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Abstract

We assume that customers arrive at a counter according to a homogeneous
Poisson process and are served in groups, according tb the following policy:
IT there are less than I customers walting at the time of a departure, the
server must wait until there are L customers present, whereupon he serves
them together. If there are I or more, but less than K (K > L) customers
waiting, all are served together. If there are K or more customers waiting,
a group of K customers is served and the others must wait. The service
times of successive groups are assumed to be conditionally independent given
the bulk sizes, but may depend on the group sizes. Ve obtain 1. a descrip-
tion of the output process, 2. +the queue length in discrete time; 3. the
distribution of the busy period, 4. +the queue length in continuous time and
5. some limit theorems for the number of customers served over a long period
of time.

The oider of service is irrelevant in this paper. The method used

throughout is that of the imbedded semi,-Markov process.

1. Introduction

This paper is devoted to the study of the following queueing model. Ve
assume that customers arrive at a counter, according to a homogeneous Poisson
process'of rate A. They are served in groups, according to the following
rule. If immediately after a departure there are less than L customers
#This research was supported in part by Contract NONR-1100(26) with the Office

.of Naval Research. Reproduction in whole or in par% permitted for any pur-
poses of the United States Government.




present, the server must wait until there are L customers, whereupon all
L enter service. If there are L or more, but less than K customers
waiting, then all customers present are served together (L <K). If there
are more than K customers waiting, a group of K enters service and the
others must wait. In this paper the order of service is immaterial. Ve as-
sume that the successive service times are conditionally independent, given
the batch sizes, but thelr distributions may depend on the batch size.

It is of interest to describe some actual situations, which may be de-~
scribed by this model. The operation of an unscheduled car ferry or a single
ground floor station of an elevabor may be approximated by the above descrip-
tion. The author is indebted to Professor G. Newell for supplying the follow-
ing application to traffic flow. We consider a main road and a minor road
merging into it. A traffic light on the main road interrupts its traffic
flow after a certain length of time if at least L cars have activated a
tripplate on the minor road. Otherwise the light stays green until L cars
have arrived. The red cycle is timed so that at most K cars can merge dur-
ing it. We count as the successive service times the time required for the
plattoon to merge, plus the fixed length of the green cycle on the main road.
The model then studies the queue forming on the minor road, under the assump-
tions of Poisson arrivals and the rule that cars arriving during the time
that vehicles ashead are merging must wait for the next cycle. This assump-
tion is not too unrealistic in very light or very heavy traffic, or if K
is not too large.

There are some generalizatlons of the model, which may occur in practice.
We may want to serve a group of less than L customers if its waiting time
exceeds a given value. This generalization 1s easy to work out, along the

same lines as the discussion below.



Another generalization is obtained when I and K are random vari-
ables on the lattice points (a,b) with a <b. This may occur if the ser-
vice times of individual customers are independent, identically distributed
random variables and the server accepts only as many customers as to satise-
fy the condition that theilr total service time lies between given lower and
upper bounds. If K is a bounded random variable, this model may be analyz-
ed by the same reasoning as given below, but the calculations become exceed-
ingly involved.

We nojr denote the distribution of the service time for a batch of J
customers by Hj('), d=l; .00 K. Let gn be the number of customers in the
system after the nth departure and let Xn be the length of time between
the (n-l)s‘b and the nth departure. It follows immediately from the assump-
tions of Poisson input and the conditional independence of the service times,
that the bivariate sequence {(gn,Xn), n >0} is a semi-Markov sequence as
defined by Pyke [5]. We set go equal to the queuve length at time t = o+
and XO= 0 a.s. Without loss of generality and with a subétantial gain in
computational simplicity, we assume that the point + = o is a departure
point, so that the sequence {(gn,Xn)} is an ordinary semi-Markov sequence.

The semi-Markov process is completely characterized by the transition

probability distributions:

(1) Qy(x) = Plg=3, X, <x[g _,=1), 1,3=0,1,..., n > 1.

If we write Ev(x) for the distribution function of an Erlang varisble of

order vy with parameter A, then the probabilities Qij(x) are given by:



(2) For 0<1i<IL, j>o:
_ e )?
Qi,j(X) = J’: EL"i(x ;y-)e j.t d HL(X)’

for LL1<LK, j=2o:

()9
o) = [ o Q)
Qij(-“-) - Ix e JI a Hi(y)i
o]
for i >K, j <i-K:

QiJ (X) =

for i 2K, jZzi-K:

X J=i4K
o ) = [ & By o,

The Laplace-Stieltjes transforms of the Qij(x) are denoted by qij(s)

and are given by:

(3) For o<£1i <L, j>o:
"~ 2 - A )j
ql (S - (x+s L i {' e ()\.+S)y QV;J ,.__: a HL(Y):
e}

for LL1I<LK, jJ2o:

o (o) = [ O G0 4y (o),

o}



for 12K, j <1i-K:
ay5(s) =0,

for i >K, § > i-K:

o J=-i+K
;@) = [ O P @ mlo),

0

Particular cases:

For particular choices of L and K, several queueing models are ob-
tained, which have been studied earlier. For L = K, we obtain the bulk
queue with fixed batch size, which has been studied by Takécs [11].

For L = 1, we obtain the case in which the server is aperating as soon
as one customer is present. This model has been investigated by Bloemena
[1], Le Gall [2], Runnenburg [9] and Neuts [3,4]. The M|G 1 queue is of

course obtained for L =K = 1.

©. The Output Process and the Tmbedded Markov Chain.

