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1. Introduction and Summary. Suppose Xl < X2 < .6 < Xn are order sta-

tistics in a random sample of size n from g(*). Let Pys P, be prescribed

with o < Py < P, <1l; let g=1-~ P, - For each n, v; and v, are de~

1 3
fined by v, = [npl], and v, = [nqe]. The notation [x] denotes the largest

integer not exceeding x. Let Il, I, and I

o 3 be sets of integers

Il = {l, 2,..., Vl}
12={\)l+2, Vl+3, LER N1 n"\)3"'l}

I ={n-\) +2, an.,n}

3

+1l,n=v

3 3

and set v2 = ow vl - v3

in Ij. Let ¢{(*) be a function. Our object here is to develope an asymp=-

= 2, 1.€.3 vj is the number of integers contained

totics of statistics in a form of 2; ¢(Xi). Such a statistics appears, for
ite
instance, in the expression of Winsorized mean, ig p.? obtained for prescribed
122
< [3
o< Py < Py 1:

W 1 S ]
D 5D n [(vl + 1) X\J +1 T Z_-Xi * (\)3 +1) Xn-v *
1772 17 ser 3

2

¥ This paper is based on the author's Ph.D. Thesis at the University of
Chicago,



The logelikelihood based on the entire sample is

Z log g(x,) + log g(xvfl) * 2 log g(x,)
iely iel,

+ log g(xn_v3) + Z log g(Xi)

ieI3
where as
constant + v; log G(xv-+1) + log g(xv +l)

1 1
+ z log g(x,) + log g(xn_vs)
iel, |
+ vy log [1 - ¢ (xn-vB)}

is the log=likelihood based on trimmed sample {X§I+l, Xvi+2, cees Xn-v3}.

Section 2 contains asymptotic theory of such statisties. For the future
use, it is supposed that we have two such functions wk () k= 1,2, This
will provide us with a joint asymptotic distribution of two different
statistices, for instance, the maximum likelihood estimate based on the
entire sample and Winsorized mean, Extension to the case k > 2 will be
immediate.

As an immediate application to this result, asymptotic theory is given
for Winsorized mean, and corresponds to a central limit theorem in the

complete sample case.

Section 3 contains a maximum likelihood theory that appears to be new,
even for complete sample. The asymptotic distribution theory of maximum

likelihood estimates based on trimmed sample is developed when data are



3
sampled from g(-ge), but when the estimates were computed with the assump-
tions that they are f(-te). Such a wrong-model maximum likelihood estimate
is typically a consistent and asymptotically normal estimate not of & but

of same function &' (8) of 6.

2. Asymptotic theory for partial sums of order statistics,

Let T, be the p, fractile of g(+), Particularly for the p, sample

fractile, we use a distinet notation:

Uﬂl = X\)l+l
U .,.=X .
n2 = “ne
V3
For any u, < u,, define the density truncated to [- x, ul], [ul, u2] and
[u2 x] as
i (X) . <
gy (x | ups wy) =[5 (u;) L |
Lo 3 otherwise,
- g (x) @ <x<u

we

(l.l) gz(x !; ul’ u2) e (uzT.. G (ul) 1 2

L0 3 otherwise,‘
] ! =i LX% — . <
e ; othérwise.
Iet
(1.2) ﬂkj (uys w,) = [ b (x) g, (x i u,, u,) dx
) 1 727 Tk 3 1 el T

kj _r 3 kj .
@3) el )] _n. b=l
to = L Su, 1 %2 duy =1y, u, =T,



L) ol s uy) = [ [ - w9y w)] [, 60 - ¥ 9y, )] -

* 8j (xlul’ u2) dx, k, k' =1, 2,

o3, (g5 uy) o7, (ups uz)\\
J
(1.5) 1 (ul, u2) = . |

j 1/2 s
Denote by [1\] (ul, uz)—‘l any square root of the matrix ‘L (ul, u2).

In the subsequent discussion, Xn'gYn = y%> 7 is understood to mean
the sequence {D(Xn!Yn = y)} converges weakly to D(Z) with the convergence
in probability to a constant, in the notation -I-)->, as a special case. If p
is a distribution then, Xni'Yn =y ‘£’> 1 means that D(th(n = y) converges

weakly to p. To obtain the desired asymptotics, we assume that the functions

q:k(x), k=1, 2 and g(x) satisfy:

(A 1) g(x) is continuous in the neighborhood of si' of T, is= 1, 2
J
(A 2) Matrix I ('ql, 'nz) is positive definite

(A 3) j |ty (x)]3 g(x) ax < =,

Theorem L. If Xl < X2 < ees < Xn are order statistics in a random sample of
size n from a density g(x); if the function x[;k(x), k =1, 2 and the model
g(x) satisfy assumptions (A 1), (A 2) and (A 3), then for fixed

< < < =y ) . .
o <p, <p, <1, the mean of \‘.k(Xi) over index set Ij’

kj ﬂ,}_z " -
Tn - \)j ti'k_ (}*i)
iel,
€45



have the following properties:

for each J
Tij\ (”‘lj (T]l’ "12)\
(1.6) £ : i3
72d RO B

for each J and sufficiently large n

T?\ / b (15 ) / Mo X1 * o Kop |
(r.7) \s = + L {
23 | 23 2 \ 2 23
\Tna / b (05 Tp) b1 %oz * Pop Koo
fyd!
+——[I’ (s ng)] {Y;\
)
where

