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Abstract
An analytic proof is given of the fact that the stationary distribution
for the imbedded Markov chain in a GI§M'1 queue is geometric. A generating
function for the stationary trensition probabilities is obtained as the
unique solution to an integro-differential equation, which may be solved

by reduction to a Wiener-Hopf equation.

We assume that customers arrive at a counter at the instants 70,71,;..
and that the interarrival times To#1~ T (n=0,1,...) are independent,
identically distributed, positive random variables with distribution
function F (x). The service times are independent, identically dis-
triﬁuted, negative exponential random variables with parameter .

This note supplies an analytic proof to the following theorem, due

to Takhcs [2,31 :

Theorem:

The queue lengths gn,n =0,1,... immediately before arrivals form
an irreducible, aperiodic Markov chain. This Markov chain is positive
recurrent if and only if p o > 1. The stationary probability distri-
bution _{ﬂk > kK> o} is geometric with parameter §, where § i1s the

root of the equation:
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(1) 2 =0 lu(1-2)],

with smallest absolute value. o (*) 1is the laplace - Stieltjes transform

of F(-).

Remark

This theorem was proved in FE] by Takéés, using the backward equa-
tions for the Markov chain, logsther wibh & renewal argument. In rS}
& combinatorial proof, together with a renewal argument was given, also
by Takécs.

We use the forward equations and ohtain a recursive system of integro-
differential equations for the generating functions of the n-step tran-
sition probabilities. The same method may be applied to the study of an

M!G!l queue in series with a queue with negative exponential service times.

Proof:

The queue-lengths {gn s n 2> o} clearly form an irreducible;, aper-
iodiec Markov chain with transition probability matrix P, given by:
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3.
We denote the n-step transition probabilities by Py(n). They satisfy

the following recurrence relaticns:
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We introduce the generating functions:

(n) N (n) 7
U = Py e .
(5) (Z) _J,=o 1J JZ s EZ' < m

and obtain the system of integro-difrerential equations:
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The initial conditions are obtained from equation (3), via the fol-

lowing manipulations:
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Tt is known from the theory of Markov chains that lim U(n) (z)
n->»>owo

= U (z) exists. We have:

® v = )P, <o
| v=0

The function U (z) must satisfy the equations:

w
9 LU= [ 0l ar (), soren |z]<o
o

and

(1) v(o)= [ar(y [ Luoa

o}

O+~ 8

Equation (9) may be simplified through the following substitutions:

(11) &a. py =u
b. U (z) =e” R (z)
c. F (ﬁ) - I (u) =K (u)
T (u) is a distribution with a unit-jump at zero.

We obtain:
[+2]

(12) R (z) = J R (z+u) @K (u) , for all 'z! < o

o]

Lemma, 1
Ir (12) holds for all x > o , for some entire function R (x),

then it holds for all |z |<= .



Proof:

This may be verified by series expansion, using the fact that the

tribution K (¢) has moments of all order.

Partial integration in the right-hand side of (12) yields:

. ,
(13) Ri'(x) = r Rif{z+u} X {u) du, x>0,
0
Setting x +wu =y end K {-u)= H (), w2 obtain:
(=]
(1k) CR'(x) = Y (yv) H (x-y) ay , x>0
o

which is a Wiener-Hopf equation for R'(x) .
Tt Follows from the standard Wienmer - Hopf theory -[1,4] +that

equation (14) nas a unique entire solution, which may be seen to be

dis~-

. . . ~axX . )
either an exponential function e for some o< a <1l or a constant.

Knowing this, we examine under which conditions there is an exponen-

t1al solution

R'(x) = o> C,

to equation (1k). Substituting in (12) we obtain that a must be a

solution to the equation:

(15) 1-a=o0(ap)

or if we set 1 - a = §, then



(16) | 5 =0l (18) |
which is Taldcs' equation. The usual argument yields that (16) hes a
solubion in (o,1) if and only if oW >1 .

So we obtain:
(17) U{x: =Ce

The initial condition does nob determine the constent €, since
we have already included in the coleulation of the initial condition that
the ! it } must sun to one-

[NV

This same condition applied to (17) yields C =1 -8 , which

concludes the proof of the theorem.
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AN ALTERNATIVE PROOF OF A THEOREM OF
TAKACS ON THE GI/M/1 QUEUE*

Marcel F. Neuts
Purdue University, Lafayette, Indiana
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An analytic proof is given of the fact that the stationary distribution for
the imbedded Markov chain in a GI/M/1 queueis geometric. A generating
function for the statiomary transition probabilities is obtained as the
unique solution to an integro-differential equation, which may be solved by
reduction to a Wiener-Hopf equation.