The nth departure from the queue occurs at a random time
Tﬁ = Xl +oast Xn' We propose to calculate the n-step transition probabili-

ties:
(n) B , e - s
Q5 (x) = Plr) <% g = 3lgg= 4]

for the discrete Markov process {(gn’Tﬂ)’ n > o}, We introduce the follow-

ing generating functions:



(2]
(4) a. U__gn)(z,s) = qu(_?l){m (s) 2° Res>o0, |z| <1
=0
co
b. LA (s w) = Z n) (s) W, Re 5 >0, |w|] €1, j=0,1,...,K-1
n=o
@0
Ce Vi(z,s,w) = ZU__gn) (z,8)w", Re s >0, |w| <1, |z] <1.
n=o0

and we denocte the Laplace~Stieltjes transforms of the distributions Hv(x)
by hv(s) for v =L,...yKk and Re s > o,

We then have the following theorem:

Theorem 1

The generating function Vi(z »S,w) is given by:
(5) Vi(Z,S,W) =

’—z - wh (s-'?» 7\.2)-’ { z 4 Z '-W()\,'I'S)L Vh (sﬂ. “\Z )=z -’W (s,w)

K-1

+ Z rwhv(sﬂ.-)sz)-zv-! Wiv(S:W)}
v=L )

in which the functions Wiv(s sW) are the solutions to the system of linear

equations:



(6) 7; (ws) =

Z {VV(W,S) -w (X'+'s')L v hJSﬂ»-M' (w,s)]} W, (s,w) +

V=0
K-1

z: {7;(w,s) - whv[s+h-X79(w,s)]} Wiv(s,w),
=1

p=l,.'.,K.

The functions 7p(w,s), p=ls+.+,K are the K roots of the equation:
K
(7 z5 =y hK(s+%~xz),

which lie in the unit disk Izl <1 and defined analytically for

Re s >0, |w| <1.

Proof:

(n

The transforms qij)(s) satisfy the recurrence relations:

L-1

o) = § ooy (ot [ e B 4 g )
o
v=0
K 1
T oo [ 0mr Gl 4
v=L

PAC J-vHK
Z ’<s)[ "(“S)y%_)v-;{;——mK(y),

v=K



for n > o.

VYle obtain:

»

K-1

(9) Z qj.(.gﬁl)(s) zj + 2K U§_n+l) (z,s) =

J=0
L-1 K-1
Z qj(.i)(s)(ﬁ-—s- Ly hL(s+)\,-}\,z) + Z q§_2)(s) h\)(sﬂ.-xz)
V=0 v=L

+ U:gn) (Z)S) hK(S'l'k‘M),

and vpon multiplication by wn+l and summation we obtain (5). The function

Vi(z,s ,W) is analytic in its region of definition. The denominator has ex-
actly K roots in the unit disk |z| <1 ~ Takfies [11] p. 82 - We denote
theu by 7p(w,s), p=1,.+.,K and define them so as to be analytic in the re-
gion of interest. Ixpressing that the zeros of numerator and denominator

must coincide, we obtain the system (6).

Theorem 2

The n-step transition probabilities Pzg_ra.l) for the imbedded Markov

chain f{ g 02 o} are given by:

(10) Z sz W PJS?) =
n=0 Jj=0
. bt
[25- sm (nz) | T {25 ZWWiv(o,w)[-thL(k-xz)-thK(A.-)\.z)}
V=0
K=l

+ Z w E'Ji\;<°’w)'[th\,(h-)\'z) - zY hK(A.-hz)]},

v=L
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The limiting probabilities n, = lim P(V) are obtained by multiplying (10)
n —>ow
on both sides by l-w and letting w tend to one. We have:

(ll) ‘I(v = li-lilﬂ (l"'W) T,Ji\)(o,W), for \)=0,l,...,K-l,
w

and:

s I-1
(1) ) =, ad = [ZK.hK(x.-xz)-’-l { Z ﬂv[_thL(;L_xZ)_zv hK(?whz)]
J=0 o
K-1
2: “V[ZK hv(k-hz) - gV hK(x-xz)]}
v=L

Let 4 denote the first moment of HK(-), then the Markov chain {g ,n > o}
is positive recurrent if and only if K - A e > 0, null-recurrent if and

only if XK - A o= 0 and transient if and only if X - A o, < O

K
Proof:
Formula (10) follows from (5) and (6) by setting s = o+ in
K-l
;7 }:z W )(s) T L (w s)zj + 25V (z,8,w).
4 Li.j’ A
=0 j=o0 j=o0

The proof of (12} is well~known.
From the system (6) we obtain Wiv(o,w) as the ratio of two deter-

minants, namely the determinant
I~1 L X-1
|| 2-wm (2 Mp),...,yp -th(x-mrp), 7p-wh(h-7\.70),...,7p -l _; (A=A p)H

in the denominator and a determinant, obtained by replacing the yth column
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of the above by the column with entries ')’:(W,O) s P=l,..43K, Ve form the
product (1-w) Wiv(°"’) by dividing the first row of the denominator by l-w.
The equation: -

K
(13) z = h(h-rz)
has a real, positive root of smallest value in the interval [0,1]. Let us

define 7¥.(w,s) *o be the root of the equation (7) which corresponds to this
1

positive root of (13) for w=l, s=o+. By a well-known argument, we have:

(1) '}'l(l,o+) = 1 if and only if K - X o 2 ©

71(1,o+) <1 ifandonlyif K-ro <o
Consider the case 7l(l,o+) = 1. The numerstor in the expression for
(l-w)wiv( o,w) tends to the cofactor of the element 73‘_(w,o) in the first
row and the vth column, evaluated at w=l. This quantity does not depend
on the initial state i. The denominator converges to a determinant in

which the first row is given by the constants:

(AO’ oo ',AL"J.,AL’ ce .,AK"l)
where:
(15) A = li_zz}l {l—-w)-l,ry'l’(w,o)-fth()\.~)\.7l(w,o))], FOr v=0ylyseeyl-1
W
A = i -1 !‘ v I
= lim  (l-w) !71(t¢,o)-whv(h-kyl(vr,o)) b for v=Leee,K-1.