(L.8) X, =4/ (U, =-1) i=1,2 and 13;3, k=1,2 for j=1, 2, 3

are random variables such that

£1.9) CoubGub aul Al sl st SN 0 )



where
— 0 0 0 0 o} 0
%1
1
0 = 0 0 0 0 0 0
151
o 0 L 0 0 0 0 0
1-p;-%
1
(1.10) A =10 0 0 0 0 0
l-—pl-q2
0 0 0 0 & o} 0 0
%
1
0 0 0 0 0 —_ 0 0
9
0 0 ) 0 0 0 Ciq Cip
‘o 0 0 0 0 0 Cip Cop
with
) : p; 4
1.11 C.. = s i, 3 =1, 2.
( i3 e () 8 (ﬂﬁ ?otsd ’

Proof. Suppose that Z is a random variable distributed with density

. i ni <
€ ( lul, u2). For finite (ul, uz), u; <u, and that

09 ags u,) = [T (2) - 890y, )17 gl ) e

u T
. - 2 "‘ ] , . .
Y :
is finite. Also [ Egk (z)_l g(zlul, ua) dz is continuous in U, u and

el

2,

all moments of ﬁk(Z) under gj(Z!ul, u2) are continuous and differentiable

in Uys W, for Uie Sl’ i =1, 2, Then, there exists constants ay and

a2 such that

kj J
‘E’ (ul’ ug)i < az’ O.kk'(ul’ u2) < az’



and

Det. Z’(ul, u2) >a, >0

for all u, € S:'.L, i=1, 2 where

' av s
’nieSiCSiCSi,l—l, 2.

-3
Moreover, if we denote the cofactor of the (k, k')th entry of 2 (ul, u2)

by E};;k'(ul’ ua), we have
ll-o-:i:ikl (ul, ua)i < ®,

. . . ktk' .
J -
In particular, Of gt (ul, u.2) is s:.mply. (=1) T .(ul, u2) in the

present situagtion.

Hence,
{=J
Max E T (s, v) < 3'2'
3 a
(1.12) k,k'=l,2 Det, r(ul, u2) *

uniformely in u, e Si, i=1, 2.
5
Denote by F ‘the distribution function of NZ!FO, }?(ul, uz)] and by

F\) the distribution function of

J
BN 15
[ 4,e) - Wiy, u))
| 3 eI, ‘;
o |
1 23 f
) iel

. . . !
where (Zl, Zys enes Z“’j) is a random sample of size v from gj( hu, 5 u2).
It follows from the theorem of Bergstrom (1945) that there exists a numerical

constant b such that



(1.13) sup lF (Y:Y)'F(V,Y)l
-°°<y1,y2<°° V3 1’ 72 1’72

. 3/2
- 2 / ~J
b ) / o9 (uqs u,)
1 R | 3

2 (F (g

Vj S k=1 \k,k' = 1,2 | Det. I (ul’ 112)!,

b /8 3/2
So—=r2a,: E—)
/\’j 1

for all 'ui e S:.'L , i=1, 2. Thus, the bivariate central limit theorem holds

uniformly for a random sample (Zl’ Zgs wees Z, ) of size v from
J
gj ('iul’ ue)'

Conditionally on U, = Ups Un2 = Uy the order statisties {Xi 3 1te}

are distributed like v order statistics 2 = {Z Z y ese 2 in
: 2y 2eyr - Pop)]

a random sample (Zl’ Zps vees Zvj);

D (Z) = D (Xl’ X2, XEE] X\) !Unl = U']_’ U = uz).

. ne
d
Hence, we have
P14
T}IJ\]‘ w5 vy)
= 2
(1.14) Upp = Wys Upp = Uy >l
23 bo23
\ TnJl ‘ p‘ J(ul, u2)
and
[ 50 3 it N ,u ) fu, =
! 3 ¢ ] -
(1'15) /l’-l—; ___Q_ ‘—1 (Unl’ .U.ne] 2/ n nl ne \‘ nl 1
i[ﬁ_ o \ 23 2 U ) ! =
‘ o~ v (Unl’ no’ ) Upp = Up
£>n, [o, I
n = X

V= X
d



Iet
w1 1j 1]
Yﬁ 1 T, - * (Unl’ Un2)
6 X "2
(1.16) = /n [1 (U0 Un2]
523 25 _ ,ad
Yn Tn b (Uhl’ Unz) *

cps - - J =23y
Then, conditionally on Unl Uy Un2 u2, three random vectors (?i s Yi )

j=1, 2, 3, are independent of each other and have the property

] 0 L o o o o
n \ Py
= 0 o X o o o
n pl
— U =u 1
(1an T, nl = 1 ‘ o 0 5,5, 0
L , L
221 e = >N 1| o © 0 0 g==—— 0
73 \ 0 0 0 0 o =
n q
o
'"n3 \ 0 \ 0 0 0 0 0

The entries of the covariance matrix are due to the relations

v v v
S o 21 . .3 _
lim = 12 lim — = 1 D = s lim —= = g5

It is well known(Cramer, 1958, (28.9) that the sample fractiles U, and

th satisfys:

and for

-
—

(@]
E e e

o
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joint weak convergence holds;

X1 { © foy Clzi
Xol T~ T2 ] lo!, kclz c22&
where
p; 4

CiJ " g(m,) - g(n;) °

Thus, applying these together with (1.17) to Theorem 1 of Appendix, we have

a relation

(1.18) 1 =21 = 2 13 3 '
Yl Y2 12 Yi X1 n2)

L 1

—_— N8 [0, AJ

vhere A is a 8 x 8 matrix given by (1.10).

