On Second Moments of Stopping Rules

bу

Y.S. Chow and H. Teicher Purdue University

Department of Statistics

Division of Mathematical Sciences

Mimeograph Series No. 59

October 1965

^{*} Research under National Science Foundation Contract No. GP-4590.

On Second Moments of Stopping Rules

by

Y.S. Chow and H. Teicher Purdue University

Summary. The current investigation is a natural outgrowth of [2], being concerned with the variance of stopping rules and the effect of non-zero means on the variance of a randomly stopped sum. Some martingale generalizations of applications of [2] also appear.

- 1. Introduction. A stopping rule or stopping variable of a sequence $\{X_n, n \geq 1\}$ of random variables defined on a probability space (Ω, \mathcal{F}, P) is a positive integer-valued random variable t such that for every $n \geq 1$ the event $\{t = n\} \in \mathcal{F}_n$, the Borel field generated by $X_1 \dots X_n$. In contradistinction, a stopping time¹ (likewise of a sequence $\{X_n\}$) will be defined as a positive integer or $+\infty$ valued function on Ω subject to the same proviso that $\{t = n\} \in \mathcal{F}_n$, $n \geq 1$. Thus, a stopping time t is a stopping variable or stopping rule if and only if $P\{t < \infty\} = 1$. In numerous problems of probability theory and statistics it is necessary to demonstrate that what is obviously a stopping time is further a stopping variable and even to obtain detailed information about the latter.
- 2. Comparison of Stopping Rules. Let the basic process $\{X_n, n \ge 1\}$ consist of independent random variables with $EX_n = 0$, $EX_n^2 = 1$, $P\{|X_n| \le a < \infty\} = 1$ for $n \ge 1$. Set $S_n = \sum_{i=1}^n X_i$ and define $t_m(c)$ to be the smallest positive index $n \ge m$ (m = 1, 2, ...) for which $S_n^2 > c^2n$ where c is a positive

constant. For the case of coin tossing (a = 1), it was shown in [1] that for all m, E $t_m(c)$ is finite or infinite according as c < 1 or $c \ge 1$ and this was generalized in [2] to the uniformly bounded case. Apropos of these results it may be noted that for m = 0, the lemma of theorem 1 of the next section gives an upper bound for E $t_1(c)$ when the latter is finite. It will be proved in section 3 that if $c^2 < 3 - \sqrt{6}$, E $t_m^2(c) < \infty$, all $m \ge 1$ while if $c^2 > 3 - \sqrt{6}$ then E $t_m^2(c) = \infty$ for all sufficiently large (but not necessarily all) m.

It is clear from a comparison technique that there is a non-increasing sequence of non-negative constants $\{c_k, k \geq 1\}$ such that $E t_m^k(c) < \infty$ for $c < c_k$ (if $c_k > 0$) while $E t_m^k(c) = \infty$ for all sufficiently large m if $c > c_k$. Such comparisons may be formalized by the following Definition: A stopping time t will be called "more restrictive" than a stopping time s if $\{t = n\} \subset \{s \leq n\}$ for $n = 1, 2, \ldots$ that is, if $t \geq s$.

Clearly, if t is more restrictive than s, and t is a bonafide stopping variable, so is s; moreover, the finiteness of E t^{α} implies that of E s^{α} for any $\alpha > 0$.

Thus, if $c < c^i$, $E \ t_m^k(c) \le E \ t_m^k(c^i)$, (k, m = 1, 2, ...) corroborating the prior statement about the sequence c_k . It is a natural conjecture that c_k decreases to zero but currently the authors know of no method for attacking this seemingly simple question.

3. Second Moments. When $c^2 < 1$, the situation changes in the coin tossing example (a = 1) alluded to earlier since now $P\{t_m(c) = 1\} = 1$ for m = 1. Thus, to allow the second moment to attain an infinite value, it is necessary to dawdle for a while so as to insure that S_n does not prematurely escape

its parabolic bonds. This accounts for the appearance of the phrase "for all sufficiently large m" in

Theorem 1: Let $\{X_n\}$ be independent random variables with $P\{|X_n| \le a < \infty\} = 1$, $E[X_n] = 0$, $E[X_n] = 1$ for $n \ge 1$ and define $t_m = \text{smallest integer } n \ge m$ for which $S_n^2 > c^2 n$ (n = 1, 2, ...). If $c^2 < 3 - \sqrt{6}$, then $E[t_m^2] < \infty$, all $m \ge 1$ while if $c^2 > 3 - \sqrt{6}$, $E[t_m^2] = \infty$ for all sufficiently large m.

