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1. Intreduction

Let {z:} T be a sequence of random variabies with & known joint distribution.
We are allowed to observe the 2z, sequentially, stepping anyvwhere we please;

the decision to stop with 2, must be a function of 25, - -+, 2, only (and not of
Zny1, -+ 0). If we decide to stop with z, we are to receive a reward a, =
fu(z, + -, 2,) where f, is a known function for each n. Let ¢ denote any rule

which tells us when to stop and for which E(z,) exists, and let » denote the
supremum of E(z,) over all such i. How can we find the value of v, and what
stopping rule will achieve v or come close to it?

2. Definition of the v, sequence

We proceed to give a more precise definition of v and associated cencepts.
We assume given always

(a) a probability space (2, F, P) with points w;

(b) a nondecreasing sequence {F.}7 of sub-Borel fields of &;

(c) a sequence {z.}7 of random variables z, = z.(w) such that for each

n 2 1, x, is measurable {F,) and F(z,) < .

(In terms of the intuitive background of the first paragraph, §, is the Borel
field ®(zy, - -« , 2.) generated by 2, « - -, 2.. Having served the purpose of defining
the &, and z,, the 2, disappear in the gencral theory which follows.) Any random
variable (r.v.) ¢ with values 1,2, --- (not including «) such that the event
[t = n] (that is, the set of all w such that #(w) = n) belongs to &, for each n > 1,
is called a stopping variable (5.v.); x; = %, (w) is then a r.v. Let C denole the
class of all ¢ for which E{(z;") < . We define the value of the stochastic sequence
{&a, Fa} 7 to be :

! Research supported in part by National Science Foundation Grant NSF-GP-3694 at
Columbia University, Department of Muthematical Statistics.

2 Research supported by the Office of Naval Research under Contract No. Nonr-266{59),
Project No. 042-205. Reproduction in whole or part is permitted for any purpose of the Umted
States Government.

427

59




428 FIFTH BERKELIY SYMPOSIUM. CHOW AND ROBBINS
( v = sup E(z,).
tee

Similarly, for each n > 1 we denote by C, the class of all ¢ in C such
that Pl > n] = 1, and set '

2 . v = sup E(z,).
t&Ca
Then
(3) ) C=01302:> and 2):?)122)22"';

“since'f = n € Oy, wéhave v, > E(z,) > —w.

For any family (y, ¢ € T) of r.v.’s we define y = esssuprery, if (a) yisa
r.v. such that P{y > y.] = 1 for each ¢ in T, and (b) if z is any r.v. such that
Plz 2 y,] = 1foreachtin T, then P[z > y] = 1. It is known that there always
exists a sequence {t;} 7 in T such that

4) sup Yy = €SS Sup Y.
k ter

We may therefore define for each n-> 1 a r.v. v, measurable (¥,) by
®) va = ess sup B(z,|F.);
tec,

then v, > . (equalities and inequalities are understood to hold up to sets of

P-measure 0) and E(v,) < E(z;) < .

It might seem more natural to consider, instead of C,, the larger class C, of
all s.v.’s ¢t such that P[t > n] = 1 and E(z,) exists, that is B{z;) and E(z)
not both infinite. However, this would yield the same v, and v.. For if t € C,,
define ' '

® p {t if B(2,)F.) >

" \n otherwise.

Then setting A = [E(2|F.) = 2.], we have
@ Bi) < B@) + [, o

But —o < [y 2. < [4z,80 [4a 27 < . Hence, E(zi) < « and i’ € C,. Now
E(zy|F.) = max (z., B(x|F,)) > E(z/F.), and hence E(zy) > E(z). It follows
that v, and v, are unchanged if we replace C,, by C, in'their definitions.

