; >0, Py >0, and z by > 0.

ieIl 1e13
Let A = {-1,0,1}. Now P{L(A)} =p, >0, and P{L(A)} > P{L(A)} since
the state 1 is recurrent. Henée A 1is a sojourn setvbut it'is'not al-

most closed.

Example of a sojourn set which is not almost closed in an irreducible

Markov chain. Iet I be the set of nonnegative integers, p01= p02= %',

1

1= 5> 8nd Poyy o= Ppy oF ~ 2
(1+1) s 7 (i)

Poj-1,0141 = Poi,zi4n = , i >1,

Then I 1is a nonrecurrent clasé; the set of even integeré and the set
of odd integers are two disjoint almost closed sets. Iet A be the set
consisting of the even integers and ‘*half*' the odd integers. A is a
sojourn set which is not almost closed.

We observe that the sets L(A) and L(A) have an invariance pro-
perty which is related to the fact'that they ao not depend on the behavior

of the path functions for the first finite number of steps. This can be
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expressed more cgrefully in the following way: Consider a fixed w € Q.
This w yields the path function {xo(w), l(w),,...}, w € L(A) if and
only if there exists an integer N(w) such that X (w) ¢ A for every

m >-N(w), and this remains true even if we ignore the flrst K steps
(for any K), i€y, w € L(A) if and only if there exists a number N(w)
such that X (w) € A for every m >'max(N(w) K) Similarly, w e L(A)

if and only 1f for every N > K +there exists m.>»N such that |

X (0) € A, and this is true for every K. It follows that the probabili-

ties P{;(A)[ani} and P{iKA)[Xh:i} do not depend on n.
Theorem 18: A set A of states is transient if and only if
P{E(A)[xo=i} = 0 for every i € A.

P{L(A)} =

0 for all states i

Proof: Suppese A is transient. Then O

= P{L(A)|X,= 1} P{X = 1}. Hence P{L(A)|Xy= 1]}
i . .

such that P{X = i} > 0. Similarly, 0 = P{L(A)} = £ P{E(A)le 1} P{X=1}.
o i .

\

Hence O = P{"L"(A)le i} = P{L(A)I'X =i} (by 1nvar1ance) for all states
i such that P{X =1} > 0, and so on. All states must eventually be
accounted for in this way by definition of minimal state space.

Now suppose that P{f(A)]XO= i} = 0 for every i € A. Then the
probability of entering A infinitely often, starting from a state in
A, is zero. If there exists a state Jj € I=-A such that
P{E(A)Ixo= 3} >0, then P{L(A)]xo= k} >0 where k is the state in
A fifst hit by a path from j; and this is impossible by assumption.
Hence P{L(A)|X,= i} = 0 for every i and P{L(A)} = 0. ‘GED

An almoét closed set will be called ggggig_if'it does not contain

two disjoint almost closed subsets, and completely nonatomic if it does
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not contain any atomic almost closed subset. If A is atomic and B
is transient, then AUV B is atomic. A Markov chain whose state space
consists of a single atomic almost closed set is called atomic.

The most important theorem concerning almost closed sets is the

following decomposition theorem which is due to Blackwell [1].

Theorem iDecomposition Theorem): We have the following decomposition

of the state space:

I=AjuA UAU...

where the A's are a finite or countable number of disjoint almost
closed sets, at most one of which is completely nonatomic and the others

are atomic; and

(=]

), PLLA)} = L.

n=

The decomposition is unique modulo transient sets. Each existing re-
current class may be taken as one of the atomic An's; each of the re=
maining An's including the completely nongtomic one, if present, con-
tains only nonrecurrent states.

Blackwell [1] has also shown that the decomposition consists of a
single gtomic almost closed set if and only if the only bounded regular
function is a constant. This result is known as Blackwell‘s theorem.

The concepts of transient and almost closed sets can be used to
provide still another proof of Foster's theorem (Theorem 7 of this paper)

in the following manner:
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Iet C be an essential class of states. Choose an arbitrary state

0 in C. Make O absorbing by setting ﬁij= ys) if 140 and

iJ
A

Poj = %03 °

Lemma 19: C becomes abtomic under this change if and only if it was

originally recurrent.