Proof: In the case $c^2 < 3 - \sqrt{6}$ we write t for t_m . Set $\gamma_n = E X_n^3$, $\beta_n = E X_n^4$ and $t' = \min(t,k)$ where k > m. Since $E t' \sum_{j=1}^{t} \beta_j \le a^{ij} E t'^2 < \infty$, by Theorem 3 or [2],

(1)
$$E S_{t}^{i_{1}} = 6 E t' S_{t}^{2}$$
, - 3 E t' (t'+1) + 4 E S_{t} , $\sum_{j=1}^{t'} \gamma_{j} + E \sum_{j=1}^{t'} \beta_{j}$

whence

$$E(S_{t}^{2}, -e^{2}t^{*})^{2} = (6-2e^{2}) \stackrel{!}{E} t^{*}S_{t}^{2}, -(3-e^{4}) E t^{*2} - 3 E t^{*} + 4 E S_{t}, \sum_{1}^{t^{*}} \gamma_{j}$$

$$+ E \sum_{1}^{t^{*}} \beta_{j}$$

implying

(2)
$$(3-e^{4}) = t^{2} + (2e^{2}-6) = t^{3} = t^{4} + 4e^{3} = t^{4} = t^{4}$$

Let $A_k = \{m < t \le k\}$. From (2), recalling that $E t' \le E t < \infty$ for $c^2 < 1$ [2],

$$(3 - c^{\frac{1}{4}}) \left[\int_{[t>k]} k^2 + \int_{A_k} t^2 \right] + (2c^2 - 6) \left[\int_{[t>k]} c^2 k^2 + \int_{A_k} t(ct^{\frac{1}{2}} + a)^2 \right]$$

$$\leq 4a^3 \left[\int_{[t>k]} ck^{\frac{3}{2}} + \int_{A_k} t(ct^{\frac{1}{2}} + a) \right] + O(1) .$$

Consequently,

$$(e^{\frac{1}{4}}-6e^{2}+3)\left[k^{2}P\{t>k\}+\int_{A_{k}}t^{2}\right] \leq B\left[k^{3/2}P\{t>k\}+\int_{A_{k}}t^{3/2}\right]+0$$
 (1)

where B > 0 is a constant depending only on c and a. Thus, letting $k \longrightarrow \infty$, $E t^2 < \infty$ regardless of m.

In the alternative case, we may clearly suppose $3 - \sqrt{6} < c^2 < 1$. Define $u_m(c)$ to be the first index $n \ge 1$ for which $S_n^2 > c^2(n+m)$ where m is an arbitrary non-negative quantity.

Suppose it has been established for every c^2 in $(3-\sqrt{6},1)$ that $E u_m^2(c) = \infty$ for all sufficiently large m. Then, for any c^2 in $(3-\sqrt{6},1)$ we may choose c_o^2 likewise in this interval but less than c^2 and be assured of the existence of an integer m_o such that $E u_{m_o}^2(c_o) = \infty$. Select the integer m_1 so that $c_n^2 > c_o^2(n+m_o)$ for all $n \ge m_1$. Then by the comparison technique $E t_m^2 = \infty$ for $m \ge m_1$.

Thus, it suffices to prove the anxiliary proposition involving $u_m(c)$ and in so doing we denote the latter variable by t.

Lemma: For 0 < c < 1 and $m \ge 0$,

$$\frac{c^2 m}{1-c^2} \le E \ t \le \left[ac(1-c^2)^{-1} + \sqrt{(m-1)(1-c^2)^{-1} + a^2(1-c^2)^{-2}}\right]^2 - m + 1$$

and thus E t = O(m).

