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INTRODUCTION

Suppose one encounters k-populations (categories, varieties, processes,
candidates, etc.) and for each population one cen observe & random variable
whose distribution dépends upon an unknown parameter ai. This parameter
may be the mean; variance; some quentile, or a function of these quantities.
The "best" populaﬁion is defined as that population with.largest ei (or
equivalently the smellest) and hence. based upon "r" observations from
each popuiation; one desires an "obtimal" decision procedure which will
either: (1) selecﬁ'the "best" population, or (2) select a subset of the
k-populations which contains thé "best". . As thus formulated this is called

the multiple decision problem, See Bechhofer [L], Gupta [16], and Lehmann

[22]. Sueh deéision procedures are often called "ranking and selection"
procedures,

ne need to consider such a prbblem arose due to the shortcomings in
the classical tests of homogeneity, i.e. testing the hypothesis of equality
of parameters. PFor, if in the final anelysis a renking of the parameters
is desired a8 is often the case, then to #iew-the problem from the begin-
ning as a "multiple decision problem” is a more realistic and meaningful
approach than a test of.the hypothesis of their equality. Bahadur [1] was
one of the earliest authors to recognize this and to contribute to the
theory of the k-sample problems., Many authors have since mede contributions
to various aspects and modifications of this basic problem. = For furthef
amplification reference could be mede t§ Bechhofer L], Gupta [9], Gupté:
and Sobel [10]. Letmann [22], Until recently most contributions could bé
classified into one of two categories: (1) "seleciing a subset” formu-?

lation or (2) the "indifference zone" formuletion for selecting the best.

"



In (1) decision procedures are given which select a subset of the
k-populations subject to the reqnirement that the probability of selecting
the "“best" population'in the subset is at least a prescribed number P*,
regardless of the possible configurations of the pavemeters. The size of
such selected subsets is of course a random variable and thus among deci-
sion procedures which give the required P* condition, the one which gives
the.smallest "expected" size is considered in some sense desirable, Expected
minimal rank and expected sum of ranks of the populations selected in the
subset are also possible performance criteria for comparing vaiious deéision
rules. Contributions to this problem have been made bvaaulson [261;

Gupta [9], [14], 15]; Gupta and Sobel [10], [11], [12], 13]; and Seal
333, [3u].

In the "indifference ane" formalation for selecting the bést popula-
tion, & single populgtion is sélected so as to guarantee with probability
P¥* that the selected population is best provided some other condition on
the parameters is satisfied. This predesignated condition is thought of
as a "width" of an "indifference zone" in the parameter space (see Bechhofer
[41), and thus requires the experimehter to give two quantities: P* and
this "width". Other contributions to this problem are Bechhofer and Sobel
[5]; Bechhofer, Sobel, and Dunnett [6]; Sobel and Huyett [35]. Chambers
and Jarratt (7] considered this problem with_thevassumption of an "indjif-
ference zone" replaced with assuming that the variance of each population
is a Imovm function of the unknown mean; this'funCtion being the same for
each population.

Multiple decision probléms heve also been investigated by Dunnett [8]
in which a specific "a priori" distribution is assumed on the parameter

space. Guttman and Tiao [17] also considered a "selecting the best" -



problem from this perspective, This approach is the so called Bayesiean
approach to the multiple decision problem. Whereas this is a wide diver-
gence of opinion dver the philosophical 1mp11c§tidns of such an assumption,
it is not the purpose of this paper to enter such discussions, However,
from a practical.point of view, one can find situations in which the assum-
ption-of an "a priori" distribution seems reasonsble. (See [8] and [25]).
This assumption becomes significently more reelistic if further one assumes
only the existencé of an "a priori" distributuon, the exact distribution

itself remaining unknown., It is from this perspective that Robbins [28],

[29], [30] heas introduced the copéept, empirical Bayes decision procedures,
This technique has been called a "breakthrough" by Neymen [é5] and has been
used by several authors, Johns [18], Kegan [19], xrutéhkoff [21], Miyasawa
f2L], samuel [32]. .It 1s the purpose of this paper to extend this technique
to the multiple decision problem. |

