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1. Summary and Introduction: Distribution problems in multivariate

analysis are often related to the joint distribution of the characteristic
roots of a matrix derived from sample observations taken from multivariate
normal populations., This joint distribution (under certain null hypotheses)

of § unon-null characteristic roots given by Fisher [47, Girshick [5],

Hsu (6], and Roy T/&] can be expressed in the form

R Y 3
(1.1) £(8,,...,8,) = C(s,m,n) ir=xl ot (1-6,) ]Ej (8;- 05)

0<8 <...20<1

1
where
5 . . .
(2)  o(emn) = 1% rEmlnen®y (@it r@t ru/z)]
1= -

and m and n are defined differently for various situations described in

[9], [11]. Nenda [7] has shown that if §.= nei(i=l,...,s), then the limiting
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distribution of §is as n tends to infinity is given by
g n 5
(1'3) - f1(§1’§2""’§s) = K(S',Iﬂ) n gi e n (gl-ga)
, i=l i>j
0<E ... SE <™

where
(1.4) K(s,m) = 1%/2/] _?xl fEE) r(s/2)]
i=

The distribution (1.3) cen also be arrived at as that of &= %yi

(i=1,2,...,8) where Y;s are the roots of the equation |S - y £| = o where
S is the variance-covariance matrix computed from a sample taken from an
s-variate normal population with dispersion matrix X. In this paper, the
Tirst four moments of Wés), the second elementary symmetric function (esf) in
s g,sﬁ have been obtained and approximations to its distribution suggested. 1In

addition, the variances of the third and fourth esf's are also obtained.

2, Values gf some determinants.

The joint distribution (1.3) can be thrown into a determinantal form of

the Vendermonde type and integrated over the range R,0 < €8 .2 E,<®, giving

o - -g o -g

jogg*s e Sdgs.f.,Jogz e ®ag
s
(@1) [ (8,805 +0:8,) B aE,=K(s,m) :
R i=l
82 -€ g2 5
-1 .75 :
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3
Now denote by W(s-1,8-2,...,1,0) the determinant on the right side of (2.1).
It has been shown by the present authors in an earlier paper [13} that the
moments of W§s)(i=l,...s), the ith esf in the s E's, can be obtained as lin-
ear compounds of determinants of the type W(qs,...,ql), 9 > O. Further the
authors have evaluated in that paper [l3],l(See also [12]) the values of each
determinant involved in the first four moments of Wés). However, the evalua-
tion of the determinants was done in successive stages using a reduction fprmula
10} which reduced the original determinant into two parts, the first part con-
sisting of a linear compound of lower ordeér determinants and the second a deter-
minant of the same order with 9 changed to qs~l. The second part vanishes
if 9= s-l+l’ but otherwise successive reductions should be carried on the
second part as for the original determinant. In the previous paper the values of
the determinants were presented giving the results for each stage separately
but these are now consolidated for determinants with Qg > qs_l+l and pre-

sented below,

(2.2) K(s,m)W(s+2,8,8-3,.4.,1,0)

=-( g ) —I;%S_JE;%)' [85(8+l)(s+2 )m3+125(s+2)(52+3s+6)m2

* *

+a(s+2)(3su+l5s3+h752+598+24)m

L

+(s6+9ss+h3s +123s3+l96s2+20hs+lhh)] )

(2‘3) K(s,m)W(S+2,s+l,s,s-’-l-9...,l,O)

o ( 82 Ty M(sel,...,s+3) 2 L
- ) 2T 15 [16(s-1)6"(s+1)m

+16s2(s-1)(s2+es+10)m3



+hs(s-l)(6sh+18s3+12552+775+h32)m?
+2(s—l)(hs6+17s5+1O?sh+353s3+16932+12785+2520)m

+s(s+l){s(s-l)(sh+hs3+hlsz+38s+h32)+1hh0}]',

(2013') K(S,m)W(S-kZ,S’I-l,S,S-B,S—5,...l,O’)

= K 822 ) M<:ﬁ, B]._;S+3) []‘6(5"‘1)52(S+l.)'mlF
+8(s-l)s2(2s2+hs+23)m3
shis(5-1) (65 +1853414352+895 462U )2

+2(5-1) (bs+1757 41256 +37367+6135%+8 38545680 )m

+s(s+l){s(s—l)(sh+hs3+#7s2+hhs+62h)+2880}] s

(2.5) K(s m)VJ(S"'z s, S-2 s.,]_l_s eelk O) = [Q ) (S+2)M(S S+l)] [16S(S+l)m +
+8s(hs2+9s+20)m3+h(6sh+21s3+6532+503+h5)m?