Vo g1
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These limits may be evaluated explicitely using de 1'Hopital's rule and the

fact that:
D) -1

(16) % 7l(w,s) = (K - 2 o)

w=1

5=0
We find:

-1
(1) A = (K-vi o 2 o ) (=) @) 7, For v=0,1,...,L-1.
A\) = (K"\)’x'h C!\)- >\- C(K) (I{"}\' C_/Ic)-l’ fOI‘ \)'-:L, see ,K:"l?

in which @9 V= L,.ss,K is the expected duration of the service time for
a group of vy customers.

‘The other rows of the determinant in the denominator are given by:

L-1
1-hL[x-x 79(1,0)],.,.,7p (1,o)~hL[x-x 70(1,0)],...,
K-1 .
7 (l;O)-hK_lfx-xrp(l,O)]

Tor P = 25404,Ke

It X-\ oue > o, this procedure yields the generatihg function for the
stationary probability distribution of the queue length immediately after
departures. The im‘bedded Markov chain :Ls then positive recurrent.
If K- 4= Oy all T, V= O3lyess are equal to zero and the chain
is null recurrent.

IT X=-2A Che < o, we need an additional argument to show that the im-

bedded chain is transient, Ve need a slight extension of Foster's theorem



given in the proposition below:

Proposition
An irreducible Markov chain is transient if and only if the system of

equations:

Jj=0
where C is any finite subset of the state space, has = bounded nonconstant
solution. -
The proof of this proposition is essentially the same as for Foster's
theorem.
Applying this property, it is easy to see that if we remove the equa~
tions, corresponding to the first K rows the resulting system has a bounded

nonconstant solution if K-M o < 0.

3. The Successive Busy Periods.

The server will become free as soon as there are less than L custo-
mers left in the queue immediately after a departure. We define a busy
period as the length of time between the beginning of service for the first
batch, which contains I customers and the time vhen the number of custo-
mers in the system drops below L for the first time thereafter. The ini-
tial busy period will depend on the initial conditions in the queue and we
will not derive its distribution here. It may be obtained by an analogous
reasoning to the one given here. We denote the lengths of the busy periods
by Y n? n=1;2,... and the number of customers left in the queue upon ter-

mination of the nth busy period by In' It is obvious that the seguence



13

{(In, Yn), n>o0, ¥ =0, I, arbitrary}

forms & semi-Markov sequence with L states {o0y...,L-1}. We will now ob-

tain transforms for the transition probability distributions

(12) Gij(x) =P{I=13, ¥, x|1,_;= 13

for i,,j=0,l,-.-,lr‘l and n > l.

Theorem |
The transition probability distributions Gij (x) do not depend on i.
Their Laplace-Stieltjes transforms Ej_(l,s) (§=03+5e0+,L-1) are the solu-

tions to the system of linear equations

L-1 K-1
(19) Z B (Ls) 75(1,8) + Z [7’;(1,s)-hr[s+x-wp(1,s)]:} E,(1,5)
r=0 r=L

= hL[S'l'h")\,yp(l,s)]’ P = l,.n-’Ko

Proof: The proof is an extension of an argument by Takées [10] for the
MlGll queue. |

Iet G(k,n,x) be the probability that a busy period consists of at
least n services, which last a length of time of at most x and such that
at the end of the nth service there are h customers waiting,

Tt is clear that the G(k,n,x) do not depend on the number of customers
in the queue at the end of the previous busy period.

The probabilities G(k,n,x) satisfy the recurrence relations:



1k

1
(20) . G(k,1,x) = r e-hy ‘Q"Y)‘{‘ d HL(Y):
. e}

ki

and for n > 1:

K-1
G(k,n,x) = }:

r=L

k
, G(r,n-l,x-y)e Ay L-ﬂ—-;, d Hr(y) +
“0

Kl

ay O ki+K-y
Y [ etunaye™ M- a m (),

v=K °

We denote the Laplace-Stieltjes transforms of the G(k,n,x) by
I'(kyn,s) and obtein the transformed version of equations (20). We also

introduce the generating functions:

o
(21) a. CK(z,n,s) = ZZ\) r'(vi&,n,s), fz] €1, Re s > o.
V=0 '
[ee)
b. DK(z,w,s) = ECK(z,n,s)wn, lz] <1, |w| €1
n=1
[+o]
Ce. Er(w,s) = Zl"(r,n,s)wn, lw| <1, Res 20
=1 r o= O,l,.--,K‘ln
We obtain successively:
[es]
(22) Y P(,1,8)2" = n(sh-re)

k=0
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and for n > 1l:

K-1

Z "{k,n,s) AT CK(z,n,s) =

k=0
K-1
Z r{r,n-1,s) hr(s+7\.-}»z) + hK(s-l-x-)\.z) CK(z,n-l,s),
r=L

-1 K-1
th(s+}\.->\,z)- Z Er(w,s)zr+z [whr(sﬂ.-)\.z)-zr] Er(w,s)

r=0 r=1L

(23) D {z,w,8) =
K X - th(s-!—)\.-)\,z)

Applying the standard argument, we obtain the unknown functions E I,(w,s)

as the solutions to the system of linear equations:

-1 K-1
(2k4) Z Er(w,s)7:(w,s)+ E [7Z(w,s)-whr”sﬂ.-}\.')'p(w,s)] Er(w,s)]
r=0 r=L

= wh S+7\.-)\.7p(w,s )], [o] =1, .o ‘,Ko

in which the 7p(w,s) are the roots oi‘ equation (7) in |z| £ 1. For w=l
and J = Oyeesyl~l the Ej(l,s) are the tr;nsforms of Gij(x).