In the previous Qork done on the multiple decision problem, decision
procedures were given somewhat intuitively and then desirable characteris-
ties rigorously developed. ‘The approach here will be to use a decision
theoretic framework'with~a séecific loss structure and then derive proce-
dures which minimize the "overall expected" loss. (i.e. the Bayes risk).
In Chapter I the problem is stated in decision theoretic terms after basic
definitions and notations are giveﬁ. In Chapter II the subset problem is
shown to be intimately rélated to the "selecting the best" problem, and
hence declision procedures for the spbset problem arise immediately from :
those procedures which select the "best". A summary of the results in

Chapters III and IV are thus included. In Chaptérs III and IV the existing
prior distribution G is assumed to be a member of & specific parametric

class. In Chapter III a theorem is proved relating empirical Bayes




procedures to the Bayes procedure with respect to G. Then Bayes proce-
dures are found for the ceses in which the a priori distribution is

(1) normal, (2) uniform, (3) beta, and (4) gemme. In Cﬁapter IV empirical
‘Bayes procedures are 6btained for thé above cases uSing the theorem proved
in Chapter IiI. Finally, in Chepter.V a theorem of Robbins [30] is used

to derive empirical Bayes procedures for selecting the best for various

densities: (1) normel, (2) Poisson, and (3) of the form exg(x)h(e);‘and

each Gi satisfying only the condition that it has finite absolute first

moment. It is in this sense that the results are called non-parametric.



CHAPTER I
BASIC DEFINITIONS AND NOTATIONAL PRELIMINARIES

A. Definition of the Problem .

Suppose each o ;:-populations has an observable random variable with

" density f(x]e i) vhere 0, is a parameter belonging to some prescribed

i

set @ , & subset of the real numbers. Then 8= (0 ek) belongs to

l,...,

th

a subset of Euclidean k-space, ® k, which is the' k" _product of .

Let G, De an a priori cumulative distribution function of 0, and thus

fa) = pd=k
o(e) = W7y

(The ei’s are considered independen;l'; random va.ria.bles.) It is desirable

GJ. (6) is an a priori cumulative distribution function on ® k

to know at the time of any random observation x = (%y,..., %) belonging
to ¥, & subset of Euclidean k~space, -which population has the largest value
for the parameter ei; i.e, vhich "i" in 1,..., k has Gi > ej for
J=1,..., k. To answer this question one could (l)‘ select only one popu-
lation and say it is "best", or (2) select a subset of the k-populations
and say the "best" is containeci in this subset. MNote that the word@ "best"
is used synonymously'with "largest". This will be done throughout this
paper but we remerk that equivalent statements can be made if “best" were

defined in terms of "smallest".

In decision theoretic terminology (1) has an action space

A=A = {al, 855.ees a,k} in which action a, means: "say 6, is largest."
For (2) A = A, = {Sl, Spseees Sp} vhere p = ok _ 1, (i.e. all possible
subsets of {1, 2,..., k} excluding the empty set for obvious reasons).

Action Si in A2 meens: "say subset S, contains the ‘best' population.”

i
Of course this requires a knowledge of the contents of Si for 1i=1,...,p

but this wilf be discussed later as decision procedures are developed.



With each action there is a corresponding loss, say I.(a , 9_ ), which
"measures" the loss incurred if 9 is the "true state of nature” and action

a; e Al is taken. An analogous statement (and statements to follow) can

be made in regards to A2 A decision function or procedure is a mapping
"t" from x to A. Thus when Xx € X is observed, action t(x) ¢ A is
taken incurring a loss of L(t(x), & ). Ifan & priori distribution is not .
assumed then a decision procedure is generally evaluated on the basis vof

its risk; i.e. its "expected loss". It is defined by

(1.1) r(5,8) = BLL((x), )] = | L(t(x), )r(x|o)ax
| X »

where f(gg‘_g_ ) =‘ng:1{ f(x{ej). From this definition one usually speaks of
admissible decision procedures, minimex decision procedures, or & minimal

complete class of decision procedures as possible criteria for selecting a

procedure. No dis’cributuon is ’a.ssumed on the parameter space but often
certain assumptions (such as being & bounded space) are made in order to
achieve the above vroperties. However if one aséumes an a priori distribu-
tion on the parameter space (so called Bayesian tﬁeory_), then a Bayes risk

can be defined by

(1.2)  R(%,6) = E[Loss] = E,{E [1(t(x),8)]] =;Jf r(t,9)da(8) .
which of course takes into consideration the & priori distribution G on

k, If L(t(:_{),_@)f(_}_cl_e_) is integrable on ¥. Qk, then by Fubini's theorem

(1.3) »R’(t, G) =I ch(t, x)dx in which
X



(1.5) 2g(ts x) = jk L(5(x).8), £(x]0)an(s) .

