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l. Introduction and Summary

Suppose T Tpseee,  are k normal populations with unknown means
By Horeo okl and a common known variance which we assume to be unity. In
many situations the experimenter is interested in selecting a subset of the
populations which contains the best population where by best we mean the
population with the largest value “[k] of the unknown means, Hys Hos ooyt e
For further amplification of this type of selection, reference could be made
to Gupta (1965) and to references therein. A selection procedure)denoted
by RD for this problem along with some of its properties has been discussed
by Gupta (1956, 1965). This selection brocedure is a member of the class
?fi of procedures earlier studied by Seal (1955). The selection rule is
such that it selects a non-empty subset of random size and under a speci-
fied loss function, the associated risk is always bounded sbove by o = 1-P%
vhere ¢ is a small Preassigned number (0 << l/k).

In this paper we study some desirable properties of the above selection
Procedure and make some cowparisons with the !‘zpproximate'’ optimal rule

D of Seal (1955). In particular it is shown that the rule R is minimsx and

*Research supported by Contract NONR-1100(26) with the Office of Naval

‘Research and by Contract AF 33(657)11737 with the Aerospace Research Labor-
tories. Reproduction in whole or in part permitted for any purposes of the
United States Government.



that under the slippage configuration of means, the expected size of the se=

- A5 w’uCQ,
lected subset using R 1s smaller than that corresponding to D; snd-dgsst
Us (/am(/ ma."at,u‘t @e«» &&“;w&class €’ o ¢ .

M The subset selection problem is also considered from a Baye-
sian viewpoint, and under a linear loss function, the Bayes rule for se=-
lecting a subset is derived. This latter result is given in a more general

form by Deely (1965) than that given by Dunnett (1960).

:
2. The Class € end ¥ of rules snd the rule R

Let Ky9Xpyeoe Xy be the observed values of the sample means each

based on n independent observations. ILet the ordered sample means be

denoted by
™ < - e i L ]
(2-1) 1] %2y S 00 S
Let ¢' = (cl,cz,«..,ck_"l) be a vector whose components are arbitrary real
k-1
numbers such thet c, >0, for all 1, and Z ¢,= 1. Then the class
i=1

consists of rules D =D, = D(c]?ce,...,ck_l) with D given as follows:
t1Select the population T 1] corresponding to the observed sample

mean xfi] iff

*
t(P ;E_')
> c. X +-.-+C X R
k=1"Tk] \/‘—1’1—

. L

i-1% ['J.-l] i !'1+l"+"'+c

where t(P¥,c') is chosen so as to satisfy the basic probability require-

ment, namely,



(2.3) inf P{CS|D } =

0 1
Q0 being the parameter space of p'! = (ui,...,uk) and CS standing for
correct selection., A correct selection is the selection of any subset
which includes the population associated with u[k]=

To define the subclass ii' of {f, we impose the following restric-
tions on the vector ¢ 3 cj='l for same J = 1;2;.040,k~1.

An important rule in the class =€ which has been studied in great
detail 1s a member of the class ~t1’ defined above for ¢! = (0,0,..;,O,l);
this rule denoted in earlier papers by R is:

Select the population corresponding to the cbserved sample mean x[i]

iff
(2.4) [ i] 2% = 6/‘/n ’

where d = a(k,P¥) = t(P*Lg') again chosen so as to satisfy the basic prob-
ability requlrement.

It may be pointed out that for the zero-one loss function

0 if “(k) with urk] € Sj’ the selected

. K
(2'5) L(S., E.') = SU.bSe'b, Jd = 1}2;'00,2 - 1.
J .

otherwise,

I

the risk is given by

(2.6) Risk = r(Dg-, p') = l-P_{CS|DE} .
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Hence, the basic probability requirement (2.3) is equivalent to requiring

that

(2.7) Sup r{Dc, k) < 1-p%,
The rule D given by Seal 11955) is also a member of é and is de-
x|
fined by the vector ¢’ with cjz }'ﬁ?{-’ J=1325400,k=1. This rule is:

Select the population corresponding to the uvbserved sanple mean X

i
ife
. t{P¥,ct)
(2.8) X, X o oesosmen where
1 e I
Vi
J=k
T = o Y x and ti{P%, ¢') as stated earlier.
=1 L % VTS
J=1
i