Since the Gy s (x) do not depend on i, the successive busy periods
form & semi-Markov process of zero order as defined by Pyke [T].

If X-M o 2 0, we have 71(1,0—3-) = 1l. If we set w=l, s=o+ and p=1

in equation (24), we obtain
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I-1
Z Er(l,0+) = l’
r=0

This quantity is less than one if K - A e

semi-Markov process 1s transient. Er(l,o+) 5 Y=0jyeee,L=1, is the probability

< 0, beczugethe imbedded

that at the end of a busy period there will be r customers left behind.

The sequence of successive idle periods is now also easy to describe.
They form a semi=~Markov process of zero order in which the transition proba-
bilities are Er(l,o+) and the corresponding idle periods have an Erlang
distribution with parameter A\ and order L-r, r=0,l,s..,L~1. The moments
of the busy periods mey be calculated from the determinant representation
of Er(l,s), r=0jy¢se;L-1. One verifies directly that the first moment is

infinite 4if K = A Clgee

L, The Queue length in Continuous Time.

The distribution of the gqueue length in continuous time is readily ob-
tained from the renewal functions for the imbéclded senl-Markov process
{ (g‘n,Xn) » n >0}, For ‘sim_plicity we again assume that the point + = o is
a departure point. We define Mij(t) y 13 = 01,.e4 as the expected number
of visits to state J in the closed interval [o,t], starting in state i,
in the imbedded semi-Markov process. The Laplace-Stieltjes transforms of
the M, j(t) are denoted by “ij(s)' We denote by Lﬁj* the mean recurrence
time of the state J in the imbeédded semi-Markov process.

Let &£(t) be the queue length at time + and let:

(25) P;5(t) = P{e(t) = jlg= 11,
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Ve denote the Laplace transform of Pij () by pij(s) and we introduce the

generating function:

(26) (s,z) = z:pij(s) zj, lz] <1, Res 2o
J=0

We now prove the following theorem:

Theorem L:

The generating function n(s,z) is given by:

L-l
1 (7\,Z L \)]
@) n(se) = iy ), Wy (Le)z [
V=0
L=l
+ = s+x-xz [1-h (s+n- xz)] z: s {Ls8) (
V=0
K~-1
U U S - - v
s oy /) Wiv(l,s)[l h\)(s+)\, )\.z):] z
v=L

K
+ m v (Z,S,l) l-l-hK(Sﬂ\.-)\.Z)]

in which the functions Wiv(l,s), v=0;1,000,K-1 and Vi(z,s,l) are given
by formulae (5) and (6) for w=l.

*
The limits Pj = lim Pij (t) exist and are glven below for the posi-
' t >

tive recurrent case. In the null-recurrent and transient cases these limits

are equal to zeros
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Proof :
Ve have
.
(28) () = ) oY @,
o}

and hence:

© K-1
(29) Z HiJ(S)ZJ = z Wij(l,S)+ZK Vi(Z,S,l),
J=0 J=0

by formulae (4), (5) and (6).

By enumeration of cases and the law of total probability, we obtain:

(30) For o< <L-l:

d & .,
Pij(_b) = z J. e“)\.\'b"’l") AE-T -‘____ a M (t),
(3-v)!

v=0

A (t-T) =T () L'\”l I (t- -u)'lJ
Z I dM (t)e T (L-\J‘l) (JTL) 1

[l-HL(t-T-u)] L du.

Ej" au, (¢)e” M (t-7) Lﬁ%ﬁ)ﬂ—— [1-5, (-7)],

v=L



for J 2K

I-1

(L~v-1)! (3-L)!
V=0

R-1
z f dn; ('r) -M(t=7) [ultr [l-H (t-7)] +

J=v
v=l

Z [ an, (o) (6T DT 1y (o,
v=K

Taking Laplace transforms, we obtain:

(31) For o< j<I-l:

(S) = y p’ ( ) A."'S “v+l.’
V=0

for LLJ < K-1:

- | e
Pij(s) = z »ui\)(s)('i?_:"g)L v “'ro (his )v K)\’J)-f)-; [l-HL(v)] av

+ z uy () f o~ (Me)v 'Q(-l-r [1-8, (v)]av,

v=L

and for J 2> K:

19

& & Ley~1 '
Z [ dMi\)(T) [ i -)\,UJ-T) fj\lu) hd [ki‘t""l"'u)j [l.-HL(t-T-u)] ) du
o



il

-1
pys(s) = ) wy (e)(E)
=0

v=

K-1

T [

v=L

J
+ Z uiv(S) r

=K o

20

L=y J o (ts)v () [1 -H, (v)]av

¥
o 3-L)!

o-(Mis)v .Q(%LL.)-? ri-g (v)lav

) 0T 1y (e,

Formula (27) follows by taking the generating funcition.