L

+e(hs5+19s +70s3+9552+70s+9o)m

+(s6+6$5+25$h+h5s3+1952+395-135)]

(2.6) K(s,m)W(s+2,8~1,5-2,5-3,85,.,.1,0)

[(, (s+2)M(s-2 s-l)] [h(s+l)m f2 (28 +7s+17)m

+(s3+6s2+23s+h2)] ,



(2.7)

(2.8)

(2.9)

(108541105 T+635504226557 17655 4512583415505 ~40208 -6120 )i

K(s,m)W(e+3,5+L,8-2,8-1,.,.1,0)

=5 (%5 M(Zél";;’s*” [8s(s+1)(s43)m> +

+hs(3s3+l952+69s+ll7)m?

L

+2(3574265 1 +11353+45052+7865+576 )m

+(s6+1ls5+77sh+3hls3+9h6sz+182hs+2880)]

K(s,m)W(s+3,8,8-1,8-4,.,.,1,0)

= k ) M(S-l ceoS+L) [32(s-l)s(s+l)(s+2)(s+3)m
3 . 5!
5 h 3 2 L
+165(5s”+35s +105s”+1455" -50s-240)m

L

8 (s-1) (1084100575055 +1550s427855% 426708+1080 )™

2

6

+2(55246555 414505 T+20008 045679574101 158 4117705 3+78605°

+1656s+1L440)m

+(slo+l5sg+12058+63Os7+219336+5115S5+86305h+1080083

+12096s2+25200s+302h0)]

K(s,m)W(s+3,8,8-2,8-3,8-5,...1,0)

(3 /M(S‘Z = FLLY [16s(s+1)(s+2)(s+3)m”

+8s (ks +3hs3+l3252+27hs+228)m3



+1 (6504665743655 +12205+23575° 4222654672 )m°
+2 (s T+5155+ 37857 416925 1862554867057 49128545152 )m

+eB4165Tw13uebahos®s2757s " s692tis3 221262 50k0040108 |

(2.10) K(s,m)W(s+2,3,5-133'395"5,-.n,l,o)

= & ﬁ )’M(séz’ ',;".s"'.ll [16(s—l)s(s+l)(s+2 )mh
2° . 4!

+8s (hsh+1hs3+32s2+10s ~60 )m3

h+l6Os3+97sz -228—38’4)]112

+h»(656+30s5+113s
+28 (1Ls6+26s'5 +l26sh+28853+h58 s2+598s+228 Jm

+(s+2)( s-7+6s6+3hs5+7254¥15783+3065_82+l728 ):\ s

(2.11) K(s,m)W(s+2,s,5-2,8-3,8-l,5-6,...,1,0)

$(G R e

+hs (3s3+15s2+’+55+5h )m2

!

+2 (’3s5+21s +95s3+225s2+295s+210)m

+56§935+52s)++l77s3+37682+663s+63o] s
(2.12) K(s,m)W(s+3,5~1,5-2,8-3,8-k4,5+6,...1,0)

N

=5 ’\ ; )'M(’S-ié-:-;s’+1){8(s+l_)('s+2)(S+3)m3'

2

(3842755411155 42378+198 )u®



L

+2(3s5+36s +21SS3+78032+15705+126O)m

L

+(sP1587 41155 ™+5735%+18015%431085+42160) |

(2'13) K(s,'m)W'(s+2,s-l,s—2, S-S,S-L},S-s, 5’7: LR .l,O)

= 3. Qé )Mis' 2eee284) [y (41) (s42 )
+2(2s +1lsv+35s+h2)m

+sh+853+39s2+1085+108]

and

(2.14) K(s,m)w(s+1;s,s-1,s-2,s-5,...,1,0)
- [kz )‘M(.s-gl,...,sﬂ.)/E?.B!] [;6(s+1)s(s-1)(s-z)m*‘ +
+163(s-l)(s-2)(23 +3s+1l)m |
+u(s-1)(s-2)(6s +12s3+65s :s+2h0)m |
? 42(5-2}(ﬁ3646§5+5hsu-6853;kééé2-698s+l680)m

