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Summary. The current investigation is a natural outgrowth of [2], being
concerned with the variance of stopping rules and the effect of non-zero
means on the variance of a randomly stopped sum. Some martingale generali-

zations of applications of [2] also appear.

1. Introduction. A stopping rule or stopping variable of a sequence

{Xn, n > 1} of randem variables defined on a probability space (Q,? , P)
is a positive integer-valued random variable t such that for every n> 1

the event {t = n} e the Borel field generated by X,...X . In contra-
n

1
distinction, a stopping time® (likewise of a sequence {Xn}) will be defined

n’

as a positive integer or + ® valued function on Q subject to the same |
proviso that {t = n} e}n, n> 1, Thus, a stopping time t is a stopping
variable or stopping rule if and only if P{t € ®} = 1. In numerous problems
of probability theory and statistics it is necessary to demonstrate that what
is obviously a stopping time is further a stopping variable and even to ob-

tein detailed information about the latter.

2. Comparison of Stopping Rules. Let the basic process {X ] 1} consist

of independent random variables with EX =0, EXIz1 =1, P{ |xn| <a<®}=1
n

for n> 1. Set 8§ = in and define % (c) to be the smallest positive
i=1

index n>m (m=1,2, ...) for which Sﬁ > c2n where ¢ is a positive



constant, For the case of coin tossing (a = 1), it was shown in [1] that
for all m, E tm(c) is finite or infinite accordingas c¢c<1 or c>1
and this was generalized in [2] to the uniformly bounded case.2 Apropos of
these results it may be noted that for m = O, the lemma of theorem 1 of the
next section gives an upper bound for E tl(c) when the latter is finite.
It will be proved in section 3 that if c2 <3 -v@?} E ti(c) <w, allm>1
while if c2 >3 -y6 ‘then E ti(c) = o for all sufficiently large (but
not necessarily all) mn.

It is clear from a comparison technique that there is a non-imcreasing
sequence of non-negative constants {ck, k> 1} such that E'tﬁ(c)~< L

for ¢ <e, (if ¢ > 0) while E tln{l(c) = ® for all sufficiently large m

k
if e> Cp e Such comparisons may be formalized by the following

Definition: A stopping time t will be called "more restrictive" than a
stopping time s if {t =n}c{s<n} for n=1, 2, ... that is, if

t > s,

Clearly, if +t is more restrictive than s, and t is a bonafide
stopping variable, so is s; moreover, the finiteness of E £ implies
that of E s¥ for any a » O.

Thus, if ¢ < ect, E tﬁ(c) <E ti(c'), (k, m= 1, 2,...) corroborating
the prior statement about the sequence Cpo It is a natural conjecture that

e decreases to zero but currently the authors know of no method for attacking

this seemingly simple question.

3. Second Moments. When 02 < 1, the situation changes in the coin tossing

example (a = 1) alluded to earlier since now P{tm(c) =1} =1 for m =1,
Thus, to allow the second moment to‘attain an infinite value, it is necessary

to dawdle for a while so as to insure that Sn does not prematurely escape



its parabolic bonds, This accounts for the appearance of the phrase "for

all sufficiently large m" in

Theorem 1: Let [Xn] be independent random variables with P X |Sa<e} =1,
EX 0 = 0, E Xﬁ =1 for n>1 and define tm = smallest integer n >m for
which srz1 > ¢®n (n=1, 2,...). If ? < 3 -6, then E ti <®,all m>1

while if c2 >3 -6, E ti =® for all sufficiently large m.

. 2 . R
Proof: 1In the case c. <3 -Ja"we write t for tm. Set Y, =E Xn’

tl
Bn =B Xﬁ and t' = min (t,k) where k> m. Since E %! ZBJ.E alL E t’2 < o,
J=1
by Theorem 3 or [2],
t! t!
(1) ESL‘ =6Et'82-3Et‘(t’+l)+?+ES Z +EZB
2 t tt L Y3 3
1 1
whence
-tl
B(s, - ¢%61)? = (6-207) & t1sl, - (3N Et2 -3E4 +L4E S, z Vs
1
t!
reY 8,
Ba
1
implying
(2) (3-c”) E 412 4 (2c2-6) E t! si,_<_ (al‘-3) Et' + 4ad E t4] st,[ .

Let A, = {m<t<k}. From (2), recalling that E t' <Et<e for

c2<1[2] ,



(3 - ch) [ I K2 + f ‘cz:l + (2c2 - 6) [ ‘[ 2 4 I t(ctl/2+a)2]
[t>¥] A k] A

< ’+a3 [ I ck3/2+ I t(ctl/2+a)]+ o(1) .
[t>k] Ay

Consequently,

(ch-6c2+3)‘[k2P{t > k} + I tz:] <B [ k3/2 P{t » k} + j 1-.3/2] + 0 (1)
Ay | " |
where B> O is & constant depending only on ¢ and a, Thus, letting
k ———>®, K t2 < « regardless of m.