Now, let X... X02 and Yéa, Yga, j=1, 2, 3 be random variables .

OL
such that
.21 _12 22 3 3 '
(1.19) Yl o Yo * Yl Y2 X1 op)
Since Okl' (ul, u ) is jointly continuous in w;y u, for uy e 8§, i=1, 2,
we have

D :
Ot s U) == o (s L)y
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and, it follows that

Yg.lj\‘ . --é:. Tij"p‘lj(U s U )
— - d
Yij Tij - uaj(Uhl’ Uhe)]

and (iia, "iff)' have the same limiting distribution.

Hence, by applying Theorem 2 of Appendix, we now obtain the following relation:

o ,
- +-—- [}: (s WP |
@ e 2

where

(1.21) (Y’;,Lll: Yil’ Yi-z’ Yias Yln3s YiB, an,‘X

I, (2 yl2 22 g3 B

0 61 02

Let

U.='ni+-3;-x., i=1, 2.

Since uka (ul, u2) is continuous and differentiable in u, and wu, in
the neighborhood of ﬂl and ﬂz respectively, we can expand

K , ‘ : .
we (ng ¥ xnlffﬁﬁ, M, + xne//Er) in x, and x , near zero:

kJ - kJ
B (U, Up) =Y (s ) + = C”lo X * ”’20 nz/

+o<-l-_:>

n
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XJ kj

-
where .3 and ko are derivatives defined by (1.3). Thus as n —> o

Vo (85 (0,5 00 =9 (g, )]

I Y.

10 Xo1 X

20 “02*
Furthermore, weak convergence holds jointly for Xﬁl’ Xn2 and Yﬁa; j=1, 2, 3,
k =1, 2. The result of the theorem now follows.

. ~ e . W
The asymptotics of Winsorized mean Xbl,pz

the theorem to k = 1, ¢l(y) g y. I recall the deffinition of Winsorized

will now be obtained applying

nean

(1.22) igl,pz = % [(?1 * 1)U, {_EZ Xi} *+ (v3 + 1) Uhe] .
i€

The assumption (A3) will now accordingly be changed
(3)' 2, (0, 1,) >0
911 s 1) > 0.
Corollary 1, If igl o is, for each n and for prescribed 0 < 12 < p2 <1,

H
2
a Winsorized mean obtained from a random sample of size n from a density

g(*); if the model g(+) satisfies the assumptions (A1), (A2) and (a3)’

then the following properties hold:

(1.23) igl,pz 2> p) My tay Tyt (L= =) WP (Mg, M) = e

(1.24) /n &

* L 12]
pop, "M T [os+ @ =2y = 0) 833) %y

N [qe *(L-p - q) ”ég] Xo2

1
#@-p - g [of) (s ]2 v
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where XOl’ on and Yéa are random variables such that
e i L 0 o ||
/ ° \ | 0\ / b1~
(1.25) Xo1 l ~ W, &o ] R 0 ¢y Cpp
“1.X02 i O \ 0 C12 022 t

Proof. From Theorem 1, we can write

RE 1 12
(1.26) ZX = (s M) + == = (“‘10 1t Hor Xpp)
1eI n ,
1
1 2 2 12
* E ["11 (ny 5 712)] le1 :
where
_ L -
while
[ .12 2
17 [/
1 L ! ‘
X —> i Xo1 |
i
\ Xy | l\Xoe }

Now, substituting (1.26) and (1.27) to the right hand side of (1.22), we

obtain
AV v
il = -k 32 ..2.
(1.28) Xpl,p2 T n nl 4 ne n (nl’ ﬂ2)
1 V2, Vo 12
= (2 * 5 M0/ X



AR

The results follows as n ~> w,

3, Maximum likelihood estimation under the incorrect family of densities.

! «n = ¢ en =
Let {g(x}8) ; 9 = (6,5 92) e @} and {f(x]|p); o= G cpz) e 3}
denote two parametric families of densities with parameter spaces which are
open subsets of 2-dimensional Euclidian space. The two families might be
alternative models for observed data. In this section, we shall develope

an asymptotic theory of maximum likelihood estimation based on a trimmed

sample

xpl,pz = (Uhl’ W UhZ) 3 W, = {Xi’ 1e I2}’
when the data are incorrectly assumed to be sampled from f£(xlp), ¢ € &, but
in truth are sampled from some g(x!8), 9 ¢ (). |
In order to interprete the estimate, some correspondence between GE) and
& is needed. For example, if (:) and & are both the real line, and, if
® and o are the means of their respective distributions, one possible cor=«
respondence is o <—> 0. For another example, that 9 and ¢ are respective

ly the scale paramers for the normal and the Laplace distributions.