¥s8+lhs6-6055+2695h¥96053;2596§2-ﬁ8665+5760] s

3. Moments of the second, third and fourth esf's, Using the values of the
determinants evaluated in the preéious-paper [13] and in the preceding section,

the raw moments of the second esf, Wés), are obtained as follows:

v M {I-Iés?}s(é‘)dm(s,s+l) /2,



(3.2)

(3.3)

and

(3.1)

W) {Wés )} = [(\z )M(s,s+1)/25] [s(snl)(2m)2+(2s3-s2+7s-8)(2m)
+su+7sz—83+12] s

“3 (o) = [(2 ) utessarre’] [5'2(5-'1)2(Zm)u+2s(s-1)2(2sz+s+12)(2m)3
+(8-1) (6s5 +67s3-1+9s'2+172s -160) (zm)‘z

+2(2sT-s843387 1754185833142 44625 -368) (2m)

+s8'+2256;2hs5+173su-296s3+76h32-_-832s+67é] ,

b {Wés )} = [L Z )M(s,s+l)/all] [s?’(s-l)3(2m)6
+52(5-1)2 (6533574455 -18) (2m)

+5(5-1)2 (1557422853 -1475248085-832) (2m)

6 L

. +(s-1)(20s87-1037+#525 --569s5 +3386s —5_6‘7’933’+.'L0080s2

-13440s+5376) (2m)>

6 L

+(1551%-1559+45355 81054529550 1210557 4325175 *-629605>
+9‘2536s2-101;0!+8s+5030u)(2m)2

+(6511-36%0422559.33068433008 T 7155504276557 -58688 s

I
+1282108°-1981485°+2134568+132480) (2m)
+6124155101,8594811 68 15685 T+81155°- 1841687 4545208

-99776s3+16u3ous2-161280s+93312] .



Using the raw moments given above, the first four central moments of

are obtained in the following simple forms:
. [nd 2
(3.5) iy (18} = [(5 ) s, s92)/23] [u(s-t)mns®-2003]

(3.6) by {8} < [(5 ) ugs,sm0)/2%] [5(s-1)%(em)®
+(1083-2052+308-23) (2m)

+5sh-10s3+2552—26s+el] s

and

Gy, {08} = [3 (5 ) uts,s)/27] [us(s-1)3 (2w
h(s-1)% (bs3-35+30s-28) (2m)>
+(2hs6

+(167-3650438157 10365 +263453 420952 +45035-2760) (2m)

+hs8-8s3+12h32-3h0s5+llh5su-21h8s3+3h7932-336Os+194h ]. .

9

wés)

-6055+h088h—1056s3+1833sa-2l73s+10h8)(2m)2

Further, the results of the previous paper [13] and the preceding section can

also be used to obtain the first two raw moments (and hence the central

moments)

of Wés) and Wﬁs) , the third and fourth esf's respectively in the s, §'s.

It may be observed in general that

(3.8) ui {Wgs)} = K(s,m)W(s,8-1,8~2,,00,8=i+L,8=ix1,.04,1,0) ,

i = l,.oo,S‘
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and the value of the right side of (3.8) is given in (4.3) of [13]. Now
using the methods in section 3 of [13] we get
(3.9) u‘é {I’Igs)} = K(S,m)EW(S+l,S,S-l:,S—,+,..,,l,O)'l‘W(S+l,S,S—2,S-3,S—5,...,l,o’
-lW(S+l,S—l,S-2,$-3,S-ll-,s-6, ves51,0)

#(s,8-1,5-2,5-3,8=4,55,5-T,¢0,1,0)]
and

(3.10) W3 {W&s)} = K(s,m)[W(s+1,8,8-1,8-2,8-5,.0.,1,0)
A (s+1,5,8-L,8~3,8=l,8-6,...,1,0)
+W(s+1,8,5-2,8-3,8=4,58-5,5-7,...,1,0)
#W(s+l,s-l,s-2,s—3,s-h,s-5,s-6,s-8,...,l,O)
+W(s,s-l,s-2,s-3,s-h,s-5,s-6,s-7gs—9,...,1,0)] .