3. Some lemmas
Lemma 1. For each n > 1 there exists o sequence {t:}7 in Cn such that
(8) Tn S E(xtklgn) T Ya . as k— o,

Proor. Choose {i:}7 in C, with 4 = n such that v, = sup; E(x,klffn). By
lemmas 2 and 3 below, we can assume that (8) holds. _
LemMa 2. For any t € Cy, define t' = first k > n such that E(z|F) < zs.
Then
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@ U<t el '
(b) E(wr|Fs) 2 E(zFn),
() ' >j=n= E@|F) > =
Proor. If ¢ = j > n, then E(x|F;) = z,, sot < J; hence, ¢’ < . Now
® E@i)=3 / z <% E-(x %) £ 2 Bz |5
k=n J[t'=E) k=n J[I'=Fk] k=n J[t'=k]
== E(.’l?t_) < oo,

so that t' € Ca. Hence (a) holds. For any A€ & withj > n,

~

w [ ow=g[ o Balw) = |
Al 241 k=3 JAl=%) k=j JAl=k] Al 27}

Putting 7 = n gives (b). For t' > j we obtain E(z¢|F;) > E(z,|F;) > z;, which
gives (e).

Any t' € C, satisfying (c¢) of lemma 2 will be called n-regular.

Lremma 3. Let {837 € C. be n-regular for some fized n > 1, and define r; =
max (&, <+, ¢:). Then 7; € C. 1s n-regular and

{11) max E(z4]5,) < B@.|F.) < E(@r,|Fn).
1<k <4

. Proor. That r; € C, is clear. Forj > nand A € 5,

(12) f ‘x‘l‘i = Z </ Tre + xk) :
Afri>2g7] k=3 Alri=k>tin] - Alri=k <tip1]

A
Ms

_ </ xr.‘u + mt:‘n)
k=j \JAlri=k>tin] . Alri=k <tin]

= / Lripre
Afrizd] |

For j = n, this gives

(13) E@al5) > Blod5a) > -+ > E@l5.) = B,
and hence, by symmetry,
(14) E(z,|%.) 2 max B(z,|5.).
1<k<i
To prove that 7; is n-regular, we observe by the above that
(15) : : 7 2§ = E(@{5;) < B@n.l55).
Since £ is n-regular, _ . _
(16) h <j=z; < E@|F) = E@.|F) < -+ < E(z.[5)),

and by symmetry,

. . 7 > § = 25 < E(z,|5)).




STOCHASTIC SEQUENCE . 431

8o that t' € C. The same argument without the — and with reversed inequality

proves the inequality E(z,) < E(xy).

. A sv. t e Cis opltimal if v = E(z,). A s.v. ¢ in C is regular if Jt is 1-regular;
that is, if for each n > 1, t > n = E(z,|F.) > ..

© TaroreMm 2. () If ¢ € C and 1s regular, then it is oplemal. (b) If v < © and

an optimal s.v. exists, then o € C and s optimal and regular moreover, o s the

minimal optimal s.v. and

27) o 2 n=E(,|F,) = E(v.|F) = va (n > 1).

_ Proor. - (a) If o€ € and is regular, then ¢ > n= EB(z,|%%) > x, for each
n>1 ] Fo) < v, = 2, by lemma 4.
Hence by lemma 1 of {1], ¢ is optimal.

(b) Since v < 0, v, = E(y,) < o for each.-n > 1. Let s in C be any optimal
s.v., set A = [s = n < ¢}, and suppose P(4) > 0. Then

-

(28) : /A Yo > /A o+ e ' for some ¢ > O.

Choose {f;}7 in C, by lemma, 1; then [4 z, T [4 va, s0 that we can find & so
large that [4 24 > [47vs — € Set

> ,_[s off 4

29) - ¥ = {tk on A’

then it is easy to sce that s’ is a s.v. in C. But

(30) E(zy) = j;_A T, + fA T > |, T + fA z, = El(z,),

a contradiction. Hence P(4) = 0, and thus Plo < s] = 1, so ¢ is a s.v. By
lemma 5, ¢ = min (s, ¢) is in C and ¢ is optimal and minimal.