This "integrability" requirement will be satisfied by all loss functions
and densities used in this paper. If a decision procedure t’G has the

property

(1.5) R(tG, G) < R(t, G)  for any other decision procedure "t",
then tG is called a Bayes decis;‘.on procedure with respect to G. Note
that if tG has the properfy

(1.6) 'CPG(tG’ x) < :pG(t, x) for almost all x ¢ x and for every
decision procedure "t", then clearly tG 1s Bayes with r'espect to G.

. Condition (1.6) will be used throughout this work as the definition for a
Bayes procedure. For any finite action space A = ['dl,dz,_...,dm} it is

easy to see using (1.6) that t, is defined by:

G

(r.7) tG(_}E) = cl‘_j vhere J is any integer 1,2,...,m

such that :pG(dj, x) =lmén:.L < m{ch(di, x)} .

Of course finding the Bayes decision procedure with respect to G
demands complete kmowledge of @G; whereas using (1.2) ignores completely
- the possibility of an a priori G. An intermediate approach between these
two is the case in which G 1is unknowm but its existeﬁce is assumed. Thus
tq (the Bayes procedure) is not available to us, but the fact that an a
priori G exists provides useful information which should not be ignored.

For suppose observations (ggl, 21)* (:_ce; ga),...,(lcn, _e_n) of X, not 9,
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are repeatedly and independently obtained and all related to the same G.
Then at the time a decision about the present observation x of X is
to be made, the prior observations X,, XoseessX, are availablé; and since
the existence of G 1is assumed, these prior observations contain informa-
tion about the form of that wlnovn G. If this information could be extrac-
ted in such a way so as to form a decisioh procedure tn whose Bayes risk -

(with respect to any G 1in a large class ¥) converged to the Bayes risk

of tG, then tn is asymptotically as good as tG. In this sense then

tn is an optimal decision procedure and we say tn is asymptotically

optimal (a.o.) with respect to o) and thus call such &.0. procedures,

empirical Bayes procedures.

Formally, let tn(-) = tn(gl, Eoyeees X3 *) ‘be a mapping from
XP+1 to A, teking action tn(g) in A, incurring loss L(tn(§), 8).
For any given sequence T = {tn} of such procedures, the Bayes risk rela-

tive to G is defined as

(1.8) Rn(T, G) = J En[mG(tn, x)]dx, where 9, is given by (1.h4).

pd
Note that Rn(T’ G) is en overall expected loss since %~ depends upon
 the . "n" prior observations. Hence this explains the presence of E in
(L.8), i.e, the expectation with respect to the "n" prior random variables

which is given by

(1.9)  Eloglt, 21 = [ o [ apltynfgmay vt
’ X X

where



(1.10) fG(x) =j f(glg)de(g) and
k
(1.11) C2(gle) = I, £(vley)

(1.12) Definition. A sequence of empirical decision procedures T = {tn}

as defined above is said to be asymptotically optimal with respect to G it

1im R(t_, G) = R(t,, G)
N o—> o n’ G‘,

for every G € AG‘, where E is some specified class of distributions on

@k.. We call tn ¢ T an empirical Bayes procedure.

Therefore in decision theoretic terminology &s given above, the multiple

decision problem of interest throughout this paper 1s as follows:

Problem: For & specified loss structure, find empirical Bayes proce'dﬁres

for various (preferable large) classes G with A = Ay or Ay.
B. Notation

The following notation will be used consistently for future work.

x - a k-dimensional vector with components

(%p5000s %)

8 - & k-dimensional vector with components
(91,..., ek) .

X; - ‘the i term of a sequence of k-dimensional vectors; it
has components (xil’ Xipseses xik) .

8, -~ the i*® term of a sequence of k-dimensional vectors; it

has components (© Ry eik)
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- an r x k matrix, vhich will mean "r" observations from

each of k-populations.

For the x's, a cépital letter indicates the random varisble while the lower
case indicates the observatioﬁ. Since © 1is a parameter and also a ran-
dom variable but never observed, the above distinction will not be neces-
sary. Also we emphasize that x* is an r x k matrix each of whose rows
is a vector §(£), L =12, ..., T

Note also that for convenience the subscripts "nj" are used in place
of "n,j" as in a term such as f . or an' Since the product of sub-

nj
seripts is never used in this paper, no confusion should arise.