E ASSUME that customers arrive at a counter at the instants

7o, 71, - -+ and that the interarrival times 7,41—7,, (n=0,1, ---)
are independent, identically distributed, positive random variables with
distribution function F(z). The service times are independent, identically
distributed, negative exponential random variables with parameter .

This note supplies an analytic proof to the following theorem, due to

Taxhes:*¥
TueorEM. The queue lengths &., n=0,1, - - - tmmediately before arrivals
form an irreducible, aperiodic Markov chain. This Markov chain is posilive
recurrent if and only if wpa>1. The stationary probability distribution
{my, k2= 0} is geometric with parameter 5, where 6 is the root of the equalion:

z=¢lu(1—2)], (1)

with smallest absolute value. ¢(-) is the Laplace-Stieltjes transform of F(-)
Remark. This theorem was proved in reference 2 by Takécs, using the
backward equations for the Markov chain, together with a renewal argu-
ment. In reference 3 a combinatorial proof, together with a renewal
argument was given, also by Takécs.

We use the forward equations and obtain a recursive system of integro-
differential equations for the generating functions of the n-step transition
probabilities. The same method may be applied to the study of an
M /G/1 queue in series with a queue with negative exponential service times.

Proof. The queuelengths {£,, n = 0} clearly form an irreducible,
aperiodic Markov chain with transition probability matrix P, given by:

* This research was supported in part by Contract NONR-1100(26) with the
Office of Naval Research.

313




314 Marcel F. Neuts

1—po o 0 0
l=po=p»  pr po 0 0 --.
) (2)
1~po—p1*p2 D Y4t Do .

@ 7
in which p;= f e‘“y(’i) dF (y).

We denote the n- step transition probabilities by P{”. They satisfy
the following recurrence relations:

P =300 POIL- 20 pll, (nz0) (3)

and PGH<=30"2 PP p, i, for J>0,n=0. 4)
We introduce the generating functions:

U™ (2)= 2023 P25, (el <), (5)

and obtain the system of integro-differential equations:
U @)= [ 8 U et ) ar(y). (6)

The initial conditions are obtamed from equation (3), via the following
manipulations:

U(n+l)(0) P(n+1) Z P*S:t)z Ds

=0

—1-3 D P p=1-3 [ & D2, U™ (uy) ar(y)
p=0 v=p p=0 Jo : (7)

:1-/:’5 “ (1=Du) U™ (uy) dF(y)

= [ arw) [[& o0

It is known from the theory of Markov chains that limy, . U™ (2)=U(z)
exists. We have:

U(z)= 2205 (m/v))2". (lel <) (8)

The function U(z) must satisfy the equations:

iU(z)=f e"” Ule+uy) dF (y), forall [z[< =, (9)
dZ 0

and U(0) = fo " iR (y) /0 et U ar. (10)
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Equation (9) may be simplified through the following substitutions:

(a) By =1u,
() U(z)=¢" E(z), (11)
(¢) Flu/pw)—I(u)=—K(u).
I(u) is a distribution with a unit-jump at zero. We obtain:
R(z)=f R(z4u) dK (), forall |f< . (12)
0
. Lemma 1. If (12) holds for all x>0, for some entire function R(z), then

1t holds for all |z| < .

Proof. This may be verified by series expansion, using the fact that the
distribution K(-) has moments of all order. -

Partial integration in the right-hand side of (12) yields:

R'(z)= fo R (ztu) K(u) du @>0) (13)

Setting z+u=y and K{—u)=H(u), we obtain:

R@= “R'(y) H(z—y) dy, (@>0) (14)

which is a Wiener-Hopf equation for R'(z).

It follows from the standard Wiener-Hopf theory™* that equation
(14) has a unique entire solution, which may be seen to be. either an ex-
ponential function & ** for some 0 <a<1 or a constant. "

Knowing this, we examine under which conditions there is an exponen-
tial solution

%
4
a
4

S

R'(z)=¢""C,

to equation (14). Substituting in (12) we obtain that @ must be a solu-
tion to the equation: '

1—a=9¢(ap), (15)
or if we set 1 —a=34, then ‘
d=p[u(1-8)], (16)

which is Takécs’ equation. The usual argument yields that (16) has a
solution in (0, 1) if and only if ap>1. So we obtain:

U(z)=Ce". (17)

I The initial condition does not determine the constant C, since we have
oY already included in the caleulation of the initial condition that the {m,}
3§ must sum to one.
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This same condition applied to (17) yields C'=1—3, which concludes
the proof of the theorem.
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