Proof: Choose $c < c_1 < 1$ and $m_1 > 0$ such that $c_1^2 n \ge c^2(n+m)$ for all $n \ge m_1$. By the comparison technique and Corollary 2 of [2], E t < ∞ . By Theorem 2 of [2], E t = E $S_t^2 \ge c^2 E(t+m)$ proving the first inequality. On the other hand,

Et = E
$$S_t^2 \le E [c(t+m-1)^{1/2} + a]^2 \le c^2 E(t+m-1) + 2ac E^{1/2}(t+m-1) + a^2$$

or

$$(1-c^2)$$
 E $(t+m-1)$ - 2ac E^{1/2} $(t+m-1)$ - $(a^2+m-1) \le 0$

yielding the second.

Suppose now that E $t^2 < \infty$ for all m. By Theorem 3 of [2],

$$E S_{t}^{4} = 6 E t S_{t}^{2} - 3 E t(t+1) + 4 E S_{t} \sum_{j=1}^{t} \gamma_{j} + E \sum_{j=1}^{t} \beta_{j}$$

$$\geq 6 c^{2} E t(t+m) - 3 E t(t+1) - 4 a^{3} E t |S_{t}|$$

(3)
$$\geq (6c^2-3) \text{ E t}^2 + (6mc^2-3) \text{ E t}^{-4} \text{ a}^3 \text{ c E(t+m-1)}^{3/2} - 4 \text{ a}^4 \text{ E t}$$

On the other hand,

(4)
$$E S_t^{4} \le E[c(t+m-1)^{1/2} + a]^{4} = c^{4} E(t+m-1)^{2} + 4 a c^{3} E(t+m-1)^{3/2} + 6c^{2}a^{2} E(t+m-1) + 4 ca^{3} E(t+m-1)^{1/2} + a^{4}$$

whence, combining (3) and (4) and recalling that E t = O(m)

$$(6c^2-3-c^4)$$
 E $t^2 \le m^2c^4 - 2mc^2(3-c^2)$ E $t + 4$ ac (a^2+c^2) E $(t+m-1)^{3/2} + O(m)$.

Since $E(t+m-1)^{3/2} \le 2 E t^{3/2} + 2 m^{3/2} \le 2 E^{3/4} t^2 + 2 m^{3/2}$ and $E t > m c^2(1-c^2)^{-1}$ (by the lemma),

(5)
$$(6c^2-3-c^4) = t^2 \le m^2 c^4 [1-2(3-c^2)(1-c^2)^{-1}] + 8 ac(a^2+c^2)(E^{3/4}t^2+m^{3/2}) + O(m^2)$$

Employing the lemma again, we have $E t^2 \ge E^2 t \ge m^2 c^4 (1-c^2)^{-2} \longrightarrow \infty$ and

(6)
$$6 c^2 - 3 - c^4 \le O(E^{-1/4} t^2) + O(m^{-1/2}).$$

Hence $6 c^2 - 3 - c^4 \le 0$ which is patently false for c^2 in $(3 - \sqrt{6}, 1)$. Thus, $E t^2 = \infty$ for all sufficiently large m and the theorem is proved.

Theorem 2: Let $\{X_n\}$ be independent random variables with $P\{|X_n| \le a < \infty\} = 1$ E $X_n = 0$, E $X_n^2 = 1$ for $n \ge 1$. If t designates the smallest integer $n \ge m$ such that $|S_n| > c n^{1/\alpha}$, then E $t^2 < \infty$ for all $\alpha > 2$, c > 0 and $m \ge 1$.

Proof: For any c > 0 and $\alpha > 2$, if m is sufficiently large $c n^{1/\alpha} < 4^{-1} n^{1/2}$ for $n \ge m$. It follows therefore from the comparison technique and Theorem 1 that $E t^2 < \infty$ for all sufficiently large m. Consequently, $E t^2 < \infty$ for all $m \ge 1$, $\alpha > 2$, c > 0.

4. Non-Zero Means. Let the random variables $\{X_n\}$ of the basic process be independent with $EX_n = \mu_n$, $EX_n^2 = 1 + \mu_n^2$, $n \ge 1$. If $S_n = \sum_{i=1}^n X_i$ and t is a stopping variable with $E < \infty$, then

(7)
$$\mathbb{E} \left(\mathbb{S}_{t} - \sum_{i=1}^{t} \mu_{i} \right)^{2} = \mathbb{E} t$$

by Theorem 2 of [2]. If, in addition $\mu_n = 0$, E $S_t = 0$ by Wald's theorem and the L.H.S. of (7) is just the variance of S_t , say $\sigma_{S_t}^2$. On the other hand if $\mu_n \neq 0$, this is no longer the case and $\sigma_{S_t}^2$ may even be infinite despite the finiteness of (7).