Tor any n> 1, let A = [E@|Fn) < ¥n,0 > n)] €Fn. I P(4) > 0, then
Javn > a2, since E(y,) < E(v1) = v < ». By lemma 1, there exists ¢ in C,
such that f4z: > [4 2. Deﬁne

: _ft onA,
31) T—{a off A

then it is easy to see that r is a s.v. in C and E(z,) > E(z,) = v, a contradiction.
Hence P(4) = 0, and by lemma 4,

T (32) o > 1= B(7,|%.) = E@|F) = vu > @,

so ¢ is regular and the last part of (b) holds.

6. Bounded stopping variables

The r.v.’s v, and the constants v, are in general impossible to compute directly.
‘To this end we define for any N > 1 and 1 < n < N the expressions

(33) CY = allt € €, such that P[t < N] = 1; v, = sup E(z,);
: ' . tecy
(34) vy = ess sup E(x,{F.).
tecy
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Then

(35) —o <EB@) =t <ot <o Kpand 2, =y ST < - Sy
s0 that we can define '
(36) ' Cvh = lim oy, = lim yf,

N N—w

and we have
(37) —o0 < —E(xn) S 01,1 S Uny Zn S 7; S Yn.

By the argument of theorem 1 applied to the finile sequence {z.}¥, we have

'YII:Y’ = IN, )
'YnN = max (Lx, E('Yﬁ\t,—%l'gn)); (n=1,--+,N—1),
and Fv¥) = o¥, so that v} and vy are computable by recursion. By the mono-
tone convergence theorem for expectations and conditional expectations,
E(y1) = vs, and

(39) Yn = W8X (@, E(vn41[Fa)), (n > 1).
Hence {vi}% satisfies the same recursion relation as does {v»}7. (In [2], v¥ = BY,

!
Yu = Bn)
TuroreM 3. If the condition A=: E(sup, zz ) < « holds, then

(38)

, (40) e =n and v, = v, (n > 1).
Proor. ForanyteC,and 4 €,
(41) ./:ﬂlsN] T < fA Tmine ) F [, TV
Since E(xmin(t,N)Is:n) < ‘ery < ’Y:ty
! —_
(42) i@ S [ 72+ [iom, Gup22).
Letting N > 0,
(43) fA z, < /A v, B@lF) <vm o va < 1m
80 Yn = vr and v, = vy
CororLary. If A~ holds and {z.}7 is Markovian, and §, = ®(zs, -+ , ),

then g¢ = E(va|z.). -

Proor. The Markovian property of {z.}7 implies (by downward induction
onn) v¥ = E(y¥|z,) which entails vz = E(ys|z), and then v» = E(ya|z.). (The
assumption A~ will be dropped in the corollary to theorem 9.)

7. Supermartingales

A sequence {y.jt of r.v.’s is a supermartingale (or lower semimartingale). if
for each n > 1, y, is measurable (%.), E(y.) exists, —o < E(y,) < o, and
E(n41/Fx) < ya. We shall denote by D the class of all supermartingales {y.}7
such that y, > . for each n > 1. The sequences {y.}7 and {y»}7 are in D.
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TrroreM 4. The sequence {vi} is the minimal element of D.
Proor. Forany {y.}7 in D,

~,
yﬂ 2 Ty = /71;

44 - Y = ByulFan) = BGAF.),
Yn—i Z max (xn—ly E(')’le:n-—l)) = 'YZ—-I, e, Y 2 "Y;Z, te

(45) y: 2 lm v} = v, (z > 1).
We shall define various types of “regularity” for clements of D, according
to the class of s.v.’s ¢ for which E(y,) is assumed to exist,and the relation

(46) C t2a=E@E) <. | (a21)

to hold. An element {y.}7 of D is said to be

(@) regular if for every s.v. t, E(y,) exists and (46) holds;

(b) semiregular if for every s.v. t such that E(y,) exists, (46) holds;

(¢) C-regular if for every s.v. t € ¢ (for which E(y,) necessarily exists),

(46) holds.

Clearly, for elements of D, regular = semiregular = C-regular.