Proof: Suppose C was originally recurrent. Under the change O
becomes an absorbing state and every other state is nonrecurrent. By
the original recurrence we have that P{absorbtion into O]Xb= i} =1
for every 1 e C so that P{L(C- {0})|Xb= i} = 0 for every i e C which
says that C - {0} is a transient sét. Clearly C (before and after
changing) is almost closed. {0} is almost closed since L({0}) =
{w:xn(w); O infinitely often} and L({0}) = {w:X (w) =0 for all
but a finite nuiber of n} are both sets héving probaﬁility one (in
the changed chain). {0} is atomic. Therefore, C = [C - {0}]y {0} is
the disjoint unioﬁ of an atomic almost closed set and a transient set,
from which we conclude that (the new) C is atomic.

Now suppose that the changed C' is atomic. Then C does not con-
tain two disjoint almost closed subsets. {0} is a positive recurrent
class in the changed chain and is therefore almost closed. Hence C=- {0}
is not almost closed and either (i) P{L(C~{0})} = P{L(C-{0})} = O, or
(i1) P{L(c-{0})} > P{L(C-{0})} .Su;ppose (i)- is true. Then C- {0}
is é transient éet and almost.every path funcfion eventually leaves
C- {0} and stays away forever after. Hence O is a recurrent state
for the original chain and the original chain must have beéen recurrent.
Now suppose (ii) is true. Iet A = L(C= {0}) = L{C- {0}). Then
A= {w given any N there exist N, >N and N. >N such that

1 2
Xﬁ (w) + 0 and XN (w) = 0} and since O is sbsorbing in the new chain
1 - 2 -
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A must be a null set. Hence (ii) caunot hold, and the original chain
is recurrent. QED.

The theorem of Foster follows.

Theorem: Let O Dbe an arbitrary state in an essential class C. The

system of equations

* w(i) = ) gy u(d), 140
jec '

has a bounded nonconstant solution if and only if C is nonrecurrent.
Proof: Suppose * has a bounded nonconstant solution. Make O

absorbing as in lemma 19. In this new chain the system of equations
¥K i = ‘l

u(1) Zﬁij u(J)
.. 3 ,

has a bounded nonconstant solution. Hence, by Blackwell's theorem, the
new chain is not atomic which implies, by lemma 19, that the original
chain is nonrecurrent.

Now suppose that the original chain is nonrecurrent. Make O ab~
sorbing as in lemma 19. By lemma 18 the new chain is not atomic. Hence,
by Blackwell's theorem, there exists a bounded nonconstant solution to
*¥, Therefore, there exists a bounded nonconstant solution to * in
éﬁe original chain. QED

There are two functions, denoted by Oy and SA (defined below)
which are super regular and are useful in the study of sojourn sets aﬁd

almost closed sets. These functions have been extensively studied by

Feller [12]. In order to define them we must introduce the notion of
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taboo probability.
‘Let H be an arbitrary (possible empty) subset of the state space

I. We define the taboo probabilities HPJ(.f]l) as follows:

n . .
Hp:i(.j) = P{Xn = J, X\) £H for y = 1,2,,..,n|XO= i} for

iGI"’H, J.GI"“H, and n = 1,29000

Hpj,(_::jl) = O if i€H or jGH, n = 0‘5132,000
(0) _ , -
i = Gi,j if ieI-H and jeI-H.

The matrix HP = (Hpij) in sub stochastic. This definition of taboo
probability differs slightly from the standard definition of Chung [5]
in that we here take account of the first and last steps of the transi-
tion. This definition is, however, more convenient for our present pur-
poses. It has been used by Kemeny and Snell [16] under a different no-
tation, and is essentially the definition employed by Feller [127.

We .note that k <bP = P. We will say that a function u is super

regular with respect to H‘P if

u(i) ZZHPij u(j) for every i ¢ I.
J

Let A be an arbitrary set of states. We define (Feller [12])

l.:‘i.m> Z TA pgg) = P{Xne A for all anO= i}
n—>e o

O'(i)= lf ied

0 if i A
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The following theorem gives some properties of the function Ope Parts
(1) and (ii) are due to Feller [12], as is all of theorem 21, and (2)

of theorem 23.

Theorem 20: For any set A of states
(1) qA(i) exists for every i, and the limit is attained mono=-

tonically,

ii) o, is a sub regular function with respect to P,
ii) n i b gular functi ith t to P

(iid) g, is a regular function with respect to 1.pb> and

(iv) 1£ GA(i) >0, then % I=A9§?) >0 for every n.