CHAPTER II
SELECTING A SUBSET CONTAINING THE
"BEST" OF k-POPUIATIONS |
A. Introduction
Often it is desirable to select & subset containing the "best" of
k-populations .‘ as opposed to selecting only thel "best'". Such authors as
Peulson [26], Gupta [9], [14], [15], Gupta and Sobel [10], [11], [12], [13],
and Seal [33], [34] have considered various aspects of this problem., How-
ever these authors have been xz;ore co_ncerned with developing desirable prop-
erties satisfying somé basic probability requirements. For example, the
formulation in the papers by Gupta, Gupta. and Sobel, and Séal, has been.
that of selecting & non-empty subset of random si_ze sé:bisfying the condi~
tion: the "best" population is included in the selected subset with prob-
'ability at least P*, a specified number, In this approach the efficiency
of the decision procedure is the expected size of the selected subsef; and
in terms of the simple zero-one loss function associated with fhe selection
of the best, the risk does not exceed‘ 1l - P¥, In the present investigation
a more basic decision theoretic framework (as described in Chapter I) is

adopted with the eventual goal being the derivation of empirical Bayes de-

cision procedures for either (1) selecting the "best" or (2) selecting e

subset containing the "best". | (The term empirical Bayes is intended to
relay to the ieader an approach toward the solution vhen an underlying &
priori distribution G on the pe.iameter space exists but is unknown). The
main result of this chapter is to establish a connection between (1) and
(2) for the Bayesian case. Then Chapters III and IV will relate Bayes and

empirical Bayes procedures under certain conditions. Nemely, we prove that




e

the Bayes procedure for selecting the "best" ie precisely the Bayes pro-

cedure for selecting a subset, under a certain relationship of the corxes-
ponding loss functions. This fact will become significant in the light of
Theorem 3.1 of Chapter III in vhich it is shqwn that under certain regular-

ity conditions, the empirical Bayes procedure is just the Bayes procedure

with respect to Gn; Gn being an estimate of G, the true but unknown
a priori G. '(It should be pointed out that in Chapters III and IV, G is

assumed to belong to a particular parametric family.)

B. Main Theorem And Corollaries
Using the notation of Chepter I, the action space VA for the subset
problem is given by A, = {Sl, Spseees SP}, where p = oF _ 1. That is,
A, is the set of all subsets of the integers 1, 2, ..., k excluding the
empty set. . For this problem we will assume tha.t the loss function is of
| the form: |

(2.1) L(Sji 8) =%t djq(e[k] - eq)s (3=1,2, ..., P)

_qcsj

and o jq >0 for all "j" and "q'"; 1in which action Sj meens: ‘'say
the best population is in the set S,." This loss function is non-negative
(zero if and only if Sj hes one element which is the best), continuous
in 0, and bounded if and only if @k 'is bounded, It also in some sense
gives a balance between including more populations in order to obtain the

best and having "too many" populations to allow & meaningful conclusion.

Note the relationship of (2.1) to the loss function

(2.2) L(ai; 9_) = e[k] - ei’ (i =1, 2, avey k)



[
[}

which is the loss function considered in Chapters III, IV and V for the
problem of selecting the "best" of k-populations. (2.2) is the so-called
linear loss structure (i.e. the "penalty" for a wrong decision is a lin-
ear function of the difference between the largest and the one selected)
for the multiple decision Problem of selecting the "ﬁest". It has been
used by various authors. (See Dunnett [8], Bland [3], Bahadur and Robbins
[2]). The theorem and corollaries below‘establish the relationship between
the present problem and that of selecting the "best'considered in Chapters
III and IV. For simplicity we assume that the first "k" sets of A2 are
the "k" one element subsets of {1, 2,..., k}; i.e. for J =1, 2, .a., k
action Sj means: "say population J is the best"; and for Jj = k+l,...,p
action Sj means: "say the best is in the subset Sj'" We do not require
explicit knowledge of the séts Sj’ Jj > k, #s will be seen in the theorem.
ther notétion and general background is the seme as given in Chapter I.
Recall that if r observations are taken from each of the k-populafions,

this observation matrix is denoted by x* and it is a point in Xr .