For example, let $P\{X_n = \mu + 1\} = P\{X_n = \mu - 1\} = \frac{1}{2}$, $\mu \neq 0$ and define t as the first index $n \geq m$ such that $(S_n - n\mu)^2 > 3n/4$. According to Theorem 1 of the preceding section, $E t^2 = \infty$ for all $m \geq m$. (and it will now be stipulated that $m \geq m$.) while according to (7), $E(S_t - t\mu)^2 < \infty$. In view of the elementary inequality $\mu^2 E t^2 \leq 2E(S_t - t\mu)^2 + 2E(S_t^2)$, it follows that $E(S_t^2 = \infty)$. By Wald's theorem, $E(S_t = \mu)$ and thus $\sigma_{S_t}^2 = \infty$.

E(S_t - $\sum_{i=1}^{t} \mu_{i}$)² and $\sigma_{S_{t}}^{2}$ obtains. It is not difficult to verify that

Cov $(2S_t - \sum_1^t \mu_i, \sum_1^t \mu_i) \le 0$ is necessary and sufficient for $\sigma_{S_t}^2 \le E(S_t - \sum_1^t \mu_i)^2$ if $E(\sum_1^t \mu_i)^2 < \infty$, $E[X_i] < \infty$. When $EX_n = \mu$, $EX_n^2 = 1 + \mu^2$ and $E[X_i] < \infty$ and $E[X_i] < \infty$, the simple condition $E[X_i] < \infty$ and $E[X_i] < \infty$ implies $E[X_i] < \infty$. If $E[X_i] < \infty$, the simple condition $E[X_i] < \infty$ and $E[X_i] < \infty$ in the simple condition $E[X_i] < \infty$ and $E[X_i] < \infty$ if $E[X_i] < \infty$. If $E[X_i] < \infty$ if $E[X_i] < \infty$ if $E[X_i] < \infty$ and $E[X_i] < \infty$ if $E[X_i] < \infty$ if $E[X_i] < \infty$ are negatively correlated and $E[X_i] < \infty$ and $E[X_i] < \infty$ if $E[X_i] < \infty$ if

i.e., if $p \ge b/(b+1)$. Here, this condition is necessary as well.

5. Martingale Generalizations. In the following, the basic process $\{X_n\}$ will be postulated to satisfy $E[X_n] < \infty$, $E\{X_{n+1} | \mathcal{F}_n\} = 0$, $n \ge 1$ so that $S_n = \sum_{i=1}^{n} X_i$ is a martingale.

Theorem 3: Let $\{S_n, n \ge 1\}$ satisfy $E\{x_{n+1} | \mathcal{F}_n\} = 0$, $E \sup X_n^2 < \infty$. If $u_n^2 = E\{X_n^2 | \mathcal{F}_{n-1}\}$, define t as the first integer $n \ge m$ for which $S_n^2 > c^2 \sum_{j=1}^n u_j^2$ where 0 < c < 1 and $m = 1, 2 \ldots$. Then $\int_{[t \le n]}^{t} \sum_{j=1}^n u_j^2 = O(1)$ and $\int_{[t > n]}^{n} 1$

Proof: For any integer $k \ge m$, set $t' = \min(t, k)$ and define $z = \sup |X_n|$, $A_k = \{m < t \le k\}$. By Theorem 1 of [2]

$$\int_{[t \le k]} \int_{1}^{t} u_{j}^{2} + \int_{[t > k]} \int_{1}^{k} u_{j}^{2} = E \int_{1}^{t} u_{j}^{2} = ES_{t}^{2}, \le \int_{A_{k}} [c(\sum_{1}^{t} u_{j}^{2})^{\frac{1}{2}} + z]^{2} + \int_{[t > k]} c^{2} \int_{1}^{k} u_{j}^{2} + o(1)$$
Thus,

$$(1-c^2) \left[\int_{[t>k]} \sum_{1}^{k} u_j^2 + \int_{A_k} \sum_{1}^{t} u_j^2 \right] \le 2c \left(\int_{A_k} z^2 \right)^{\frac{1}{2}} \left(\int_{A_k} \sum_{1}^{t} u_j^2 \right)^{\frac{1}{2}} + O(1)$$