* . .
The mean recurrence times ""j in the imbedded semi-Markov process are

found as the Jlimits:

M,, {t)

€ --'> © 3 5
and are independent of i. If K-\ e < 0, these limits are zero. If

*
K=\ o > 0, the “’j are Tinite. Applying the key renewal theorem to the

-

integrals in formula (30) we obtain:

(33) For o< j<L-1

for L<J <K-1:

HJ
1
>
@ M e
c-‘: *|""
-
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. L7 v O )=k i
PJ"Zu*r Fyr (1 (v av
v=0 "y

* 1w Ow)dE
P. = z -:?,:J‘ e ™™ A'v)“:-'r [1-H_(v)]dv
J u“ I3 o J-.-LJ). L
V=0 v
K1 . Gt
' 1 J AV v
o ——r N ™
Z ux e T3 vf- [1-H (v)]dv
v=Lo Ty

J 17 oMY par)d”
+ y % | i—( 7 [1- H_r(v)]dv,

v=K “v

There seems to be no simple relation in general, between these limiting proba-
bilities and those for the queue length in discrete time.
The formulae (33) mey be obtained directly by considering the stationary

version of the sewml-Markov process.

5. Limit Theorems

In this section we apply theorems due to Pyke and Schaufele [8] to ob-
tain the strong law of large nuwbers and the central limit theorem for the
output of the gueueing model in the positive recurrent case.

Let gn be the size of the batch, leaving the queue at the nth depar-

ture. We then have:
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(3"") ';n = f(gn-l)’ n=>l
in vhich:

L o<v<l
(35) - £{v) = v for L<v<K

K v>K

Let N(t) denote the number of customers leaving the queue in the interval
(o,‘b], then it follows from thecrems of FPyke and Schaufele that the follow-

ing theorems hold:

Theorem 5

As t—> », we have

L\;n-pzw +Kfl'z ]

(36) -\-l B a = e
| Z“ Lo +(LmviA~ ]-t za o -ra/K_’—l- T ]

y=0 \)—0

The quantity A may be interpreted as the asymptotic average number of cus-
tomers leaving the gqueue per unit of time. The numerator is the asymptotic
average nuber of custdmers per babch and the denominator is a measure of the

average time between departures.

Theorem 6
Iet A be the constant found in theorem 5, then of the service time
distributions have finlte second moments and if the queue is ergodic, the

random varisble
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converges in law to a normal random variable with mean zero and variance

02, given by:

i=0 kyd

GB7) o = (i My ) l{}: g €(2)+22 Z !; 113(1) .ijr(‘”)}
i=0 J

in which:

© K-1 K-1
(38) Z Ty = Z r I l] + Z Ty on 1- Z rrv],
i=0 i=L V=0

and:

<o
(=-}

gj.(_e) =f2(i)-A Z f xeink(x),
" k=0 °

g = £(1)Qy (=)-A f x D Q (x)

gl(.l) = £(z)-8 ) ,’['0 x d Qg (x)
k=0
T
Mkr( ) = w
rr

in which the quantities “k.j are the Tirst moments of the first passage times
from state k to state J in the semi-Markov process. This central limit

theorem is difficult to apply because of the involved calculations for the “kj‘
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A GENERAL CLASS OF BULK QUEUES WITH POISSON INPUT!

By Marcer F. Nruts

Purdue University

We assume that customers arrive at a counter according to a homogeneous
Poisson process and are served in groups, according to the following policy:
If there are less than L customers waiting at the time of a departure, the server
must wait until there are I customers present, whereupon he serves them to-
gether. If there are L or more, but less than K(K = L) customers waiting, all
are served together. If there are K or more customers waiting, a group of K
customers are served and the others must wait. The service times of successive
groups are assumed to be conditionally independent given the bulk sizes, but
may depend on their magnitude. We obtain 1. a description of the output
process, 2. the queue length in discrete time, 3. the distribution of the busy
period, 4. the queue length in continuous time and 5. some limit theorems for the
number of customers served over a long period of time. ,

The order of service is irrelevant in this paper. The method used throughout
is that of the imbedded semi-Markov process.

1. Introduction. This paper is devoted to the study of the following queueing
model. We assume that customers arrive at a counter, according to.a homo-
geneous Poisson process of rate \. They are served in groups, according to
the following rule. If immediately after s, departure there are less than I, cus-
tomers present, the server must wait until there are L customers, whereupon all
L enter service. If there are I or more, but at most K customers waiting, then all
customers present are served together (L < K). If there are more than K cus-
tomers waiting, a group of K enters service and the others must wait. In this
paper the order of service is immateria]. We assume that the successive service
times are conditionally independent, given the batch sizes, but their distribu-
tions may depend on the batch size.

It is of interest to describe some actual situations, which may be described
by this model. The operation of an unscheduled car ferry or a single ground floor
station of an elevator may be approximated by the above description. The
author is indebted to Professor G. Newell for supplying the following applica-
tion to traffic flow. We consider a main road and a minor road merging into it.
A trafic light on the main road interrupts its traffic flow after a certain length of
time if at least L cars have activated a tripplate on the minor road. Otherwise
the light stays green until L cars have arrived. The red cycle is timed so that at
most K cars can merge during it. We count as the successive service times the

Received 4 August 1965. g

1 This research was supported in part by Contract NONR-1100 (26) with the Office of
Naval Research. Reproduction in whole or in part permitted for any purposes of the United
States Government.
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760 MARCEL F. NEUTS

time required for the platoon to merge, plus the fixed length of the green cycle
on the main road. The model then studies the queue forming on the minor road,
under the assumptions of Poisson arrivals and the rule that cars arriving during
the time that vehicles ahead are merging must wait for the next eycle. This
assumption is not too unrealistic in very light or very heavy traffic, or if K is
not too large.

There are some generalizations of the model, which may occur in practice.
We may want to serve a group of less than L customers if its waiting time exceeds
a given value. This generalization is easy to work out, along the same lines as the
discussion below. '

Another generalization is obtained when L and K are random variables on
the lattice points (@, b) with @ = b. This may occur if the service times of in-
dividual customers are independent, identically distributed random variables
and the server accepts only as many customers as to satisfy the condition that
their total service time lies between given lower and upper bounds. If K is a
bounded random variable, this model may be analyzed by the same reasoning as
given below, but the calculations become exceedingly involved.