Theorem 2.3. In the loss function given in (2.1) let a5, = a>0 for
=1, 2, «e., k. Iet
cg =] (8 - 8,)8(x*[8)ac(a), ey = min ¢

and bq = ¢4 = °[1]° ﬁsing (1.4) and the above, we have

:pG(Sj, 3_:*) = Zq e 5. ¥%50°¢° If °ry] # 0, then a necessary and sufficient

condition that min Pg(S;, x*¥) = min 9g(8;> x*) is that
1<3<p Y 1<5<k 9
) a, >a - (1/er1)(E @. b ) forevery j=1,2, «..D .
o’ 1] qe jqa

ja
e S, s,
%% ;
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If cr,q =0, then min 9.(S:, X*) = min 0.(8;s X*).
B T e T 12y 0

Proof: Since min Pg(S., ¥*) < min (pG(SJ, x*) , where

T R S

p=2%-1, then min 9a(S:> ¥¥) = min  qu(8;, x¥) if and only if
1<i<p Y 15352k

min ch(si, x¥) < QG(SJ, x*) for every j =1, 2, «os;, P. Now

}_l
A
e
tA
w

min <y (pG(Si, X*) = o °r13 and ch(Sj, x*)= T 50 Cq thas
<i< qe Sj .

min k(;;G(Si, x¥) < q)G(Sj, x*) for every j =1, 2, ..., P if and only

| el
A
|
1A

(2.3.1) ) (¢4 G[l] 5 z qu cq, (j = l,.'.-., p) .

e S.
1€ %5

Note that if cry] = 0> then (2.3.1) is clearly satisfied since g2 0

and- d. > O. Th i & }C* = S X* .
5q 2 us  min ‘?G(Sj’ x¥) L 2131 <x CPG( 30 X )

Now for the case c[l] # 0, we have (2.3.1)if and only if

< .
ocryq < Zq . s “jq(c[lj + bq) 3
'35 -
. . 1l
if and only if (o - % @, )< = @, b 5 if and only if
ges, 9V “°1] qes, 929 oy d
J J
(2.3.2) z . z @, b

for every j = 1, 2, <., P which completes the proof.
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Remarks on Theorem 2.3: (1) The theorem could be stated in more general

terms if, in (2.1), (Oyq - 8,) is replaced with L(q, 8) (i.e. the loss
incurred when selecting a subset conta.in'i_ng only the element "q", q = 1,
2, .vs, k) and @ =1, However for VL(q;. 6)different from a(e[k]- eq),
which is called linear loss, the computation of the Bayes procedure be-
comes quite complicated.

(2) In genéra.l the quantity ¢ q 18 difficult to compute and hence
bq is not available, Thus the necessary and sufficient condition giVen

in the theorem is not too useful from a practical viewpoint. For this

reason the following Corollery is significant.

Corollary 2.4: In the loss function given in (2.1), let ¥yq = @ >0 for

i=1,2, ..., k. If T @5 2@ for every §=1,2,..., p, then
qe SJ . T S
min (PG(-sj’ 2_‘*) = min ¢G(s > _JE*) .
1<3<p 12 <k ‘
Proof, Clearly X ‘cxj chZ z aj qc[-l] >a °[1] using the
qe S‘j qge SJ -

notation of theorem (2.3). “Then (2.3.1) is satisfied which implies the
desired result. '

A slightly more generasl loss function than (2.l) is

(2.5) _ L*(S'-j’ .9.) =%

- n(e
qe s, %30y - %) * ¥ (-).

in vhich @, >0 for all "j" and "q"j v

Ja J
j=1,2, ..., k; and h(@) &n integrable function of @ with respect

>0 with Yy =v20 for

to the measure induced by the cumulative distribution function G. Thus



(2.6) L*(SJ, §) = L(Sj, 8) + yjh(_e_) vwhere
L(SJ., 8) is given by (2.1). Then

oty 1) = [ 1#(55, 0)t(avig)as(e),

using (1.4) and from (2.6), ve have
(2.7) (PG*(SJ’ E_C*) = q’G(SJ’ 5*) + YJhG(Z_‘*) where
(2.8) h(x*) = [ n(e)r(xx|lac(e) .

\ 'k

We now prove en analogous corollary to (2.4) for this more general case.