. A jeA J
Proof: For i ¢ A we have jEA I=AP§?) = P{Xve A, V=l,oofynlxo=i}
_ e — _(n+1) . . -

Z;P{Xve A for y = l,.o.,n+llXO— i}= ¢ T-P13 from which (i) fol

JeA

lows immediately. (ii) and (iii) are shown by direct computation.
oA(i) = P{X ¢ A for every n|x0= i} SP{XeAvs= 1,.“,n[Xo= i} =

(n) »
% _pPi:’. Hence (iv). QED
jeA I-A"1 ,
Let A be an arbitrary set of states. We define (Feller [12]) for

each 1 eI

Theorem 21l: For any set A of states
(1) S, 1is a regular function with respect to P, and
(i1) o< A (1) < SA(i) <1 for every i.
Proof: Both parts follow from the theorem of Feller in section II

of this paper. GED
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It follows from this theorem that if i leads to J and S (j) > 0,
then S (i) > 0. Hence, if i and j commmicate, then § (1) and

S (J) are either both positive or both zero.

Theorem 22: There exists a state i ¢ A for which qA(i) >0 if and
only if there exists a state k for which SA(k) > 0.
Proof: 'Suppose qA(i) > 0. Then, since 0 < qA(i) EZSA(i) for

every i, we see that S (i) > 0. Now suppose SA(k) > 0. Then

0<8 (k) 1lim (?) A(J) and there must be a state 1 € A for
. n—> o J .

which UA(i) > 0. QED

Theorem 23: ILet A be an arbitrary set of states. Then, for every
iel, SA(i) = P{;&A)IXO= 1} and the following 3 statements are equiva-
lent: o o
(1) A is a sojourn set,
(25 For some i e I, SA(i) >0 (equivalently, qA(i) >0 for some
| ieA), - |
(3) There'exists a state 1 € Aand an € >0 such that g T Ap(n)> 0

JeA
for every n.

Proof: For i € A we have ¢ (i) =P{X e A for all nIX =

Therefore, SA(i) = lim = pi ) (J) = lim P{X € A for m=n,ntl;...
oo n—> o jeh J- : n—> «

Xo= 1} = P{L(A)|X,= 1}, That (2) implies (3) follows easily from the
fact that o (1) is approached monotonlcally from above. It is clear
that (3) implies (2). Suppose (2) is not true. Then P{L(A)|X =1} =
for every i and P{L(A)} 2 P{L(A)IX =1} P(X,= 1) = 0o Hence, by
contraposition; if A is a sogourn set, then S (1) >0 for some 1.

Now suppose that SA(i) > 0 for some 1. Then, there exists a state 1
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such that 0 < P{Q(A)[XO= i} = P{L(A)lxm; i} and this conditional proba-
bility (whenever defined) does not depend on m. Let m be such that
P{X = 1} > 0. Such an m exists by definition of minimal state space.
Now P{L(A)} = = P{L(A)|X = J} P{X = J} > P{L(A)|X = 1} P{X = i} >o.

. J . .
Thus (2) implies (1) and the result follows. QED
Theorem 24: ILet u be a nonnegative sub regular function with
0 < ||u]] = swp u(i) < w, Then for any number a ¢ (0,||u||) the set

iel

.\/ \
B(a) {ieI u(l) >||u|| - a} is a sojourn set.

Proof: The functional process {u(Xn), n=0,1,2,...} is a non=-
negative sub martingale which is bounded above (by Jlu]])o Therefore,

by a sub martingale convergence theorem, there exists a nonnegative ran-

dom variable Vv such that lim u(Xn) = v with probability one, and

E[u(X )] < E[u(X )] < eoo < E(v) let A= {we u[X (w)] does not con-
verge}. A, is a null set. Now suppose, for some number ae€ (O,Ilull),
that B(a) is not a sojourn set. Then, clearly, no subset of B(a) is

a sojourn set. Let & = ||u||/k, for k = 1,25..0.-0 We note that

a;= [|u] ], 1im 2,= 0, and that the sequence {a } is decressing. It

——>

follows that B(ag ) :>B(a ) :>B(a ) Dees o Iet &, be the largest ele-
ment of {ak} whlch is less than or equal to &. Such an a£ exists

since lim &, = 0. Thus B(a,) « B(a) and P{L (B(a,6))} = 0. Hence
k—> o L : - £

P{L (I—B(a ))} 1 and almost every path function hits ~B(a ) infinitely
often. Let A, = {w:X (w) does not hit I=B(a ) infinitely often}
A is anull set. If we Q = (AO A ), then x (w) € I=B(a ) infinitely

£
often, i.e., u[Xn(w)] < |Iul| - az 1nf1n1tely often and
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. [o0)
v(w) = lim u[Xn(w)] < |lul| - a,. Now let A = Ajy U A where
oo n—> o« : m=g

A, = {w: X (w) does not hit I-B(a ) infinitely often}.