Equatite variance would yield to correspondence

/72—. o <> 6

whereas equatile quartiles would ydeld

0 <> 0.6745 5.



15
Assume that a one=~towone correspondence has been established for
interpretations. In the technical developement, a second correspondence
arises. Denote it by © —> «w¥(0). Roughly, «*(6) is the value of ¢
to which the estimates obtained under the model f£(*) converges when ©

is the actual parameter of the true model,

Under the (incorrect) assumption that Xﬁ . is from f£(*l¢), the
' 1’52
sampling density would be
(2.1) hg > % , 4, | @)= —~E¥£—-q' Fvl (W, le)t (w., |o)
: n1?> "n? Yne | 90T vyt vy nl + 9 nl P/

-3
g, 601 197 g 0

We shall denote the (incorrect) log~likelihood by L, ()3

(2.2) L (o) s logh (w5 v, v, ! ol
Let
(2.3) Ly (osW 1U.50,)= ) log £(x, o)
1612
(2.4) Lo (03 U5 Up)
v Y3
1
= log FF (unl‘@) f(unl‘q)) f(uhEl@) {l - F(unzlw)} ]

so that

n . .
(2.5) L, () = log vyt V3 Tt Ly G Wh‘Uhl’ Uhe)

* L, (05 Upys Up)

Since the estimate will be taken to be +the solution of the (incorrect) system

lcu

(2.6) 0, i=1, 2,

tt

L, (o)

Q)

N
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we need some conditions which ensure the existence of the partial derivatives
involved, and some regularity conditions slightly different from those are
necessary to obtain the correct-model likelihood theory based on Xb D

1’72
(¢. f. Halperin, 1952, for correct model likelihood estimation). These

assumptions are collected together in the following.
(For a simplicity in notation, the symbol Egl, L denote the operation

taking expected value under the truncated density g (-ie, Uy s ua):

g(xi9) . .
| ge(uzgej TG <x<u,
(2.7) 8(3‘—'!59: Uy s u2) =Y
|

(o ; otherwise

We use the subseript notation for partial derivatives of log f{xlop):

O

1y [ S — ir! o
' (x, 9) = 5 log £ (xlw), ete.

1.
Assume that for any 6° ¢ (B, with T, defined by p, = X tg(x16°) ax,
=X
for i =1, 2, there exists neighborhoods N of 6° and 8, of My,

i=1, 2, with Sl and 52 disjoint such that:

(B 1) for almost all x, ¥y (x, o), Qij (x, ©) and wijk (x, o)

exist and are continuous for all ¢ e &;

(B 2) there exists an open set N, in & such that

x
o
Y sup | by G o) | g (x]67) ax < =

=X @ekl

(B 3) ‘there exists a unique solution ¢ = ¢*(8°) in N, of



17

. | d
(2.8) hi(cpleo, Tys W) = p; -551- log F ('ﬂllcp)
+ 4, 337 log [l - F(ﬂalm]
i

U 0
+ j 2 wi(x, o) gfx|le”) ax =0, i=1, 2;
Ty
(B L4) there exists a function R and a constant M for all © e N,

© e %' where @o ¢ 'G N, such that

1

H’i(x: (P) l < R(x), Nij(x’ (P) l < R(?)p

L (5 @) | < RGxD, {4y (s 913 < R(x)

where

r R(x) g(x[0) <

-X

(3 5) f£(xlo), ¢i(x, ©)s ¢ij(x, ®) @ijk(x, @) are jointly contimous
in x and ¢ for x ¢ Slij S, and @e @ and, g(x|8) 4is jointly con=
tinuous in x and © for x € Sl\J 82 and © ¢ N,

Addition to these assumptions, we have to impose conditions on some

2 x 2 matrices. Let

(2.9) aygoles wps wy) = B o [4,60 @) + vy 9]

- [Egl’u2 {¢i(x’ $)}] [Egl,uz {¢j(x’ W)}],

u
. 2
(2.10) Bij(@[e, Uy, u2) = - I wij(x, o) » g(x]|o) dx
u
1

o) 2
d 2
- Py :':5'('?‘;' log F(U.lltp) -9 "“a(p“l:"gtp"’"j log [l - F(uzl(P)]’
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(B6) The 2 x 2 matrices
A(‘Poleo, ﬂl, ﬂe) = {Aij(q’oleos Tll, 'ﬂa)}
and
01,0 0.0
B((P 19 ) Tll, ﬂz) = {Bij((P le » ﬂl, T]Z)}

are positive definite and the 2 x 2 matrix

Q
{E'le']l;'ﬂz [qjij (x, cr)):l ¢ = cpo}

is nonsingular.