3. Some Results on Minimaxity and Fxpected Size

From (2.6) and the definition of a minimax rule we see that R is

minimax in zf provided

(3.1) min P{CS|R} > min PfCS|D}
pen uen

for every D e ﬁ » But recalling the definition of the class 5 sy it can

be observed that the quantity t(P¥%, < ') is chosen so as to guarantee

(3.2) win P{CS|D} = P¥  for any rule D in .
LeD

Hence every rule in Zﬁ and in particular R is winimax.
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It mg§ be pointed out that if;we choose ¢! = (1,0,0,...,0), the rule
¢' selects all/populations with probability

D dqfined by pﬁis choice of

o - )
/ g .» ‘zf’/ /'rf.r a‘// e
A ,-"f ,f'! /

(3.3) / P{CSIDO} = 1/> P{CS|R} . /// ;

4 /
A {

But the rule Do is quite trivial and not very practical from the xperi-///
menters viewpoint for the following reason. '

The selection procedures discussed here select a subset whose size is

a random variable taking values in the set of integers 1,2,+..,k. Thus in
comparing decision proceduras of this type it is meaningfui to use the ex=-
pected value of this random variable, to be denoted by E[EIDCJ. For the

g- Gupta (1965) showed

that EMS|R1 < kP*.

More generally, for any rule D, € ¢ ', we have from Seal (1955),

3
(3.%) inf P{CS[D } = inf Pfcs|p
0 = p'=(usbseeesn) =
and hence the solution for the constants t{P*,g‘)’ earlier defined by

(2+2) ana (2.3),can be cobtained from equations of the type
A
(3. P{Y < t[P¥,c')} = P*

vhere the rendom variable Y traverses the real line.
Thus for any rule D, € € ', t(P*,e') will be non-negative provided
P*¥ is sufficiently large; for example P¥* > (1/k) for the rule R. Hence

every rule Dc € fi' (excluding the rule R) will select a subset



5ea,

consisting of at least 2 populations with probability 1. This implies

that for any such DC

5

(3.8) wmsipy>2.

Gupta (1965) showed that in a subset 08) defined by

p'rl{.! = M4 + & (6 > O);, [J.[i] _<_ M2 i = 1,2,.-.,3&"1, E[SIRJ assunes its maxi"
- - '\‘7 i
mvm over Q(B) when “'[i-‘ = My i=l, 2, see ,k"l and s '{" - b “
- 6{7 wle LT e
@l

4 ;
G4

\ ‘ . - ’oo '
e [ &P (e
Vo ;
- l//

e L g .

,)‘é(z_‘!'d;'ﬂ v H)' cp(Z):%-c) E

]
Frot (3. 6))1’0 follows that there exists a 8, such that

. (3.8) | max EB[S|R] <2. for & > By

o(s)

Therefore, if P¥ and O are sufficiently large, it can be seen from

5 7
(3.@) and (3.8) that
8 |
(3.5) E [S|R] < Es[D_] .

for any u' e (8). i "Hﬁ -1 ) 2



So in this case SMcPexrrw el

the decision procedure R. WNamely, the P{CS|R} is s larger than P¥,

a preassigned number§ SNpIEBIT L Pr i eS8 ,;._/ and its E[S|R]

is smallest among rules in .ﬁ' under the restrictions in (3.4).
A table giving the Values of the expected proportion of the populations

in the selected subset for the slippage configuration is given below.

Table

This table gives the expected proportion of k normal populations retained
in the selected subset by the suggested procedure R under the configuration
that one of the populations has its mean greater than all the others by 8
times the common known standard deviation of the sample means (selected

values of k, P¥ and Of are considered).