Tt may be pointed out that the values of the determinants on the :ight side of

(3.9) and (3.10) are available in the preceding section and using these values

and (3i8), the variances of Wgs) and W&S) were obtained and are given below.

(3oa1) 0} = 13 () m(s-1,5,042)/2°7 [(s-1)(s-2) (2m)?

2

+(s-2)(232-3s+7)2mﬁsu-hs3+lls -20s+20] ,

and
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12)  ug{ul®} < [(5 Y mis-1,8,500)/2° . 3] [s(s-1)(s-2) (2m)

+3(8-1)(5-2) (s2+6) (2m)°
+(s-2) (35" -3574356°-535+126 ) (2n)

+56~3s5+l9sh-6953+19652-36Os+360]‘ .

(3.13) ué{wﬁs )} = [( 5 ) M(S+2, .. 541)/2t .3] ['s(f.s—l)(a.-a)(s-_s)-(em)l*
+2(s-1) (26 *-1153+3352-865496) (2m)>
+(685-4257 41975 76853 +208952-37865+3168) (2m) >
+2(25 7155548774205 +156953-432752479065-7536) (2m)

+80 857 +5150-30857 4141 35 -506083+1350852 -24000s ‘+21888:|
and
(301‘4') l-ha{W,_(}s )} = [( )i ) M(S-Z? eaes s"‘l)/"}:gu] [2(8.1) (5-2)(8-3 )(2]11)3
+3(s-2)(5-3) (252 -hs+11) (2m)?

+(s..3).(6she3033+1o6s2,22'5s+31h)2m-

+as6-1855+89sh-31853+8h5s2-15005+1368] .

4. Approximations to the distribution.g£ Wés). Using the results on moments

of WéS) given in (3.1), (3,5), (3.6) and (3.7) the following approximation

to the distribution of Wés) is suggested:



-Q(W(S) )%

2 »
(h‘l) f(Wés) = %—m-? '(Wés))%\"‘l 0 < Wés.) <w
where
(k.2) v = s(2m+s+l)/2
and
(.3) o = 2[s(2mtes1)s2] / (s-1)(2ms) .

It may be pointed out: that the firét-moment is the - same for the exact
and approximate distributions. For further comparison, numerical values of
the first four moments from the exact and approximate distributions and the
ratios of the respective approximate and exact moments and the moment quo-
tients are presented in Tables 1 to 2 for values of s = 3,4,5,7 and 10
and selected values of m. The tables show that the ratio bf the respective
approximete to the exact moments tend to unity as m increases or s
increases or both. On the basis of these ratios the approximate distribution
might be recommended for m =5 and above when s =3, m =3 and above for
s=4, m=2 and above for s'=5 and m= 0 and above for s =7 and
all values of m and all values of s beyond 7. The values of the approxi-
mate and exact standard deviations, Bis and Bés~ practically agree in the
first two places at the smallest values of m recommended for each value of
s and this in turn almost guarantees sufficient accuracy for upper or lower
percentage points from the approximate distribution. It may further be
observed that an interesting feature of the distribution of Wés) is that

it is asymptotically normal for large values of m or s,



Table 1 :
Ratios of moments (central) of wés) from the exact and

approximate distributions for & = 3 and different values of m

Moments m= 2 _ | m=5

Exact  Approximate Ratio (A/E)  Exact Approximate Ratio (A/E)
p! .L2000000X10° ,42000000X10°  1.0000 .13650000X10° .13650000X10° 1.0000
o .6slooooox1o37.61061538x1o3 .9380 .37537500x10“ .36296590}(101L .9669
g .26271000K10° .22869372X10°  .8705 .26&3322hx106 .24565092x106 .9293
oy, .310911k5K107 .25952045X107 8347 .7h113715x108 .67887768)(108 .9160
fi, .2ssubroixie® .2k7i063ex10° L9685 .6126785ux10° .602h6G5exI0Y L9833
B, .25015561X10 ,22972342X10 .9183 .13210043X10  .12619L17X10 .9553