In the statement of the following theorem, there appears a 2 x 2 matrix

K(g°|e°, Tys M) with (i, §) element Kij(@°|e°, Tys Tyt
(2.11) By @°10% s M) = (1= py= q,) 46016, My W)

Y )
T L lir (¢7) er’

r,t=1,2
where
1, (o) = —9—-[x (016°, u, s u )] k=1, 2
ik \? auki-"l’g._ a2 Ly 2y
U =Ty Uy =T,
and where
P
Crt = 'or = 0 <t
g(n.1e°) s(n |6
Co1 = Oy
Theorem 2, If X is for each n and for prescribed O < By < p2 <1,

pl ’P2
a trimmed sample from density g(-le°); if the (correct) model g(x|6) and
the (incorrect) model f(x|p) satisfy assumptions (B 1) = (B 6), then for

each sufficiently large n, the (incorreet) likelihood equation

<) .
-a-*(-p-i- Ln((p) = 0, i=1,2
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has a solution ('pn such that sequence {E'pn} has the following propertiest
(1) § B> =)
(i) ?pn is & local maximm of I (p) with probability going to one.

(iii) 1If 'q-)'n is any other sequence of solution of -g—(-P- Ln((p) =0 such
that @, L5 %, then § , = %, Wwith probability going to one

as hn —>w,
(iv) /o (?pn - cpo) L Ne[o’ Q(CPOleos T2 'ﬂz)]

where

ale®16% > Tp) = BH(e%16%, 1y, T,)¢
* K(e®le% s M) BT (¢%16°% My, )

To prove the theorem, two lemmas are given in the following.
Lemma 1. If assumptions (B 1) = (B 6) holds between g(x|e) and f(x|p)
for fixed 0 < Py < P, <1, ‘then the central portion of the (incorrect)

log=likelihood Lnl(q); WrilU 12 U 112) has the following properties:

1 2
(2.12) ;)-2--3-(-?-‘- Lnl(tp; wnlunl, Un2)}eo L E [ (x, q))] i=1, 2,
1

1’“2

for sufficiently large n

(o]
(--l-; === L1 (o3 W[ 55 Une)\ E%lmg[\pl(x, (p)]
(2.13) =
3’--*@‘-33 o (03 005 T ) 5 (4,0 @]
Dy ? Une Ty ML Y2 2 970 ]

0°
1 1
/ %o Fn1 * %o Fno)

T |
n { 2 i

\

+ Qon X

%0 *a1 * %o *nzf

» 2= [at0le s WE
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where
i <)
QK""""""' [‘IJ(X:CP)] y k=1, 2,
° = Ty s v,
1* "2
and an, Xhz Yl and Yﬁ are random variables such that
. ] 1 \
\ 10 e O o) 0
[ I \
Yz il ! 1 \
y ' - |
n 1 ol | 0 l-pl-q 0 0
Loy 1 e% 2 3
l i '1 :
A 0 i 0 0 (212 0221.%

and for each i and J

2
12 .
(2.14) [;; a¢ia¢j Lnl(,(P 3 Wy Une)]eo

L Ee%l T] [V (x4 tp)] i, J=1, 2.

Proof of Lemma 1.

In addition to assumptions (B 1) « (B 6), if we assume that there exists
a positive constant m for 6 € N and u, ] Si’ i=1, 2 such that

CG(uzle) - G{u !eirdi <m, then we have by (B 4)

ul u l’\‘ (x, (P)‘ <nM, Eil’uQNi(x’ (p) ‘l’j(xb (?)l <mM

and

0 01, 0 3
Bulguz[tyi(x, q))] = Eul’ugiVi(x" (P) - Eul’ue[wi(x, (P)]i <8mM
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Moreover, by assumption (B 5), Bg u [@i(z, @)] is jointly continuous
1272

in ©, oy u, and u, for 0 eN, e and ui.e Si’ i=1, 2, Also

govariance

6
hygoles ws wp) = 5 [y 90+ 4000

- Eﬁl,uz[""i(x’ ‘P)] Egl,uz[“"j(x’ ‘P)]

is a jointly continuous function in Uys Uy © and ¢. Thus, the determinant
of the matrix Aleple, 5 uz), being a continuous function of it's entries,
is also jointly continuous in Ups Ups © and ¢. Hence, there exists y<®,

g > 0 such that

Det. Apl, uys v,) > B

(2.15)
8 Tut o))<y
Uy supl Tl > @
. t
for all 0eN, oed" and u ¢ 8;» i=1,2 wvhere
°eN' €X' Cu, o e d" T aa
and
nie“"i‘ <8, i1=1,2.

Since the determinant of the covariance matrix A(g|®, Uys u2) is bounded
away from zero, the matrix is positive definite for all 6 ¢ N', ¢ ¢ g"

and U € Si, i=1, 2.



22

Hence, Theorem 1 can be applied to
2 (s W | U, U) =) b (xs )
g, ~1n P Mpl Fp3c Fpo Vg V2 @
1
keI
2
and the first half of the lemma now follows.