P | 3 k 2 3 5 10 25 50
W .
.00 7500 « 7500 « 7500 . 7500 « 7500 + 7500
.10 «TH95 « 74Ol «Th95 «ThOT . T498 «THOT
»25 JTHOT 7463 JTH69 S THT9 . 7489 . Tho2
o715 50 + 7370 <7349 7369 7410 «TU51 S TH69
1.00 . TOL7 500k 6947 . 7091 . 7260 <7346
2.00 6057 5418k <5365 +5638 6166 .6519
3.00 +5357 L1203 .3598 .3576 U121 1650
.00 +9000 +9000 <9000 . 9000 9000 »9000
.10 8994 .8995 8996 .8998 3998 .8998
25 +8965 .8968 .8976 .8985 .8992 «8995
.90 +50 .2861 .8872 .8901 .8937 .3968 .8981
1.00 8469 8480 «857L 8710 L8840 8901
2.00 7219 « 7023 7151 7527 .8015 .8302
3,00 6001 <5271 « 5066 <5370 6090 6613
.00 .9500 <9500 <9500 . 9500 9500  .9500
.10 9U96 . W9ho6 9497 .9h99 «9500 +9500
25 OlTh «OL78 .oL8l .9490 +9L96 .9198
95 | 50 +939L «9L09 L9k32  L9k59 .9L80 <9489
1.00 9082 = 9120 29202 .9305 »9396 9h37
2.00 « 7950 ~+T902 .8079 Gl 8801 .901k
3.00 6581 611k 6095 6490 .7185 L7670
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& W
4o shall first derive the expression for the probability of selecting
the population “(j) with mean urj] for the rule D. (Recall
p,[.l] < ”{’2] < vee £ p[k 1 are the ranked values of the mean vector
pt o= (ul,ug,...,uk).) Let X(j) be the sample mean (unknown) which is

assoclated with the population It(j)- Then

i=k

z . — 1 t(P*:,Q_')
(4.8) P{n(,) 1is selected|D} = BfX ) > iy .zl X(1)" =
i= \
14

- 2
where c'= (E%“f"""}'") for the rule D, Equation (k.@) reduces to

k=1
=K
' 1
t(P*,_c__ )+,/E<U-[j]" k=1 Z “[i])
i=1

3 1
(b.@) P{n(j) is selected|D} = §< % AL/ = )’
(=)

o and ¢ Dbeing the standard normal density and cumulative distribution

. functions respectively. In particular %\M Q}, 3) we B‘HEW\

1=k-1
4 S(h 2R (i £ Z Hray)
(h-@) P{CSIB} = P{ﬂ(k) is Selected]]_)'}:@( o di=1 >

G




8
- From (2.3) we see that the constant t(P*,g ') to carry out the procedure

can be obtained by using (4.§) and solving

'b(P*)E,') N
(L.8) Y ———y75) = P¥ for t(P¥,c')
Sy _
which glves
& 1/2 -1
(+.9) t(PW;C') = (Y2 75 letting 7 = a7H(p*).
Then using (4.5)/in (4.3) we obii;{in : /

f

kol
(4.6) P{CSID} ¥ ®<7+(k K(k-1) )1/2 z(“[w “m)

Fron Q}iiata (1965) wed__,ﬁave o O‘W\/C(
.// , ' ; ' :
£ e k-1 : .
/ /"'! o
/ ;S J~l ; :
; / 4 -
1‘/ ‘f
/

Iet Q' c O/ be the space of mean vectors p' such uha‘t E_—(u,u,...,p.,p,-l‘ﬁ)

4,

where =o/<p <e and 6>*0. Then for p' ¢ O wehave

i
S
;
;
. s

£
i

(4.6)" / Pes| D= o(y + (1%)1/?,{/5 5)
and
(ba7) f;"” P{CS|R} = j Mz ¥ + /5 8) ofz)dz.
. / -CD f/-"
:'/i} :’fi
f/f
4
/
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T e
Thom &M e e

k
7 — < ( )1/2
(@) E[SXD] L Ytk Zk- ) Z- (M[J] P'rl])/’
j=1 Ci=l
i%j
o

«&® from Gupta (1965) we have the expression for the expected size of the

selected subsetrusing the rule R

k =k

©

(4+.48) E[s|R] = Zl [,m R ICE O /5 olz)az.

it O e O ke Tk;,efm of 204 ot veclons #? suek Tt M/= (e i, v, 4,445 ) vhere

~°0<"'(4°OMAS>O M%‘LAGQ ,w—e&mwhd}.

k-1
Cr. )’ Bs(5] = ). 9(\/‘(-(-‘7)1/26) é(w(l‘“l Y2 o/m)
j=1
= (k1) é(v-(m%_—ﬂ)l/z §) + §<Y+(5E}.)l/2 5/5)
and

() Es|R] = (se2) {[ #2(er0) 8(ava /5 6)(a)az)
s | 8 H(ara + /4 6)plz)dz.