We shall use the notation A+: E(sup, z ) < o, A*: E(x,) exists for every
s.v. t. Clearly, At = A* = A~

LemMa 6. If A* holds, then for any € > O.and n > 1, there exists s € C,, such
that

47) E(x|5,) > vn — ¢ on ['yn < ],

Proor. Choose {&} 7 in C, by lemma 1. On [7,; < oo] define & = first & > 1
such that E(zu|Fn) > v» — ¢ and set

_ ftaon [y. < ]
(48) _ 8= {n elsewhere.

Then E(x,) exists, and on [y, < ], E(@|F.) > v. — e. Hence,
(5} —_ - ) —
49 . Bez[  m—o+ [ m> -,

so that s € C,.
Lemma 7. (a) Condition A~ implies E(yi) = E({y¢)™) < » for every s.v. t,

and (b) condition A* implies E((v))*) < E(y/") < » for every s.v. &.

Proor. (a) Since by theorem 3 z, < vn = va, v = (v1)~ < sup zs.
(b) Since ’

(50) v = ess sup I7*(z.(5%) < B(sup o7 |5,
4 n . i J )

then _ :
i / W<y / E(sup ;" |F4)
= ft=nl n= ft=n] J
= L'(sup 27 ).
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TaeorEM 5. (a) If {y.}T € D and ¢s C-regular, then y, > v for each n > 1;
(b) A* = {y.}7 s semiregular;

() A7 or A*= {va}7 1s regular;

(d) {yn}7 is C-regular. _

Proor. (a) If {y.}7 € D and is C-regular, then

(52) va = ess sup E(z|F.) < ess sup E(ydF.) < yn.
tECh . tEC,

(b) Let 7 be any s.v. such that P[r > n] = 1 and E(y,) exwts Por arbitrary
e> 0,k >n,and m >1, setting 4, = [v. < m], we have

(63) mZ/‘Am'Y"Z,[A,,.'Y"“Z"'Z_/A,HV"Z""

50 that vx < © on A,.. Hence, v < © on 4 = [y, < »]. By lemma 6, we can
choose & € C} such that

(54) E(mt;[ff"k) > Ye— € : on A.
. Define '
[t ondlr =kl
(55) b= {T off A.

“Then E(z,) exists, and on 4,

60 Do) = B (£ Tow Bealsisn) 2 B (£ Tomnn - 9I52)

= E(’legn) — ¢
and therefore on A, by the remark preceding lemma 1,
GY)) Yn = €8S SUp E(x|F.) > Ely,|Fn) — ¢
=
(recall that ¢, = all s.v.’s ¢ > n such that E(z,) exists). Hence,
(58) . . Yo 2 E('Y‘rlgn) on. Q.

Now let ¢ be any s.v. such that E(y,) exists. Set + = max (¢, n). Then if
E(yi*) = o, E(yi") < «, and hence

(59) Bei) = [0+ [, v <
while if E(y:") < o, then -

Y — +
(60) B0 = [+ foan ™ <
since '

. ’ n n
(61) °°>/ 7¢=Z/ wZZ/ 7u=/ v
[t<n) =1 Jue=x £=1 Jit=K [t <n)

Hence E(v,) exists. By the previous result, v, > E(y.|F.), and hence,
(62) © i 2 n= v, 2 E(1[F.) = E(yi|Fa).
(c¢) This statement follows from (b) and lemma 7.




T IRG

ECTR SO

o B At AR L

STOCHASTIC SEQUENCE : 435

(d) For 0 < b.< o, let 2,(b) = min (z,, b), and let v5 (< v.) denote v, for
the sequence {z,(0)}7. As b—», —z7 < v2 T Fn, say, where %, < v,, and

for any ¢ in C,, x.(b) > —z/, so that E(z,(b)|F.) T E(z.|F.). Since ¥, > s >

E(z,()|F.), ¥ = E(z,5.), and hence . > vn, 92 = ¥». Now if ¢ € C, then
by (¢), ¢t > n=E(®/!|F.) < v4 < ¥u. Asb — o, sincey! > —z;, and E(z;) < o,
t 2> n= E{7]F.) < vn 50 {v.}7 is C-regular.