By assumptions (B 4), we find

EG

<mM
ul’uz (X: @)

\‘Iij
for all 6 ¢ N, e 3 and (ul, u2) € 8 % S,

Hence, if (Z.s Zys »0es Z ) is a random sample of size v, from
1° 72 : Vo 2

g(-[e°, Uy s uz), then the relation

v

2 o}
1 [‘Z P 8 .
——— \‘.I__ (Z s ({”)] > E \l}.. (X, (P) s i’ Jd = l, 2
v, L L ij 'k 6° Uy Uy LT3

holds uniformly in (ul, u2) ¢ 5, x §,. Thus, conditionally on U, =4,

2
Un2 = Uy we have a conditional convergence for the order statisties Xk,
ke Ie:

Upp U120 Upp =9y

'\%-[ z 1"figj (xk’ (P)]eo

k612

o}

2s g
Uy sty

\‘Iij (X, CP)]: i, =1, 2.
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Denote a 2 x 2 matrix with (i, j) element tij by {tij}' Since

(¢} . . _ a0 _ .0 -
{Eul,uz [wij(x, 9)]} is nonesingular at 0 =8, ¢ =¢ and uy = N
. . B . . .
i=1l, 2, and, since Eul’u2[¢ij(x, )] is continuous in 8, ¢ and

Y, i=1, 2, in the respective neighborhoods of Go, @O and ﬂi, i=1,2,
there exist neighborhoods NN', 8" and §] of 0% ¢°, and 1, respectively
such that {Ee Lo, (=, @)]} is nonsingular for all 6 ¢ N', ¢ ¢ &"
Upsty 74

: (3]
A\ t 1 . .
and (ul, u2) ¢ §] x 8. Thus, the inverse matrix {Eu s,

-l
1 [ﬁij(x’ @)]}

exists, and it follows from (2.16) that

4 =1 ) {
ean {8, [, o] kngij G 9} o | Tp = % Uz = %

2> 71,

Now, we obtain the unconditional convergence applying Theorem 2 of Appendix

to (2.17)2

(2.18)

o] ~1 2
0 [ 3 f 1 o) }
E ’. . L I V w—r G L L W U U
{ unl’unz Ul,] (X’ ?)] J i v acpiac‘oa 'l (C.D, nt“ni? n2)

We natr hawe the second half of the lemma by applying the property,

L2 P
Upp == Ty 5 Upp > T,



ol

Lemma 2. If assumptions (B 1) -~ (B 6) hold between g(-le) and f(-g@)
. < . . - . .
for fixed 0<p; <p, <1, then the remaining portion Ln2(¢, Upo Uﬁ2)

of the (incorrect) log-likelihood has the following properties:

17 9 . 2.3 o -
n [3;51‘ Liol®s Upps Una)]eo B> [Btpi ()0, My "‘2)]’ i=1, 2,
where
T ((P!eg ul’ u2) = pl Jog F (ull(p) + q2 log [l - B (uz!‘P)] s

and, for sufficiently large n,

19 . 9 o
5 Sy N CH P Ung)\ /ac‘f;']': T (907, Ty, M)
/ B
19 ) \..é_ °
| 3'35; Lne(@’ U1s Ung)eo o, T (@!9 s Ty n2)

.5.3_; [5-?9-; T(t?!eo,ul’ug)] 'é%; [’S%l' T(‘Pleo’ul’“a)]\\ /.Ixnl\

1
il

P L | |
/m x
K
s bS] o) S} o)
\’ETu‘l’ [&Z T(e]® ’ul’“e] Su, [&’E; T<‘P?90’u1’u2):|. \an/

where random variables Xn s i=1, 2 are defined in Lemma 13
i
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and for each 1 and

1 o __. . D ) o)

Proof of Lemma 2. By definition (2.h4) -3’-1»——?- L 2((9; Up Un2) can be

acpi n
expressed as
1 9 .
(2.19) T '&": an(tp, Unl’ Un2)
v v
- L0 3.9 - ]
=5 S log F(unllcp) * oy log [l F(un2!cp)

* 'x—J; -B%; [f(unlgcp) f(un2|cp)] )

Since f(x;cp) is continmious at x =1, and x = T|2, we have

ln 1 2 -

Let random variable Xni’ i=1, 2, be such that
Koy = /20 Uy = 7).

By expanding -5%- log F(unllcp) and -a-%— log [l - F(unagcp)] in x .
i i '

near zero, we have
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d *n1 d

X
. onl

/n

5] 5] ¢ 1
log F(u, |o + o(—==)
[aul a(pi 1 ]ul=,nl /.r_l_ )

-BTap; log [1 - F(n,, - x—-—/gf lcp:‘ = -az—i log [l - F(ﬂzlc.o)]

X
+ -

d 9 - s 1
22 [% o 108 (1-F,le) ]u2=n ¥ 0(7-_-_-).

/o , /n

Hence

v : v
" S log F(1, |o) + = o log [1 F(’nelq))]
v, X
l ™ nll o 0
+ == == log F(u, o)
n /a [Bul Btpi 1 ]u_l:nl
v, X R
3 2 o0 9 N 1
+ == log (1 = F(u,le) + 0(—=).
no~ [Buz acpi 2 ) ]u2=n2 =
v v

As n tends to o, -E]:-—> Py and -Elé —_— q2, and, the first half now

follows. The second half can be shown similarly by expanding
a2
oy % Lo (93 Upy U ) eround m, end T,
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We are now ready to prove Theorem 2,

Proof of Theorem 2, Applying the results of Lemmas 1 and 2 to

1l 93 1 9
n ow. Ln (p) = n o, Lnl (@3 Wnl Uﬁl’ Uh2)

we oObbain

HE-ENOIR —»j ¥ (s @) g(x[o%) ax
T

+

Py -a—gi— log (1 |¢) + g 5= 20 [1 - P(1, o) ]