In the alternative case, we may clearly suppose 3 = \/E_ < c2 < 1. Define
um(c) to be the first index n > 1 for which Si > c2(n + m) where m is
an arbitrary non-negative quantity.

Suppose it has been established for every c2 in (3 -6, 1) that
E uz(c) = o for all sufficiently large m. Then, for any ¢ in (3 -6, 1)
we may choose ci likewise in this interval but less than c2 and be assured
~of the existence of an integer m such that E uﬁ (co) = ®, Select the
integer m SO that c2n> ci (n + mo) for all n ; m . Then by the compar-
ison technique E ti =® for m>» n, .

Thus, it suffices to prove the anxiliary proposition involving um(c)

and in so doing we denote the latter variable by t.

Lemma: For O0<c<1l and m> Q,

2

2
£2 <5t < lac(l-c®) T +/@1)(1-c®) + 2(1-c®) PP - m 2
l-c :



and thus E t = O(m).

®n 2 o°(owm) for all
nx» m . By the comparisen technique and Corellary R-0f (2], E %<, By —

‘Theorem 2 of [2], E t =E Si > caE(t + m) proving the first-inequality. On -

Proof: Choose ¢ < cl <1 and my >0 suech that ¢

the other hand,

2

2 (t+m-1) + &

£ E.[c(t+m-.L)l/ 2, a]z“_<_ 2B (t+m~-1) + 2ac El/ 2

Et=E S

or

1 2(tame1). - (a2m=1) <0 |

(1-02) E (t+m=1) = 2ac E
vielding the second.. -
Suppose new that  E t% < ® - for all _m.. By Theorem 3 of [2],

t t

2
6'EtSt-3Et(t+l)+1+ESt_Zyj+EZ$j .

j=1 1

b
;=

E §
2 3 .
>6c E t(twm) - 3E t{t+l) - b a' E ¢ |st|,.
(3) > (6c2-3) E 2 + (6mo2-3) £ t-b a3c B(t4n-2)3/24 o £ ¢

On the other hand,

) E si<sle(om1)? + a1* = o Bem-1)? + b a 3 B(tm-1)3/2

+ 6262 E(t+m—1) + b cad E(t+m-l)l/ 2 4 au

whence, combining (3) and (&) and recalling that E t s O(m)



(6c2-3-c*) E t%< ne* - 2mcP(3-c2) E t + b ac(a®+e®) E(t+m-1)32+ o(m).

since E(tm-1)Y2 <2532 1202 <283/t ® 12 0d/? o

Et>n 02(1-02)'l (by the lemma),
(5)  (6c2-3-c*) E tB< nPcT1-2(3-B) (1-c?)] + 8 ac(al+e®) (Y *2?) + ou
Employing the lemme again, we have E 2 >E 2 >m ch(l-c ) 2> amd

6) 62 -3 -t <o) + o2,

Hence 6 c2 3 - ch < 0 which is patently false for c2 in (3 -6, 1).

Thus, E t2

® for all sufficiently large m and the theorem is proved.

Theorem 2: Let {Xn} be independent random variables with Pf [an <a<e}s=:

E Xn =0, E Xi =1 for n>1, If t designates the smallest integer n >m

such that [Snl >ec nl/a, then E 4> <o forall o >2, ¢c>0 and m> 1,

Proof: For any ¢ > 0 and o>2, if m is sufficiently large

c nl/ %< h'l nlla‘ for n>m. It follows therefore from the comparison

technique and Theorem 1 that E t2 <o for all sufficiently large m. Conse=-

quently, E“l;2<<=° for all m>1, @>2, ¢> 0.

4. Non-Zero Means. Iet the random variables {Xn} of the basic process be

s ' - 2 _ 2 _ ' .
independent with EXn = “'n’ EXn = 1 + “'n’ n>»1i, If Sn = z Xi and t is

i=l

a stopping variable with E t < «, then



t
2

(7) E (S, - Zu.i) =Et

i=1
by Theorem 2 of [2]. If, in addition W, =0, E St = 0 by Wald's theorem
and the L H.S, of (7) is just the variance of St’ say oé . On the other

t
hand if |J4n ;é 0, this is no longer the case and o'g may even be infinite
t

despite the finiteness of (7).