Corollary 2.,9: In the loss function given by (2.6) let ¥q = > 0 for

d=1,2, «.., k. If_z . >a and

L > for =l 2-.-
quj jq {j—Y J s & :?:

then

min  @.*(S,, x*) = min *(S., x*) ,
Proof: Clearly min cp(*,;(s., x*) < min ch*(S , X*) .
— 1<j<p 9 1<jgx Y

For the other direction, we have from (2.7) that

min CPG*(SJ’ 3_(*) = min {CPG(S ’ _x*) + thG(_’f*)}
1<j<p 1<3i<rp»

> min S, 2) + b)) mn v,
1<j<p 1<j<p

But min ch(S., x*) = = min ch(S., x*) from Corollary 2.k, and
1gygp Y TS

Yj >y forevery j=1, 2, +o., P. Hence

16
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1<j<p 1<j<k
min {¢G(s., x*) +y h (x*)} = min ¢é(s;, x*) . Thus
1<j<k J 1<j<k J

min cpé(S.-, x*) > min :pE(S., X*) and this completes the proof.
J 1<j<k ° 9 '

The following corollary is the key result of this cha.ptér.

Corollary 2.10: Assume the conditions of Corollary (2.9). Then a decision

procedure tG

and L(ai, g)_ is given by (2.2) is also Bayes with respect to G when

which is degs with respect to G vhen A= Al = {al,...,ak]

A=A, = {sl,...,sp}, D= 2% .1, and n*(sj, 8) is given by (2.5).

Proof: From (1.7) t is Bayes with respect to G for A, if

(2.10.1) og*(t,x%) = min  {g(s,, z*)]
1<3i<r

for each x¥, where @ * is given by (2.7). Iet t, be a decision proce-

G
dure which is Bayes with respect to G for Al.
Then by (1.7)

(2.10.2) 0g(tg, x¥) = min  {o (a,, x%)} .
1<j<k

Now by (2.7) noting that Y3 =¥ for J =1, ..., k we have

(2.10.3) ¢b¥(sj, X*) ¢G(sj, x*) + th(E#) for j=1,.es, k.

But @5 =@ for j=1,2, .o, kK, hence L(Sj, 8) = aL(aj, )
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for j=1, ..., k vwhich implies

Pe (s, x*) =ath(a s :_C*)

and thus from (2.10.3) we have
(2.10.L) ¢b*(sj,_§*) = amb(a > X%) + yhc(g*) .
fhen from (2.10.2) we have
(PG*(t > E*) = MPG(t s _35*) + YhG(x*) 5°“PG(8‘3’ 3_‘*) + YhG(B_‘-*)

for every j = 1,400, & _<_<pG*(Sj, x*) for every j =1,..., k. But ta

must select some one of the first k sets 8y5 «evs 8. Thus

*(t,, xX*) = nin *#(S., x%)
P\ X lsjsk‘PG 50 X
and from Corollary 2.9
(2.10.5) ' ¢b*(t , X¥) = min ¢h}(s., x*)
1<ji<p J

which from (2.10,1) implies t, is Bayes with respect to G for A, end

G
the proof is complete.

C. Examples
The chart below gives several exauples of loss functions which satisfy
Corollary 2.9 (I‘ SJ.I indicates the number of elements in the subset sd).
Note that (1) is just the sum of the individual losses; (2) has a "weight

factor" proportional to the number of elements in the subset added to
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(1); (3) is the average of the inclividué.l losses; (4) is (3) plus the
"weight factor’ of (2); (5) is a sum of individual lcsses with each loss
"weighted" by a factor inversely proportionael to the number of elements
in the subset Sj; (6) is a useful loss function in-éase the parameter
spece is bounded, but is quite similar to (2). (Items (2.11.1) and (2.11.2)

below will be referred to in chert 2.11).

2,11.1 If |sj| =q, g=1, ..., kK, then ‘Sj‘(k +1 - ‘sj| ) =
gk +1-q)=gk+q - q?l vhich is > k if
gk -k +q - q? >0, Now k =q+t where "t" is a non
negative integer. Then gk - k + q - q? >0 if
q(q +t) ~q-t+q-q >0 vhichis true if t(g-1) 20, -
which is true since t;o and gpl. Therefore |8 3|('k+1-|sj")_>_k .

2.11.2 Note that 8ryq - % 8, * dqul -1) =

€ S,
& 5
2 (o -8 ([sy] - D)
qgesS, -
d
where d is such thet |8)|< d for every @ ¢@. Thus this

loss function is limited in use to the case in which the para-

meter space is bounded.