A (o0 M, M), i=1, 2,

However, by assumption (B 3), ©° is an unique solution such that

A (¢°]e°, T s ﬂz) = 0, Hence,

1lro .
(2.20) 5 L5 b wﬂo om0 i=12
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Moreover, by Lemmas 1 and 2, we find

a(pl n ((P)\‘
(2.21) i Lo m, [ o, k (%1% 15 1) ]
n ) :
d
21
awz n (w)wo,eo

where the (ij) element of the covariance matrix X (moleo, Ty nz) is given
by (2.11). Since the matrix A (o°|6°, Ty> M,) is positive definite by (B 6),
 (9°]e°, s> My) is also a positive definite matrix. Also it follows from

Lemmas 1 and 2 that

2
(2.22) }135%— (cp)]oo—B->-B (¢°0°% s T)s dd =1, 2
J

where B . (9°]0°, Ty s ﬂe) is given by (2.10).

Now, if ¢ € &', then by the mean value theorem

2
i l oy .1 ,[_0D ]
(2.23) 5 o L (¢) = (w)] Z (0~ o) = [3-9-1'5;,,; L, () 2
J
+ oo - ¢°| H (IR un2)
where fa} <2, |o- @Pi denotes length in E2. The function

H (unl, Wops W ) is such that
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3
1 o) . .
(2.24) l EW Ln(q))l(?. <H (unl’ n? “nz)’ P el
and
(2.25) H (U5 W5 U ) L2y

vhere M is positive constant. Such a function H exists by the assumption
(B 4). Since the matrix B (¢°|6°, Tys Ty) is positive definite by (B 6),

there exists «'> 0 such that
t' B (¢°]6% M, ) t 2o

for any vector t in E- such that It ] =1, For given € >0 choose

& > 0 in such a way that

o

(2.26) 6<€,{(p:lcp-cpolf_ﬁ}CQ',6<mﬁ.

Then, by (2.20), (2.22), and (2.25), for large no(e) and if n > no(e),

1l 9 2
!H%;Ln (o) lcpo <&,

2
1r_29 0,0
l n [acpi&b'; Ln(cp)]mo - Bij (o }o7, Ty ﬂz) | < s,

o <H (u ,un2)<M+l

ni® Yn
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with probability exceeding (L - ¢). If | ¢ - ¢°] < 5, then from (2.23),

1 9 0,0 o
|32 50+ By 616% 1, 1) - gy = 6) |
J

<%+ 28fp - o) + 2 Jp- o2 0+ 1) <562 (u+ 1),

Hence, if |o « ¢°| = §, then,

1 0 o

Z[gg;’;i' L (w)] < oy = @)

i

0y .0 | ) o
i,J
+10 85 (M + 1) <=8 lo = ¢°} + 1055 (M + 1)
= - 85 + 108° (M + 1) <o.

It follows from Lemma 2 of Aitchson and Silvey (1958), that there is & value

of which satisfies
n ©

gg L (@) =0

and

| &y - o° | <.

Since ¢ and & were chosen arbitrarily, this proves the existence of the
solution &h of the incorrect likelihood equation %$an(¢) = 0 such that

- Q
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Using the mean value theorem again, if ©e &

(227)&-—93——1.()—5[—-3(——52 L] e lo-ou ¢ )
. nacpiatpj n '@ ~n_a(Pi Pj n \P (Po o j@ = Y12 Wy LR

Choose &' so small that f{o :|o = ¢ | <8'} €&, and so small that for

any 2 x 2 symmetrie matrix {bij] with
P oo, =B, (6°16°% My M) | <6' + 280 (M + 1)
ij ij > Ty Ty
is positive definite. For thus chosen &', we have by (2.20), (2.22) and (2.25),

2
1 o) . '
l n [acpiacpj Ln (CQ)](PO + Bij (o leos Ty 712) | <8
end

0<H(unl,wn, un2)<M+l

with probability going to one. Hence by (2.27), for all o e fo : o = '] <8}

we find

2
1 9 01,0
= < &t '
! B 5,3, Ly (@) + By (07, s M) | <6t + 280 (M+ 1),
52
Therefore, the matrix .50 Ln(go)} is negative definite for every ¢ such
i% 3
that |p « '] <8' and it follows that % L (p) = 0 has at most one solu~
tion with | = cpol < §' and Ln((p) achieves maximum.,
Now there remains the proof of the limiting distribution of /n (c“pn- @),

Since Ebn lies in &' with probability going to one, we have by (2.23),
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rald = o]+ I/E (§, - ¢) |E(@ysw,n,)=0, 1=1,2,
From (2.20), (2.22), and the fact that &_ L ¢,
l Ylic"%c'ﬁ I‘n(q’D(Po =B @°10% s ) - /i (B, - @) |
<el /m @ -l

where en-424> 0. Moreover, we have the relation (2.21), and it follows from

Theorem 10.1of Billingsley (1961) that

B(g°10% Ty W) ¢ /o (B, - ¢°)

L N, [o,» K(cp°le°, Ty o 112)].
Hence,
[ G, - &”) 2> 1, [0, 0e®le% 15 )]
where |

a(e°16% My» 1) = 3e°[0%, s 1) K(o°le®, 1y, 1) BHePle%, Ty, 1)

and the proof is completed.
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Appendix

Two theorems on joint convergence of distributions are discussed in this

appendix. These are used in the proof's of Theorems 1 and 2.