‘ © . — .
P(a) <P(a,) + mEe, P(A ) = 0. For we I-A we have that v(w) < ||ul|-a,
m = g,4+ly.+. , Therefore, v(y) < O which implies that v(w) = O with
probability one. We coneclude that E(v) = 0 and, consequentl&, that
E[u(Xn)] = 0 for every n. We will sﬁow now that this implies that
us=0 .which will contradict ||u|| >0 and the result will be proved.
Suppose there exists a state i for which u(i) > 0. By definition of
minimal state space there exists an n for whiéh P{Xn= i} > 0. There=
fore, E[u(Xn)] > u(i) P{X = 1} >0, which is inconsistent with

E[u(¥,)] = 0. QED

Corollary: ILet u be a nonnegative super regular function and let «
be any positive number. Then the set A = {iel: u(i) <} is either
empty or a sojourn set. |

Proof: u is nonnegative and super regular. Therefore, the func-

tion S defined by
5(1) = ~(min[u(1), o] =)

is nonnegative, sub regular, and A = {i:u(i) <a} = {i:8(i) > 0}. Now

either S = 0 in which case A is empty, or [ISII =sup S(i) > 0. In
iel :

the latter situation choose eny number a € (0,]18]]) and et

a=[[s|]| =a. Now B(a) = {i: 8(i) >ay} < {i: 8(1) >0} = A. But

lo
B(a) is a sojourn set by theorem 25, Therefore A, being a superset of

a sojourn set, is also a sojourn set. QED
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Let Yl,Y2;ooa be a sequence of independent identically distributed
integer valued random variables such that 1 is the absolute value of
the greatest common divisor of the set of all integers i for which

0 < P(Yn= i) = p;e Iet XX ,... be a sequence of random variables

defined by

P
fl

0 with probability one

n
X, =X, + Z Y, n>L
k=1

Then {Xn, n=0,1,2,.0..} is an irreducible Markov chain with stationary
transition probabilities and state space I = {0, +1, + 2,000} The

one step transition probabilities are given by Pij = pJ. i The follow=-
ing theorem shows that all bounded regular functions on such a chain are
constants. Of course;, if the chain is recurrent, then the result is known
in a more general form (see corollary 1 to theorem 4 of this paper). Thus
we may assume that the éhain is nonrecurrent-although this aSSUJI@'tiOIl plays

no part in the proof to be given.

Theorem 25: Let {Xn, n=0,1;2,...} be a Markov chain of the type described
in the preceding paragraph. Then every bounded regular function on this
chain lis a constant.

Proof: ILet u be a bounded regular function. We maey assume, with=
out loss of generality, that u(i) >0 for every i. The functional pro=-
cess {u(Xn), n=0,1,2,...} 1is a Bou.nded nonnegative martingale. There= -
fore, w:‘i.“bh IIJrobability one, there exists a random variable v such that

1im u(Xn) =v, and E(v) = E[u(Xn)] = E[u(XO)] = u(0), a constant.
n—> o . v . . ) .

Let C be any nonnegative real number and let A = {w: v(w) =C}. A €

b1



tail g-field of {u(Xn), n=0,1,2,...} < tail c—field of {xn, n=0,1,c0.} =
tail g~field of {Yn, ﬁ=l,2,...} which consists entirely of events having
probability zero or one, by the Kolmogorov zero-one law. Hence v is a
constant with probability one, and, since E(v) = u(0), we see that

v = u(0) with probability one. Now suppose tﬁat u .is nonconstant.

We may also assume, without loss of genmerality, that 0 < u(0) < ||u]|

(since if u(i) = ||u|| for any i, then wu = ||u|| and is a constant).

Iet a be chosen in such a way that ||u]] u(O) + ¢ for some
number € > 0. Then, by theorem 24, the set A = {i: u(l) > u(O) + ¢}
is a sojourn set. Hence O <P{L(A)} = P{w: X (w) ¢ A for all but a
finite number of n} = P{w: u[X (w)] > u(O) + e for all but a finite
number of n} < P{w: v(w) > u(O) + ¢}, Therefore, P{w: v(w) > u.(O) + e}

But this conti'adicts v o= u(O) with probability one. Hence u is con-

stant. QED
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