We desire values of § <for which

(4.49) Elsir] - £[s!D] < o,



To do this we will find the common values of & for which

(1. 32) J"_j (za+ /5 8) <o<z>dz-a(7+<-—-) 7o) <o
and

(4.51} | J?ik;e(zﬂ? Bz v S)ola)iz-i(r-(zriy Y 8) < 0.
Now

(4.52? -r},k;l(szrﬁ a)go{z)dz - @(7+(1—‘;~;4-'l/25 /o)

1/2
< f 3(z+d+ /n 8)<g(Z)dZ~f)(7+( kel 5 /)

- o
- @(%‘22@ - s, ) <o

provided
(1.8) 7+ (58 b vE > S22

~ V2
vhich yields
{

L —_=-7

(o) VI B > e /2 k > 3.

- e

k ‘/‘2—

lo L
Thus (4.8 is satisfied for all & as in (L.@4).

g 1
For the inequaltiy (4.@l) we observe that

R



‘L o o ’ -
(.85) f é.k'2(z+c1) 3(z+d =0 5)ep(z)dz - @(y-(m%_-_iu)-)l/g 3)

5_I£(z+ a -,/E 8)o(z)az - @(y;(milfﬁ)l/e 5)

= @(9-_'7;7:@) - @(7-(H§—_—i7)1/2 8) <0

provided

! A N
(4.66) gi__—_‘/%ﬁ <7y - (E"(%'.T)')l/z 5,

2

which yields

( L.y

- J2
J"é‘ ka-l; .

1 i
Thus (4.g@l) is satisfied for all 5 as in (4.@7). For k >3 we have

i

- k-1.1/2 1 1 1 ,1/2
(4.28) =75 .= = - (7*-3-_— )
k ' J2 \/5 k(k-1
which gives the following result,
1 ;d: "7
= . 2
(4.@9) E[S|R] < E[S|D] when n 5 > LT 75T




@

To show the existence of such a &, it remsins to show that the right hand

side of is & positive number. The denominator is positive if k 2 3a

Thus we need only

show that

20 :
(L&) : ad-/27>0 for k>3.
Recgll that ''d!! is chosen so as to make

2} e | ‘
(L.&8) inf P{cs|R} = I @k"‘l(zm) o(z)dz = P¥
: Q - ‘

and 'tyt? is such that &(y) = P¥. Now

(22)
P = I a(z+d)p(z)dz = é(—‘-(-i-)' vhich implies 4 = /2 y when k=2. But
- Iy

for k >3, ék-l(z+d) < 3(z+d) for every z; hence if d <2 7, then

I’mék-l(z-td)(p(z)dz < J'w@(z-!d)cp(z)dz < P¥,

. 206 . 1 -
a contradiction. Therefore (4.§P) is true for k 2> 3. K@é ’\ﬂ/(“? % ?

=4
/!

W



Thes we see Tl e ke R %dJ4¢ & swmallen T

fxxkeﬂj'ﬁwzc ovx"ﬂNZCLv*9“2f‘> e fhe rule © %sh, ollamean peitors 4 !ﬁéf:l:(jsdffﬂye

configuration) except when © is relatively small,

The table at the end Qf Section 3 gives the expected size of the selected

subset for the rule R at various values of k and B aséuming the mean

vector u' to be in Q'.