Corollary 3: If $\{X_n\}$ are independent with $EX_n = 0$, $EX_n^2 = \sigma_n^2$, $E(\sup X_n^2) < \infty$, $\sum_{j=1}^{\infty} \sigma_j^2 = \infty$ and t = 1st $n \ge m$ such that $S_n^2 > c^2 \sum_{j=1}^{n} \sigma_j^2$, 0 < c < 1, then

$$P\{t < \infty\} = 1$$
 and $E(\sum_{j=1}^{t} \sigma_{j}^{2}) < \infty$. If $\sigma_{n}^{2} > \delta > 0$, Et $< \infty$.

Corollary 3 generalizes corollary 2 of Theorem 2 of [2] wherein $\sigma_n^2 = 1$, $n \ge 1$.

Finally, the method of stopping rules will be utilized to generalize a Kolmogoroff inequality and to derive a result of Doob's [3, p.320] which does not follow from this inequality.

Theorem 4: Let $\{X_n, n \ge 1\}$ satisfy $EX_n^2 < \infty$, $E\{X_{n+1} | \mathcal{F}_n\} = 0$ and set $u_n^2 = E\{X_{n+1}^2 | \mathcal{F}_n\}$, $z = \sup |X_n|$. Then, if $\epsilon > 0$ for any positive integer k,

$$\int_{\substack{max \ n < k}} \sum_{n=1}^{k} u_{j}^{2} \le E(\varepsilon + z)^{2}$$

Proof: Let $t = first \ n \ge 1$ such that $S_n^2 > \epsilon^2$. Set $t^* = min(t,k)$. Then

$$E(\mathbf{e} + \mathbf{z})^2 \ge ES_{\mathbf{t}}^2 = E \sum_{\mathbf{j}}^{\mathbf{t}} u_{\mathbf{j}}^2 \ge \int_{\mathbf{t} \ge \mathbf{k}} \sum_{\mathbf{j}}^{\mathbf{k}} u_{\mathbf{j}}^2 = \int_{\mathbf{max}} \sum_{\mathbf{n} < \mathbf{k}}^{\mathbf{k}} \sum_{\mathbf{j}}^{\mathbf{k}} u_{\mathbf{j}}^2$$

Corollary 1: If moreover $Ez^2 < \infty$, S_n diverges a.e. on $A = \left[\sum_{j=1}^{\infty} u_j^2 = \infty\right]$.

Proof: Let t = lst $n \ge m$ for which $S_n^2 > e^2$. Then for $k \ge m$ it follows from the theorem that

$$E(\varepsilon + z)^{2} \ge \int_{[t \ge k]}^{k} \sum_{m}^{k} u_{j}^{2} \ge \int_{A[t \ge k]}^{k} \sum_{m}^{k} u_{j}^{2} \ge \int_{A[t = \infty]}^{k} \sum_{m}^{k} u_{j}^{2}$$

whence $P[A[t=\infty]] = 0$, i.e., $\sup_{n \ge m} |S_n - S_{m-1}| > \varepsilon$, a.e. in A. Since m is arbitrary S_n diverges a.e. in A.

Corollary 2: If, further $Ez^2 < \infty$ and $P\{\sum_{n=1}^{\infty} u_n^2 = \infty\} = 1$, t is a bonafide stopping variable.

Footnotes

- 1. In [2] the terms are used synonymously but it is clearly desirable to make such a distinction.
- 2. For $c \ge 1$, the hypothesis of a uniform bound is superfluous and was not stipulated in [2].

References

- 1. Blackwell, D. and Friedman, D. (1964). A remark on the coin tossing game. Ann. Math. Stat. 35, 1345-1347.
- 2. Chow, Y. S., Robbins, H. and Teicher, H. (1965) Moments of randomly stopped sums. Ann. Math. Stat. 36, 789-799.
- 3. Doob, J. L. (1953) Stochastic Processes, Wiley, New York