CororrarY 1. (a) The sequence {va} 1 ts the minimal C-regular element of D.

(b) Condition A* implies that {y.}1 1s the minimal semiregular element of D.

(c) Etther A= or A" implies that {y.}Y is the minimal regular element of D. .

We remark that under A=, E(sup, v+ ) < E(sup. z7) < ». Hence, by a well-
known theorem, {v,}7 is regular, and similarly for {y.}7. By theorems 4 and
5(a), {yn}¥ = {va}T, which gives an alternative proof of theorem 3.

CoROLLARY 2. If v5 = ess supiec, E(min (2, b)|F,), then
(63) C 4y = lim gl . (n > 1).

b—m

8. Almost optimal stopping variables

Levma 8. If v < o, then for any € > 0, Pla, 2 v. — ¢ 1.0.] = 1.
Proor. Since o > v = F(y:) = E(yy) > +--, we have Py, < »] = 1 for
each 7 > 1. Choose any ¢ > 0 and r > 0, and define for n > 1,

(64) &=ﬁmm>waﬂ

where {t.}1 is chosen by lemma 1 for each n > 1 so that ¢, € C, and P(B,) >
1 — 1/r (convergence a.e. = convergence in probability). Define

(65) B=[z,<v.— ¢ forall n > m]

where m is any fixed positive integer. Then .

(66) , Ta < va — el for n > m,
so on B, for any n > m, '

(67) T = - < B,

Fn) < E(vi|F.) — eP(B|F.)
< ¥ — eP(B|Fx) by theorem 5(d).

‘Hence on B,, P(B|§.) < 1/r, and therefore P(BB,) < 1/r. It follows that

P(B) < P(BB.) + P(& — B,) < (1/r) + (1/r) = (2/r). Since r can be arbi-
trarily large, P(B) = 0, and therefore,

(68) Pz, > yn — eforsomen > m] = 1
and ' ’ _
(69) Plz, 2 vn— ¢ i.0.] = lim 1 = 1,

m—«

THEOREM 6 For any € > 0, define
(70) s = first n 2> 1 such that z, > v, — € (s = « if no such = exists)."
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Assume the following: (a) Pls < ®] =1,
(b) E(x,) exists,

(¢) lim inf / B ranls) = 0.

Then E(z,) > v — .
Proor. We can assume E(z,) < «. Since v, < 2 + ¢ E(y,) < . Now

) o= Bl = [ v+ [ Bl

= ,/;8=1] ¥s *F fs=2] ¥s (s>2] E('Y3IS:2) = ...

= +
1<o<m ™ -+ f[s>n] E(van|Fn) < /[1 oem ¥ T /[s o) E*(ynpa|Fn).

Lettimgn > 0, v < E(v,) < E(z,) + e
CoroLraRY. For any € > 0, define s by (70). Then
@) fore>0,At=Pls <»]=1land E(x,) > v— ¢
(i) fore=0, {A*, Pls <] =1} = E@,) =
Proor. Condition A+ implies ¥ < o, and by lemma 8, this implies that
Pls < »] = 1. Condition A* also 1mphes (b) and (c). _
TraEOoREM 7. Let {a.}Y be any sequence of r.0.'s such that a, is (F,) measurable

- and E(a,) exists for each n > 1, and such that

(a) on = MAax (Zn, E(ana|Fn)),

(b) Plz, > an — e1.0.] = 1 for every e > 0,
(c) {E*(ansa|Fn)} T 78 uniformly integrable,

d) ) either B (sup ar) <, or AT holds.

Then for eachn 2 1, an < ¥n.