We now denote the distribution of the service time for a batch of j customers
by Hi(-),j = L, --- , K. Let £, be the number of customers in the system after
the nth departure and let X, be the length of time between the (n — 1)st and
the nth departure. It follows immediately from the assumptions of Poisson
input and the conditional independence of the service times, that the bivariate
sequence {(£ , X.), n = 0} is a semi-Markov sequence as defined by Pyke
[5]. We set £ equal to the queue length at time { = 0+ and X, = 0 a.s. Without
loss of generality and with a substantial gain in computational simplicity, we
assume that the point £ = 0 is a departure point, so that the sequence {(&, , Xa)}
is an ordinary semi-Markov sequence.

The semi-Markov process is completely characterized by the transxtlon prob-
ability- distributions .

(1) Qi(z) = Plta =f, Xa £ 2|ban =14, 45=01,--,n21

If we write E,(z) for the distribution function of an Erlang variable of order »
with parameter A, then the probabilities @;(z) are given by:

(2) For0<1,___Lj§0
Qii(z) = [$Eidz — y)e™\y)/1 dH (y),
for L<i<K,j2z0 |
Qi(z) = [5e™(Ny)’/j1 dH L),
fori 2 K,j<i—K '
_ Q:i(z) = 0,
fori>K,jzi—K
Qii(z) = [5e7™\y) /(G — i + K)!dHx(y),
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The Laplace-Stieltjes transforms of the Q;(z) are denoted by gii(s) and are
given by:
(8) For0=7=<1Lj=0

gs(8) = W\ + )7 [7 ™ O0y) /51 dH (y),
for L={2K,720

gii(s) = [0 e Oy) /it dH (y),
foriz K,j<i—K
g:i(s) =0,

foriz K,7z7:— K

gi(8) = J5 e ONy) T (G — i 4 K) 1 dHx(y),

Particular cases. For particular choices of L and K, several queueing models
are obtained, which have been studied earlier. For I, = K, we obtain the bulk
queue with fixed batch size, which has been studied by Takécs [11].

For L = 1, we obtain the case in which the server is operating as soon as one
customer is present. This model has been investigated by Bloemena [1], Le Gall
[2], Runnenburg [9] and Neuts [3, 4]. The M /G/1 queue isobtainedfor L = K = 1.

2. The output process and the imbedded Markov chain. The nth departure
from the queue oceurs at a random time 7,” = X; + --- + X, . We propose to
calculate the n-step transition probabilities

QP (z) = Plé =, 7 S x|k = 3}

for the discrete Markov process { (£, 74 ), n = 0}. We introduce the following
generating functions for the L-S-transforms of the Q{}’(z):

(4) (a) U (2, 8) = 2 e qiihe(s)2,
' Res= 0,z £ 1,
(b) Wi(s, w) = Dm0 gi2(s)w",
' Res=0,|w <1, =0,1, -.--.,V'K,—l,
(¢) Viz, s, w) = X a0 UM (2, s)uw",

Res=0,|ul <1, L

and we denote the Laplace-Stieltjes transforms of the distributions H,(z)
by h.(s) forv = L, --- , Kand Res = 0.

We then have the following theorem:

TaroREM 1. The generating function V(z, s, w) is given by:

Vidz, s, w) = 25 — whe(s + N — A2)]™
(B) e’ 2 VO ) Thals + N = N2) — 2TWa(s, w)
+ D2 [whi(s + N — \2) — ZIW (s, w))
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in which the functions W (s, w) are the solutions o the system of linear equations:

vo' (w, 3)
(6) =235 {7, (w,8) — wN/ N+ $)) " hels + N — M, (w, )} Wals, w)
+ 235 (v (w, 8) — whils + N — Myo(w, )BWals,w), p=1,---, K.
The functions v,(w, s), p = 1, - -+ , K are the K roots of the equation
(7 25 = whe(s + N — Az2),

which lie in the unit disk |z| £ 1 and defined analytically for Re s = 0, |w| < 1.
Proor. The transforms ¢{}’(s) satisfy the recurrence relations:

657 (s) = 8,
(8) ¢7™(s) = f—‘J GP (YN N+ ) [T &Ny /71] dH o(y)
2L V() [T e M) /1 dHL(y)
+ Ziﬁ g7 (s) I3 e Ny) /(G — v + K) ] dH(y),
for n = 0.
We obtain
2590 ¢ (9) + U (2, 8)

(9) = 20 ¢ (NN A+ ) hu(s + N — N2)
+ 5 gl (8)h(s + N — Az)
+ Ui(z, s)hx(s + N — N2),

and upon multiplication by w™"' and summation we obtain (5). The function
Vi(z, s, w) is analytic in its region of definition. The denominator has exactly K
roots in the unit disk |z| < 1 (Tak4cs [11] p. 82). We denote them by v,(w, s),
p=1, , K and define them so as to be analytic in the region of interest. Ex-
pressing that the zeros of numerator and denommator must coincide, we obtain
the system (6).