For example, let P{Xn = w+l} = P{xn =p-3} =%, p #0 and define t
as the first index n > m such that (Sn - n;.b)2 > 3n/h.' According to
Theoren 1 of the preceding section, E t2 =o for all n> m? (a.nd it
will novw be stipulated that m > m') while according to (7), E(St- tu)2< o,
In view of the elementary inequality W Et-< 2E(St-tu.)2+ o8 si, it follows

2

that E St = @, By Wald's theorem, E St = NEt < » and thus O‘g = ®,
t

Even when both quantities are finite, no general inequality between

t
E<St - Zp.i)2 and og obtains, It is not difficult to verify that
1

t
% t t
Cov (ZS,G - z Wy 5 Zui) < 0 1is necessary and sufficient for cg < E(St- Z }Jai)2
: t
1 1 1
t t
. 2 2 2 .
if E( ) B;)" <=, E Elxi[< ®. When EX =, EX_ =1l+W and t isa
1 1

stopping variable with E t2 < ®», the simple condition u Cov (%, St) <0

implies cg < E(st'- tu.)z. It P{xn=1} =p=1 -P{xn.—. ~b}, >0 and t
t

denotes the first n> 1 for vhich X =1, then 8§, = -b(t-1)+1. Since

t and 5 are negatively correlated and E‘c2 <o, Gg < EgSt-W)z if w20,
_t 4

i.e., if p > b/(b+l). Here, this condition is necessary as well,



5. Martingale Generalizations. In the following, the basic process {X n}

will be postulated to setisfy E|X |<o, B{X |'F 1 =0,n>1 so that

n
Sn = Z Xi is a martingale,
1
Theorem 3: Let [S , n>1} satisfy E{*{n+l|} } =0, E sup X2 <o, If
2. E{X2| *., 1} define t as the first integer n>m for which
t
2 2 2 2
s >c u‘_j where 0<c¢<1 and m=1,2 ... . Then U-j=0(l)a.nd
1 [tgn] 1
n
J‘ Zu 0(1) as n—> o |,
E‘b>r'1} 1
Proof: For any integer k >m, set t' = min(t,k) and define
z = sup Ian, = {m < t < k}. By Theorem 1 of [2]
t k t! k
j Zu§+ J Zu§=EZ ?—ES __J.[c(Zu )2+ z] + J\ c22u§+o(l;
[t<k] 1 [t>k] 1 1 A, [t>k] 1
Thus,
k t ) t L
RN D [ &2 )+
1- .+ ]l <2 2 2 + 01
@A [ T2 TP Tcee( ] B JBE+ o)
A 1 Ak Ak 1

[t>k] 1

and the conclusion follows. - o

Corollary 1: If further, P{ Zu? = o}
1

1, P{t » k} = o(1l) and E

e
c..Fm
A
8

Corollary 2: If moreover Pf{ u? >§>0) =1, j > 1 then Et <o,



Corollary 3: If {Xn} are independent with EX =0, EXi= oi, E(sup Xi) <o,

-] n
E:Gi =w and t = 1lst m>m such that Se> c2 L‘cz, O0<c<1l, then
1 1
t
2 2
P{t <®} =1 and E( aj)<m. If o >6>0, Bt <o,
1

Corollary 3 generalizes corollary 2 of Theorem 2 of [2] wherein oﬁ =1, n>1.
Finally, the method of stopping rules will be utilized to generalize a
Kolmogoroff inequality and to derive a result of Doob!s [3, p.320] which does

not follow from this inequality.

Theorem L4: Let {Xn, n> 1} satisfy Exi <, E{Xn+l|-9'n} = 0 and set

2 2 . s .
u = E{Xn+ll£} n}g 7 = sup‘an. Then, if ¢ » O for any positive integer k,

k
J T 4o
2 _ 2 J
[ max § < e ] 1
n<k

2

Proof: ILet t = first n > 1 such that Si > ¢“. Set t' =min (t,k). Then

5=
u., =
d

max 32
n<k

2
u,
2 J

3
e,

ol e
H

tt
E(e + z) > ES Z I
1 k]

[

IA

€

[

Corollary 1: If moreover Ez2 < o, Sn diverges a.e. on A

Proof: Let t =1lst n>n for which Si > e2. Then for k >m it follows

from the theorem that



' k » k k
E(e+z)22 J Zu? > f Zui > J‘ Zu?

[t>k] m Alt>k] m Al t==]

whence P{A[t==]} = 0, i.e., sup |S_~8 .| >e, a.e. in A, Since m is
n mel
m>m
arbitrary S n diverges a.e, in A.
[--4
Corollary 2; If, further E22 <o and P{ Zulz1 =w} =1, t is a bonafide
1
stopping variable.

10



1.

2.

3.

Footnotes

In [2] the terms are used synonymously but it is clearly desirable

to make such a distinetion.

For ¢ > 1, the hypothesis of a uniform bound is superfluous and

was not stipulated in [2].
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