B, .73363312x1o .6960L304%10 988 .52597837X10  .51529966X10 L9797

Moments ' m= 10 | m = 20

Exact Approxinate Retio (A/E) Exact Approximate Ratio (A/E)
ui .ulhoooooxlo3 .hlhoooooox103 1.0000 .1h19oooox1oh 'Q1h190000x1o“ 1.0000
Ho .1-9665000}(105 .19301351x1o5 .9815 .12&1625ox1o6 .1229hh7ox106 .9902
by .2368701ox1o7 .22738869x1o7 9600 .27371;639}(108 .26789059x1o8 .9786
b, .1615728%10°0,15718388x10° 9558 .56uk73h7RIOM L 55202852K10™ 9780
fi, .1ho2319kx10° .13892930K10° L9907 .35236699K10° .35063471X10° 9951

B, 73779996  .71907568 9746 .391h9430 -38617617 -986k
B, .h25270U5X10 .h2192239X10 9921 .36615303X10  ,36520935X10  .997h
Moments - m = ko ; | m = 100 o

Exact __Approximate Ratio (A/,E). Exact ___Approximate Ratio (A/E)
] .52290000X10" .52290000X10"  1.0000 .31059000X10° ,31059000X10° 1.0000
B .875857h9x1o6 .871&3137)(106 9949 .126565h2x108 .12630&913{108 .9979
by .36828631x10° .36421020x10°  .9889 ,12915931x10%t .12857552x10M L9955
b .25623342x1073.25345972x10%0 L9892  ,50273540X107 ,50060149X10°  .9958
/E; .93587258x1o3 .93350488x1o3 «9975 .3557603hx1o” .35539h02x1o” .9990
B, .20186954  .2004k93k .9930 .82282265X10™F 8204570210 L9971

1
By .33401722X10 .33376636X10 .9992 .3138L072X10  .31379906X10 .9999

no



Table 2

Ratios of moments (centra.l) of W(s) from the exact and approximate
distributions for e =4, 5, 7 aad 10 and different values of m.

Moments

;s; Y

n =3

m= 0 s =4
| Exact Approximste Ratio (A/E) Exact Approximate Ratio(A/E)
w .3ooooooox102  3ooooooox102ﬁr 10000 .16sooooox1o3 .16500000%105  1,0000
by .4050000010° .3763636ux103: 9293 .51975000x1o” .50576086x10§ 9731
by .1u35h999x105'.12228099de5 .8518 h19017h9x106 .39&2689ox1o6 .9h09
W, .1379902kx107 .11130066x307 8066 .13880369x1o9 .12914122x1o9 .930k
fi, .20124611%10° .19k00093k10°  ,96ko .72093680X10°  ¢71116866X10°  .9865
B, .31019966X10 .280W7550X10 .gok2  ,12504017X10  .12015708X10  .9609
B, .84127571X10 ,78575356X10 9340 .51382120%10 .50486403X10  .9826
Moménté s = 1+-' ,m = 20 s‘ = h | ﬁ -“ lOO |
Exact Appromma.i,e Ratio (A/E) Bxact Approx:.mate Ratio (A/E)
Wl .297ooooox1o: .297ooooox1oz 1.,0000 627soooox1o§ .627sooooxloz 1.0000
My -39649L99X10™ . 39119LO6XI0 $99U2 .38&8&855x1o «BL3THOLXI0" 9988
by 1331109hx1o9 43132930100 49869 59102856x10%F ,58938151010M L9972
My, 54702853%10%2 . 53009866K10™2 L9871 JH59568868x10% S5Bh2690K10 _6 9975
/Eg .62967848x10° .6278&875x1o3 997} ¢62036163x10“ .61997955x1o”‘ .99k
B, .28k425910 «28176142 9912 .6128hohoxlo" _611686h2x1o‘1 L9981
B, .34796418X10 .34751417X10 ¢9987 431030560X10° .31028L90X10  .9999
Momenté s=5 nm -AB:. k,s-.s' 5 m= 2
Exact Approximate Ratio {A/E) Exact  Approximate Ratio (A/E)
Wl 75oooooox1oﬂ;sooooooxztoz 10000 ,22500660x103 2asooooox1o3‘ 1..0000
oy .16125000%10" .15#687h9x10§ -9593 .ahsysoooxloﬁ .82557692x1o”1 9785
g .896625oox1o§ .81738281x10; <9116 ,80763750X10 .16890088x1®6f +9520
b, -16395075K10° (1HBIRSNIO) B899 3hskoBhaniod 326363090107 kG
/g 40155546107 .39330331x1o? Tk .0185586kK10°  490B61263%10° 9892
B, .1917hh32x10 .18050338X10 Ol .10859043X10  4105067h2X10 9676
B, .63054191X10 .60971074X10 L9670 . 148530015X10  JL7883505X10 9867

/fé-



Table 2 (Cont'd.)