5. Bayesian Approach

A. Introduction and main theorem
In this section we will make the further assumption that each popula-
tion mean is itself a random variable with a distribution Gi’ 1=1,254«00,k.
k

. . . s n ~ .
The distribution G, is called an g priori dist” and G = igl G; 1is called

an a priori distribution on the parameter space (. This is the so-called
Bayesian approach to the multiple decision problem. And wherees the zero-~
one loss function (2.5) was used in the previous work we will assume here

+hat the loss function is the so called linear loss:

(5.2) WS u') = ) oyl 1)
quj

vhere §=1,2,...,2%=1 and oy, 203 8, being a subset of the k popula-
tions. This loss funetion is analogous to the loss function considered by
Bahadur and Robbins (1950), Dunnett (1960), and Bland (1961) for the problem
of selecting only one population. We then define the Bayes risk (overall

expected loss, or average risk) of a decision procedure D with respect to

the a priori distribution G as:

(5.2) B(D,G) = fQ{fEkL(D,u_')f(zly)dx} as(w),
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where ggEk, Euclidean k-space, and f(gjgf) is the product of the k-inde-
pendent normal densities; with the density corresponding to ny having mean
Hyo variance l.

By Fubini's theorem we can write
(5.2)" 3(0,6) = [ {] uoutr(xlutac(y)} ax
k0
B
and then let

1) = [ L) 2lelut)ac(y) .
0

An optimal rule is the so~called Bayes procedure and is defined as any pro-

cedure D¥ such that
(5.3) B(D¥,G) < B(D,G)  for any D.

It can be seen that D¥ is Bayes with respect to G if
(5:3)" 1o(02) < 16(0r)

for every D at each EgEk. It is noted that condition (5.3)' is sufficient
but not necessary. Now each rule D after observing a vector x must se-
lect one of the Ek-l subsets. Hence if at each x we compute the 2k~l

nunbers

(5.4) 182 = | 1sut) 2lxlu)aesi=1,2, 000250,
0O

1Y



16

and select the smellest of these (or anyone of those that may equal the
smallest), we then have & Bayes decision procedure with respect to the

a priori G. That is, a Bayes decision procedure D¥ 1is defined by:

(5.5) D¥ = D¥(x) = S'j vhere j is any positive integer
1’2, see ’ak"‘l S'U.Ch .that

1o(853 ¥) = minfyo(s,,x): 1S4 < 2.

Frou looking at the loss function (5.1) one might intultively feel that
the Bayes procedure would select a subset consisting of only one population
since only the one element subsets can make the loss function zero. Ve now
state and proovethis result as a theorem. Note that the theorem is stated
in a more general framework than for the normal means problem. After prove
ing the theorem and two corollaries, thé exact Bayes procedure relative to
soﬁe specific a priori distributions will be given for the normél means
problem. |

For convenience we adopt the following notation:

Sj = {one element, population nj} for J = 1,2;...,k and no explicit know=-

ledge about 5, for J = k+l,k+2,...,2k—13 f(gjg}) will be the product of

J
the k-independent densities from which an observation vector (or metrix)
x is taken; each density being conditional upon a parameter

l..li, i=l;2, seeke

(5.6) Theorem: In the loss function (5.1) let oy = @ >0 for

j=l,2,0--,1{o ]..et
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8, = Jq(u[k]* ko) flxlwlac(u),

8y = minfa 3 1 < g <k}, and

If ariq $ 0, then a necessary and sufficient condition that

(5.6.1) min{¢G(Sj,gc_): 1<35< 2k-l}=min{q;G(Sj,§):l <Jj <k}
is that
(5.6.2) > @3q 2 e=(2/apy 1) > @y gbo)

quj quj

for every j=l;2}qoc,21£“lo I = O’ then (5-6!1) is true.

&r1]

Proof: First observe that using the notation of the theorem, we have from

(5.4) that

(5-6-3) _ ﬁG(Sj:E) = o84 J=1;25400,k
. k
(5.6.4) | q;G(Sj,:_c_) = z g8 GHRHLye0e,2 =1
quJ-

Next it is always true that,
minfyy(5,,8): 1 < <251} < minfyo(8,,8):1 < J Sk} -

Hence (5.6.1) is true iff
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(5.6.5) nﬁn{lyG(Si,gc_):l <1<k} < q;G(Sj,gg)

for every j:—.]_,e,...,ek'-l. Now from (5.6.3) and definition of a[l] we

have

(5.6.6) minf{y.(S,,x): 1 <1 <1} = caryy -
Thus (5.6.1) is true iff

: . k
(5'6'7) (¢4 a-rl] S z C-!J.qaq, (J=l,2’-o=,2 'l)n

S,
qe 3

Note that if a..- = 0 then (5.6.7) is clearly true and hence (5.6.1) holds.