Proor. For m > 1, A € &, and e > 0, define { = first » > m such that
T, > an — e. Then P[m <t < w] =1 If the first part of (d) holds, then
E(a;) < =, and since z; > o, — ¢, it follows that E(z) < «, and hence, by
theorem 5(d),

(72) fat<fxt+€<f’)’t+€</'¥m+6

If- M holds, then E(ai') < E(x") +¢ < =, and the same result follows from
theorem 5(c). Now

(73) ./A Om = ,[A[t=m] o + Asm T T < <mtn @
+
+ Alt>mg) T < Alm<t<m+r) & + ALt >m+k] E (a’"‘”“"ll_g"‘”‘)'
Letting k& — «, it follows from (c) that
T anmeAat.$/A7m+e,

80 since € was arbitrarily small, 4 an < [4 vm, and therefore, an < Y.
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CoroLLARY. Assume that A= holds. If {oa}T s any sequence such that a, 1s
measurable (F.), Blan,) exists for each n > 1, and (a), (b), and (c) hold, then

(75) ’ Cy = Y.
Proor. By theorems 7, 3, and 4, since A~ implies (d),

(76) o< an < Yo = yhe

9. £ theorem of Dynkin

-We next prove a slight generalization of & theorem of Dynkin [3].- Let {z.}¢
be 2 homogeneous discrete time Markov process with arbitrary state space Z.
For any nonnegative measurable function g(-) on Z, define the function Pg(-) by

(77) ‘ Pg(z) = E(g(zays) |20 = 2),

and sef

(78) Qg = max (g, Py), Pt = Q@Qr), (k20), Q=g
Theng <Qg<Qy< -+, 50 v '
(79) k= I%_i_rfi Q%g

exists. Let §, = ®(z, « -+ , 2.) and consider the sequence {za}f with z, = g(z,).
TuEOREM 8. For the process defined above, sup E(g(z)) = E(h(z)).
Proor. By theorem 3,
(80) Y=y = lim v,
where
' 'Y% = g(zN) ’
vi-1 = max (g(ev—), E(g(en)lon—)) = Qglon-y),
Y¥-2 = max (g(ew—2), B(Qq(ew—1)|zv-2)) = max (g(zw-s), PQg(en—s))

(81) - = max (g(ew—s), Py(en_s), PQq(ew—s)) = Q%g(en_s),

7Y = @¥g(z) = h(z) as N — .

" Hence Y1 = k(zl) and v = E(’Y1) = E(h(zl)).

10. The triple limit theorem

Lemma 9. Assume A+ holds, and define

Zo(a) = max (2., —a), 0 <L a<w),
(82) va = ess sup E(z,(a)|F.). ‘
Plt>n]=1
Then g
(83) Yn = lim 'Y:,-

a—o
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Proor. Since vi = max (z.(a), E(va+1[F.)) and va(a). | 77, say, as a — »,
where vE > v,, it follows from At that 4% = max (z., E(vh+1|F.)). For any
e > 0and m > 1, define s = first n > m such that . > v& — ¢ (= » if no such
n exists). Then {viun sm)n=-m is & martingale, since
(84)  E(imea+n) = Iws>mBWilFa) + I < B (v3Ta)

= Tonvh + Lp=my v+ o+ Lie=n)" Y2 = Yioin cm-

Since E((vim sm)?) < E(sup, z4) < «, and since E((y5)™) < », we have by
a martingale convergence theorem, :

(85) 'anln sm) 8 finite 11m1t 88 N — w0,
and hence,
(86) ' v% — a finite limit on [s = «] as 1 — o,

Buton[s = @], vi > x. + eforn > m, so

(87) lim sup z, < lim sup v% — ¢ on [s= ]

Since vi < E(sup;zm 2;(0)|Fa) for n 2 m,

(88) lim sup v4 < lim sup v < sup z;(a),
’ n n jizm
and hence,
(89) lim sup v% < lim sup 2.(a) = max (lim sup 2., —a),
n n : n
and
90) lim sup v < lim sup z,,
n n

but v5 > x.. Hence,

(91) lim sup v = lim sup z,,
n n

contradicting (87) unless P[s = «] = 0. Hence,
(92) » Plz, = v — ¢i.0.] = 1,

and by theorem 7, v& < .. Therefore, vi = v».
TuroreM 9. The random variables v, are equal to