Moments v s=5 m=20 s=7 m=0
Exact Approximate Ratio (A/E)  Exact Approximate Ratio (A/E)
Wy .51750006x10“ﬂ.51750000X1ou 1.,0000 .29L+ooooox1o3 .29hoooooxlo3 1.0000
b .939262kom10° .93551508x20°  .9960 .12780000k10% .12560896x10°  .9822
by J2815620x10° hoke5260x10°  .9900 .14169329%107 .13600565X107  .9599
by, 29756611X10%3 . 29ko7uliniot3 L9913 .7581k050k107 .7236864%107  .95L5
fiy .96915556X10° .96722026K10° 9980 .11308846x10°  .112075L0x10° 9910
Bl 22122975 .21983500 .9937 .95981795 93336613 972k
By .33729468%X10  .33704139X10 .9992 ,L46352859X10  .45865535X10 .9895
Moments s=7 m=5 s=7 n=20
Exact Approximate Ratio (A/E)  Exact Approximate Ratio (A/E)
wl 16065000K10" .16065000K10"  1.0000 .11B44000X10° .11844000X10° 1.0000
s .1662727hx1o6 .1651&318x1o6 9932 .33577739Xl07 .33#98896x1o7 <9977
by 43382729K10° Lh70523kxac® .98l .23872706x10™° .23742615K10™) .99k6
by, . 10207502K10%2 . 100kG808x1012  .98L3  .36682109x10%* .36h98082x10™* 9950
/Eg .ho776555x1o3 .ho637812x1o3 .9966 .1832h229x1oh .183027oux1oh .9988
B, .hogh2136 L0kg3031 .9890 15053897 .14995660 .9961
B, .36921655X10 .368392L5X10 .9978 ,32535042X10  .32524380X10 .9997
Moments s=10 m=0 s =10 m= 500
Exact Approximate Ratio (A/E)  Exact Approximate Ratio (A/E)
Wy .12375000x1o:'.12375650xio: 1..0000 .11h87h87x168 .11&87h87X108 1.0000
Wy +11323125X10 .11236942%10 9924 .1ohh38h9x1012 .10hh3158x1012 .9999
by .261&899hx108 .25690653x108 .9825 .237hoooox1o16 .23736303}{10l6 .9998
wy, , -b86Bz27ax1ott hreoB6I6K10M L9821 .32812861x10%3 .32808512%10°3 L9999
/EE' .336&9851x103 .335215h8x1o3 .9962 .323169hhx1o6 .32315876x106 1.0000
B, 47098932 146516379 .9876 .h9h7u29ux1o'2 .u9h68701x1c‘2 <9999
B, .37969793X10 .37862553X10 .9972 .30083123¥10  ,30083112X10  1.0000
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An alternate approximation (which is exact for s = 2) is obtained by
replacing the value of v in (4.2) by =s(2m+s)/2 and ¢ in (4.3) vy
2[ s(2m+s)+2]/(s-1)(2m+s+1). But this second approximation is not as good
as the one suggested in (4.1) even for s = 3.
s
7. Some remarks. It may be pointed that 2 T §, is distributed [8]

ixl
as a chi-square with s(2m+s+l) degrees of freedom and hence the distribu-

tion problem in this case is very simple. The results of this paper show
that we can also have a simple approximation to the distribution of the sec-
ond esf in the s £'s. While the former chi-square distribution can be
interpreted as the limiting distribution of Pillai's V(s) criterion 8,11,
147, the same is also true in the present case that the distribution of
Wés) can also be considered as the limiting distribution of the second esf
in the s 8's following the joint density (1.1). It might also be pointed
out that the distribution problem studied in this paper has great use since
it has been shown that several tests based on the eéf's‘of the characteristic
roots have been observed to have monotonieity of power [1], 2], 37 .

The &uthors wish to thank Mrs. Louise Mao Iai, Statistical Laboratory,
Purdue University, for the excellent programming of the material for the
computations in this paper carried out on the IBM 7094 Computer, Purdue

University's Computer Science!s Center.
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