Let g random vector Xh have ¢.d4,f Fn(-), and, let a random vector
Y given X =x have c.d.f Fn('lx) for all x in the union of the
closure of the ranges of X . Let Fo(') be a c.d.f, and, let Fo('[x)
be a c.d.f. for ail x. Let

=0

X
Bk y) = | Fy]zda T (a),

X
PGx, y) = | P (y|e)a F_(2)

£

Then Fn(",') and Fo(-,-) are c.,d.f.'s and Fp(’," is the joint e.d.f
of (xn, Yn). In the following theorem we write Fni:v) = F_(+) to indicate

that a sequence Fn(-) converges weakly to Fo(-).

Theorem 1. If (i) Fo(y[x) is continuous in x and y separately for all
(xs )3 (1) F () = F_(-); (i1i) F (-x) ® F (]x) for all x; and,
(iv) for each y, convergence in (iii) is uniform in x for x in the

open sets of arbitrarily large probability under Fo’ then

Fn("') = Fo("' .
Proof.

P (x, ¥) = B (x, ¥) = @ + Q,



where

o = [5,6l2) -5 6l0]ar @)

o[ Tl ar (-] Fsle) ar, ()

Y _ p

Fix y, and for given € > 0, let A be an open set with

(1
de >1 e
A ° 3

for which the uniform convergence holds. Then, for n > n{y,€, A),

[Fn(y[x) - Fo(ylx)l <-§- for all x ¢ A,

But
R (+) = F ()

if and only if

lim inf Id Fn_>_j‘ dF,
n=—> ® A A

for every open set A. Hence we can choose n > N¥* (e, A), so that

J.‘anzl-%eu
A

34
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Then

[ [r 12 - 7 (rl)] a B (2)

P-4

o

[frot0 - R a0

+ :Ac [Fn(y!z) - Fo(ylz)] aF (z)

<e‘dF(z)+j aF (z) < e.
J, n 0
Moreover, Fo(ylx) is a bounded and continuous function, and Fn(-) = Fo( .)

by (ii). Hence, it follows from the Helly-Bray lemma

s ijo(ygx) a ¥ (x) = [F_(y]x) a 7 ().

&

Therefore Q2 —> 0 as n—> X, aﬁd thus,

F (xs v) = P (x, ¥).

Theorem 2. Fér each n, let (Un, Wn) be a pair of random vectors. Let
(XO, Yo) be a pair of independent random vectors and let u, be a real
vector and wo(u) a real valued function on the space of u . If (i)
U, Lo us (ii) X = /n (Un - uo) Lo X ; moreover, for all u in
some neighborhood § of wu_, if (iii) the conditional distribution of
WnlUn= u is defined for all wu e 83 (iv) WnlUn = U~ wo(u); (v)

/o a(u) (Wn - Wo(u)> | U, =u L T3 (vi) the convergence of the c.d.f

of WnlUn =u is uniform in u for u e S at each continuity point of
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the c¢.d.f of Yo’ then

~L;
(X, ¥,) = (X, Y )

where

Y, =/ a(U)0 - w (o)

Proof,

At first we will show that Y L. T e

Let ‘Go(y) = P(Yo < y) be the limiting conditional c.d.f. of Y which

does not depends on u., Let y be any fixed continuity point of Go.

| B(r, < v) -6 () | =] [e(y, <vlu, =w)a 7, (@)

- jP(YO < y!Un =1u) 4 Fy (w)]
n

= |[p(r, < ylu=u) a Fun(u)

- [y <) ar, @)

< y!Un =u) = P(Yo <y)la F, (u).
: n

For given € > 0O and a neighborhcod S of Uys if n >rlé (e, 8), we have

2
IdF (W) > 1 = 2= e,
S un : 3



Since the convergence of WnlUn =u is uniform in ue S by (vi)

(¥, Svlv, =w) - By, <9 <5

for all ue S and n> ng(e, 8). Therefore if n > max (n('), n'o')

Bz, 2 9) - 6, < [ 120r, svlg, = w) - 2z, <wlaw, W)
n

+ ] o120, S iy, = u) - Bz, < 9)la 7, @)

Ze |
<icfarp (u)+j AaF (u)<e.
3 dg T, g€ Yy

Now, it remains to show the asymptotic independence of Xn and Yn.

P(X, Sx, ¥ <y)= jP(Xn <x ¥ < y[Un =u) d Fun(u)

aghs [fE

P(Yn < y[Un =u) d F_ (u) = P(X, < x) 6 (y)

n
utx /o

*) [Pz, s vlv, = w) - ¢, ] a ®, (W)
L : n

ft
te
8

[N, . <
==> P(*X, < x) 6 (y)
Uniformly in u. Thus,

L .
(an Y‘n) — (XO’ Yo)..
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