TurorEM 2. The n-step transition probabilities P{? for the imbedded Markov
chain {£, , n = 0} are given by:

P2 Dt PG = B — whk(h — )
(10) - ‘-'{ZKqH. + Zf—_ol wW (0, 7-‘))[th14(>‘ — \2) — Zhe(A — A2)] ‘ -
+ TSI w0, WEh O — M) — 2} — M)},

The limiting probabilities w, = lim,.., P{}’ are obtained by multiplying (10) on
both sides by 1 — w and letting w tend to one. We have:

(1) 7 = limea (1 — w)Wa(0,w), for »=0,1,:- K — 1,

-
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and . . -

(12) D 5mmz’ = [ — heN — M) D5 mldha(h — N2) — 2hae(A — A2) ]
+ 252 mER(N — N2) — Zhe(N — N2)]}

Let ax denote the first moment of Hx(-), then the Markov chain {£, , n = 0} s

posttive recurrent if and only if K — Nax > 0, null-recurrent if and only if

K — Aax = 0 and transient if and only if K — Aax < 0.

Proor. Formula (10) follows from (5) and (6) by setting s = 0+ in
E:;o 2 2w P (s) = D55 Wii(w, $)27 + 2 Viz, s, w).

The proof of (12) is well-known.
From the system (6) we obtain W (0, w) as the ratio of two determmants
namely the determinant

11— whed — Nv,), -+, 7" — whi(h — My,),
'YpL - /U-)hL(>\ - )\'Yp); Y ‘YPK_I - WhK—l(X - )\‘YP)”

in the denominator and a determinant, obtained by replacing the »th column
of the above by the column with entries v,’(w, 0), p = 1, , K. We form the
product (1 — w)W;(0, w) by dividing the first row of the denommator by
1 — w. The equation

(13) 25 = hg(A — A2)

has a real, positive root of smallest value in the interval [0, 1]. Let us define
71(w, 8) to be the root of the equation (7) which corresponds to this positive root
of (13) forw = 1, s = 0. By a well-known argument, we have

(14) v(1,0+) =1 ifandonlyif K — hax = 0
v1(1,04+) <1 ifandonlyif K — Aax < 0

Consider the case v1(1,04+) = 1. The numerator in the expression for
(1 —w)W.(0,w) tends forw T 1 to the cofactor of the element v,(w, 0) in the
first row and the vth column, evaluated at w = 1. This quantity does not depend
on the initial state 7. The denominator converges to a determinant in which the
first row is given by the constants

(Ao, -+ yAra, AL, -, Adxy)
where
4, = limyr (1 — )7’ (w, 0) — whe(X — Mya(w, 0))],
(15) for »=0,1,---L—1
4, = limy (1 — )7y’ (w, 0) — wh(X — M(w, 0))], |
for v=1L,--- , K —1.
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These limits may be evaluated explicitly using de 1’Hopital’s rule and the fact
that :

(16) (9/0w)vi(w, §)|wmt,sm0 = (K — Nag) ™

We find _

(17) A, = (K — v + Mox — Aex)(K — Nag)™ for »=0,1,---, L — 1,
A, = (K — v+ A, — Nag)(K —Nag)™, for v=1L, ---, K —1,

in which o, ,» = L, --- | K is the expected duration of the service time for a

group of » customers. ,
The other rows of the determinant in the denominator are given by:

1 — BN — Ma(1,0)], -+, %" (1, 0) — Auh — My,(1, 0)],
’YPL(17 0) - hLD - )YF(]-; O)]) Tty 7PK—1(17 0) - hK—]-[x - )‘79(1) 0)]
forp=2,---, K.

If K — Aax > 0, this procedure yields the generating function for the station-
ary probability distribution of the queue length immediately after departures.
The imbedded Markov chain is then positive recurrent, since an absolutely
convergent solution to the stationarity equations is exhibited.

If K —Xax =0,allw,,» = 0,1, --- are equal to zero and the chain is null
recurrent.

If K — Max < 0, we need an additional argument to show that the imbedded
chain is transient. Slightly extending a theorem due to Foster, we have:

ProrosITION. An trreducible Markov chain is transient if and only if the system
of equations:

(%) : 250 Py = s, 12C
where C is any finile subset of the state space, has a bounded nonconstant solution.

The proof of this proposition is essentially the same as for Foster’s theorem.

Applying this property, it is easy to see that if we remove the equations, cor-
responding to the first K rows the resulting system has a bounded nonconstant
solution if X — Nax < 0.

3. The successive busy periods. The server will become free as soon as there
are less than L customers left in the queue immediately after a departure. We
define a busy period as the length of time between the beginning of service for the
first batch, which contains L customers and the time when the number of
customers in the system drops below L for the first time thereafter. The initial
busy period will depend on the initial conditions in the queue and we will not
derive its distribution here. It may be obtained by an analogous reasoning to the
one given here. We denote the lengths of the busy periodsby Y,,n =1,2, ---
and the number of customers left in the queue upon termination of the nth busy
period by I, . It is obvious that the sequence

{(In,Ys),n = 0,Yo = 0,1, arbitrary}
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forms a semi-Markov sequence with L states {0, --- , L — 1}. We will now obtain
transforms for the transition probability distributions
(18) Gii(x) = P{In = j; V.22 ! I, = 1}
fori,j =0,1,--- L —landn > 1.

Taeorem 3. The iransition probability distributions G;(z) do not depend on 1.
Their Laplace-Stieltjes transforms Ei1,s)(7 =0, -, ---,L — 1) are the solutions

to the system of linear equations
=0 E(1, 5)v,(1, 5)
(19) + 2 (L 8) = huls X — My, (1, $)]JE(L, s)
=hfs + X = M(1,8)], p=1,--- K.

Proor. The proof is an extension of an argument by Takdes [10] for the M |G] 1
queue.

Let G(k, n, ) be the probability that a busy period consists of at least n
services, which last a length of time of at most z and such that at the end of the
nth service there are 4 customers waiting.

It is clear that the G(k, n, z) do not depend on the number of customers in the
queue at the end of the previous busy period.