kY
If ap q %0, we have condition (5.6.7) 1ff
==

-~ o

(5.6.8) @ oy S ) asglepay o)

which holds iff

(5.6.9) (e = Jesg) S (apiy) ) eseb
‘ qesS, ges,
J
ifrt
(5.6.10) ) ergq 2 e=(2ar) ) ey b
qu qu

for § = 1,2yees,2%1, vhich is condition (5.6.2) end thus completes the

proof.
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Remark: In general the quantity aq is difficult to compute and hence bq
is not availsble. Thus the necessary and sufficient condition (5.6.2) is
not too useful from a practical viewpoint. For this reason the following

corollary is significant.

(5.7) Corollary Under the conditions of Theorem (5.6),

(5.7.1) minfyo(S;,x): 123 < 2%-11 = minfy,(8,,x): 1 < § <kl

if

(5¢7.2) z%q >0 for every j=l,2,...,2k-l.
qesj B

Proof: In the proof of the theorem 1t was shown that (5.6.7) is necessary

and sufficient for (5.7.1). But

C. > . = Z . >Q
Zqu— 56711 T %) L %a =% B
quJ. qeS 3

using (5.7.2), which completes the proof.
The following corollary is the wmain result:
(5.8) Corollary: Let (5.1) ve the loss function and let Za,jq >a for
qes 3
every J=1,2544. ,2k—l. Then the Bayes procedure with respect to an a priori
distribution G for selecting a subset containing the best of k-populations
is given by:

D% = D¥(x) = Sj vhere J is any positive integer 1,2,...,k such that
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06(859%) = minfy,(S,,x): 1 4 <X}

Proof: From (5»5) ve see that the Bayes procedure is obtained from the
min{¢G(Si,§): 1<i<g 2k-l}. But frem Corollary (5.7), this minimum oce-

curs among the first k-one element subsets 3 i.e.

min{yo(8;,x): 1 <1 < 2% = minfy,(s,,x): 1 < 1 <k

Thus the Bayes procedure is to select the one element subset which minimizes
the quantity ';;G(S 3 #+X) among the k-such nurbers. This cempletes the proof.
Remark: The following are three examples of loss functions for which Coro~

llary (5.8) is true. Note: isj[ = number of populations in the subset Sy

Z (urk]— p.q), sum of lesses.

S.
QGJ

(i) L(Sj IE,‘)

(i1) L(SJ-:B.') = TS;;T Zs(u[kj- p,q), average 1loss.
qes.
J

(1i1) L(sj,g_’) = (k—l-l-[Sj]) Zﬁ‘[kj - ”q)'
qeS;

B. Normal means problem with specific g Ppriori distributions,.

We will consider the normal means problem and give the Bayes procedure
for selecting a subset when the a_priori distribution is: (1) nermal and
(2) uniform, These procedures are the same as those for the problem of

selecting the best when the loss Pfunction is:

(5'9) L(SJ,H_') = u[k]" H.ji j=l'2,‘.-,kq
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and hence the derivations of these procedures will be given as part of a
later publication. A loss function of the form (5.1) satisfying Corollary
(5.8) is assumed.

-(l) G, is normel with mean M; and variance B?.

The Bayes procedure D¥ given by Corollary (5.8) says:

Select “j such that

2 2
ng.x, + A, nprx, + A,

L 1 1
--.L-J-..—._J.:M { },

l+nﬁ§ 11k 1+n
where Xs is the sample mean of n observations.

2 ., is wif on (M.~ d, A+ d.).
(2) G, i iform ( PRl XJ J)
The Bayes procedure D¥ given by Corollary (5.8) says:

Select nj such that

(D(BJ) - Q)(O‘:j)

(P(Bi) - (D(ai) -
k{éfai) =5(B,) /5 %}

+ nxJ.:max

where
. = /n (A+ 4.~ x,

Bj = /n (xj- dj- xj), and

Xj being the sample mean based on n observations.
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