(93) Yn = lim lim Alrim v¥{a, b),
b0 g — — 0 .
where
(94) v¥(a,b) = esssup E(x.(a, b)|Fx)
Pln<t<Ni=1
and
a if z <a,
(95) z(a,b) =<z if a<z<Dh

b if z>b

Proor. This follows from lemma 9, theorem 3, and corollary 2 of theorem 5.
CoroLLaRY 1. The values v, are equal to
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(96) -+ lim lim lim »Y(a, b).

b—w g——w N—rwo

COROLLARY 2. If {z.}T is Markovian and §, = ®(my, «++ , Tn), then

97) ] : Yn = E(Ynlxn)-

If the z, are independent, then )

(98) ' E(ynilFa) = E(yn1) = vasy, .

and the v, satisfy the recursion relation

99 va = E{max (za, Dnii) ), (.2 1),

Proor. By induction v3(a, b) = E(v¥{(a, b)|z.) fromn = N down, as in the
proof of the corollary of theorem 3. Letting N, a, b become infinite yields (97).
Under independence, -

(100) E(’yn_HISFn) = E(E(')’n+1!xn+l)l"}n) = E('Yn-H.) = Untl.

And from v, = max (Tu, E(ya41]Fn)) = max (s, vn41), we obtain (99) on taking
expectations. '

11, Remarks on the independent case

TreoreM 10. Let the {x.}7 be independent with §, = B(xy, --- , 2,). Set
s = first n > 1 such that z. > vu — e for ¢ > 0 (= o if no such n exists). Then

(101) p<oo=Pls<o] =1,
and if in addition E(z,) exists, then
(102) E(@)>v—e

Proor. By lemma 8 and theorem 6, since by (87)
103) [ Bl = [ vt = oPls > n] 0tPls > 1] 0.

We remark that when ¢ = 0 the conditions v < o, P[s < »] = 1, E(z,) exists,
imply Z(z;) = .

TrroreM 11.  Let the {x,}T be independent with Fp = ®(zy, + - , Tn), and let
{a.} T be any sequence of r.v.’s such that a, ts measurable (F.) and E(as) exists,

oonz LIf

(@) an = max (@a, BlawalF), (0 > 1),
(b) P(xzn > an — €1.0.) = 1 for every e > 0,
(€) E(onp1|Fn) = cu = constant, with E{ay) = ¢1 < =,
(@) A* holds, or liminf E(z,) > —o,
then "
(104) - - v an < Y n>1).

Proor. Define A and ¢ as in theorem 7. Since
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(105) ¢n = E{max (Zuy1, cay1)|Fn} > Cas,
we have o : _
(106)- ./A o= Jatm<ecmin * + Al >mepry Frh
B L{m5t5m+k] % f s man Ot
. - 12 .
< ./:ﬂmStSm+k] a + eiP[t > m 4 kJ.
Hence under A+ (or 47), _
< Tim inf. R
(107) /;1 Am = hfi,inf Alm<t <mar) S h?i,f;,nf Apm<iemry T T €

k—yo0

S} lim inf Alm <t <mt-k) Yt 4+ e = _/A Yt + € S ,/A Ym + €

by theorem 5(c), 50 am < v, If the second part of (d) holds, then since ¢, | ¢,
say, where ¢ > liminf, E(x,) > —0, and 2z, > ¢, — e > ¢ — ¢, it follows that
E(xi) < o, so thecrem 5(d) yields the same conclusion. '

Remarks. 1. Lemmas 2 and 3 are slight extensions of lemmas 1 and 2 of [2].

2. Theorem 1 has been proved independently by G. Haggstrom [4] when
E|za| < o and E(sup, z4) < «, as have theorem 4, corollary 1(c) of theorem 5
under A+, and the corollary of theorem 6. The latter was also proved by
J. L. Snell [5]. .

3. We are greatly indebted to Mr. D. Siegmund for improvements in the
statement and proof of many of our results. In particular, theorem 9 is largely
due to him.
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