The probabilities G(k, n, z) satisfy the recurrence relations

(20) G(k, 1, 2) = [§e™[(\y)*/kl] dH o(y),
and forn > 1:
Gk, m,z) = 275 [§G(r,n — 1,2 — ) ™[(\y)*/kY dH.(y)
+ 25k 160 m — 1,2 — )W)/ + K — ») 1] dHx(y).

We denote the Laplace-Stieltjes transforms of the G(k, n, x) by I'(k, n, s) and
obtain the transformed version of equations (20). We also introduce the generat-
ing functions:

(a) Cx(z,m,8) = 20 02T(v + K, n, s), lel =1, Res = 0;
(21) (b) Dx(z,w,8) = 254 Cxlz, m, )w", |o] < 1,]w| 1, Res = 0;
(e) E(w, s) = X2 maT(r, n, s)uw", lw| < 1,Res = 0,r =0,
1,--- K — 1.
We obtain successively
(22) 20Tk, 1, 8)2 = hi(s + X — A2)
and forn > 1

imo D(k, n, $)2* 4+ 2Ci(z, n, s)
= 25T n = L k(s + N — W) + k(s -+ N — Ne)Cr(z, 1 — 1, 8),
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(?’3) DK(Z) w, S) = [U)h’L(s + A= xz) - Ef:ol E,-('LU, S)zr
4+ > k(s + N — N\2) — Z1E(w, 8)]l2° — whe(s + X — N2)]™

Applying the standard argument, we obtain the unknown functions E.(w, s) as
the solutions to the system of linear equations

7= E.(w, 8)v, (w, 8)
(24) + 25 v (w, 8) — whis + N — Ay (w, $)]1E(w, s)
=7,th,[8+)\—)\’yp(w,8)], p-‘=1,"',K

in which the v,(w, s) are the roots of equation (7) in |z| < 1.For w = 1 and
j=0,---,L—1the E;(1, s) are the transforms of G;;(x).

Since the G:;(x) do not depend on <, the successive busy periods form a semi-
Markov process of zero order as defined by Pyke {7].

If K — Xax =z 0, we have v1(1,0+) = 1. If weset w = 1,5 =0+ andp =1
in equation (24), we obtain

This quantity is less than one if K — Aax < 0, because the imbedded semi-
Markov process is transient. E.(1,0+),r = 0, --- , L — 1, is the probability
that at the end of a busy period there will be r customers left behind. -

The sequence of successive idle periods is now also easy to describe. They form
a semi-Markov process of zero order in which the transition probabilities are
E.(1,0+) and the corresponding idle periods have an Erlang distribution with
parameter A and order L — r,r = 0,1, --- , L — 1. The moments of the busy
periods may be calculated from the determinant representation of E.(1, s),
r=0,---, L — 1. One verifies directly that the first moment is infinite if

K=)\C!x.

4. The queue length in continuous time. The distribution of the queue length
in continuous time is readily obtained from the renewal functions for the im-
bedded semi-Markov process {(%, , X,), n = 0}. For simplicity we again assume
that the point £ = 0 is a departure point. We define M ;(¢),4, j = 0,1, - - - as the
expected number of visits to state j in the closed interval [0, ¢], starting in state 7,
in the imbedded semi-Markov process. The Laplace-Stieltjes transforms of the
M ;;(t) are denoted by p:;(s). We denote by u;* the mean recurrence time of the
state 7 in the imbedded semi-Markov process.

Let £(¢) be the queue length at time ¢ and let:

(25) Pi(t) = P{E(t) =3 & = 4},

We denote the Laplace transform of P;;(¢) by ps(s) and we introduce the
generating function:

(26) H(Sa 2) = Z;;‘)pij(s)zja |Zl <1 Res =20
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We now prove the following theorem:
THEOREM 4. The generating function 1I(s, z) is given by:

T(s,z) = [1/(s + N — N2)] 2050 Wa(l, )2IL — \z/(A + 8))"]
(27) + Y/ (s XN =)L — hu(s + X —N2)] 2550 Wi(L, s)(M (N + )5

+ /(s + N =N)] 250 W1, s)[1 — h(s + N — N2)J

+ E¥/(s + X — M)IVilz, 5, )[1 — hx(s + N — A2)],

@n which the functions W (1,8),v = 0,1, --- , K — 1 and V(z, s, 1) are given by
Sformulae (5) and (6) for w = 1.

The limits P;* = lime.., P:;(t) exist and are given below for the positive re-
current case. In the null-recurrent and transient cases these limits are equal to
Zero. ’

Proor. We have

(28) Mi(t) = 2o Q8 (1),
and hence
(29) " 2 imomi(8)e = XL Wyl )2’ + & Vilz, s, 1),

by formulae (4), (5) and (6).
By enumeration of cases and the law of total probability, we obtain

(30) For0=j5=<L-—-1
Pi(t) = 2200 [6 €7 PINE — D7/ — »)1dMo(7),
forLj=K-—1
Py(t) = 2005 [ dMo(r)e™
ST L — v — DU — 7 — W)/ — L)
L — Het— v — wNdu + D0, [dM (7)™
INE = DT/G = wIL — H(t — 7)),
forj =z K
Py(t) = 205 JodMu(r) [¢7 ¢TI0 " TNL — v — 1Y
. [D\(t — 71— wl7/G — D)L —~ Hu(t — 7 — u)]\ du
20 [§aM o (n)e M OINE — DT/ — DL — Bt — 7)]
o+ E,_x J8aMo(n)e I — D/ — »)I — Ha(t — «r)],
Taking Laplace transforms, we obtain
(31) For0=j7j=<L-1
pii(s) = 2= ua(s)(L/N)N/ (N + 8))7"H,
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