D. Swmsary of Bayes and Empirical Bayes
Procedures For Selecting A Subset
In Corollary (2.10) we have seen that for the loss functions given in
(2.11) and any others satisfying Corollary (2.9) the Bayes procedure for the
subset préblem is precisely the Bayes procedure for selecting the "best'.

In Chapter III it is shown that if Gn is an estimate of G vhich converges
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with probability one then the Bayes procedure with respect to Gn is

empirical Bayes with respect to G (i.e. @&symptotically optimal)

provided certain other regularity conditions hold. Now if G is a
member of some parametric family T (as it is in Chapters III and ),
then obtaining Gn hinges upon estimating this parameter. Thus Gn

is also in 'é’ a.nd finding the empirical Bayes procedure is immediate if

the Bayes procedure with respect to any G in ﬂé is available, These
are obtained in Chapter IV. Since these later results are applicable to
the subset problem, we include a sumary of those results here for conven-

ience.

(1) Normal-normal

f(x'ei) is N(Si, cf) -and Gi(e) is a cumlative distribution
function of a N(QA,, B?).

tG(_z_c*) = {j} where "j" is any positive integer 1, 2,..., k such

that
1‘5233-‘3 + c?‘i Bix, + 05 A,
(2.12.1) 5 5C = max { ; 12 = } .
oj+rBJ 1<i<k ci+rBi
(2.12.2) tg (x¥) = {j} where j is any positive integer 1,2,...,k
n
2 — 2= 2 — g
rBJ :.] o;g AJ _ . rﬂale + <2;1 X,
'oj+rBj 1<i<k oy + 18]

is the empirical Bayes procedure; o? , B? are known} with



= _ 1Y g=r (.(’.) = 1 =r (z)
i T Z-l.j ? %y -?n-z:.—l 4=1 1,3 *

(2) Normal-uniform

f(xj |ej) = N(ej, cg) and eJ. uniformly distributed on

."d. +d. v
(hg=dys Aydy)

J

(2.13.1) tc_(g*) = {3}, where j is any integer 1,2,..., k

(Bl) - (P(ai) . rii

9(By) - oley) B (

I’(ozj) - Q(Bj) oy 1<i<k Q(O{i) - Q(Bi) o4
k
is the Bayes procedure with respect to G =1 G. where hj's and 4 j's
J=1
are known, and L
o 2 -
= N 4 -
o =v/oy (g +d-xy)
5 % _
Bj-r/c Aaog-xj).

(2.13.2) tG (x*¢) = {j} , where J is any integer 1,2,..., k
n

B.) - X

cP(Bl) = ¢(Q'i) . rii }
Q(aj) - Q(EJ) oy

#(a,) - #(8,) cri

is asymptotically optimal to tG' It is based upon "n" prior observa-

tions and assumes d,'s are knov th F.4d,-%., B.o%.~d,-%..
i 5 re m, wi ajgxa.]g’sajja



(3) Binomial, Beta
U xj' uy-X,
Let £(x,]0,) = (xj)e:i (-ey) ;06,1
u, & positive integer and xg = Ol, 1, vee, Uy let Gj(ej) be the |

cumilative distribution function for a B density
Al Yi = As -
= J . 3 J
g;j(ej) = cjej (1 95)
vhere
Tlv,) :
S = MR, - %) - BO - v IR
MW T4 32 Vs

and v, are non-negative.

J

(2.14.1) (%) = {4}, vhere i is eny inmteger 1,..., k such that

- 1 o 1
xi+‘_rhi_ , +rh}
1 N ma 1

ui+}-vi »l<3_<_k J+-v

is the Bayes procedure.

(2.14.2) tG'(g_c*)= {i}, vhere i is any integer 1,..., k such that

n
V: - - v: =
%+ 2% %, +x-d X
i rw 71 joru, g
1 - = nax 1
u, + TV »l_<_;j§_k U+ vy

is the empirical Bayes procedure based upon "n" prior observations and is

asymptotically optimal to t'G



(&) ' Poisgon-Gamma.
, e-ej e.xj
Let f(leej) = —— 8,>0,

%5

xJ =0,1,2, ... and Gj(e :j) the cumilative distribution function for

the gamma density

A, Al -0,
wd s 47 &0

A j and °’;j non hegat:lve.

(2.15.1) t. (x*) = {1}, vhere i is any integer 1,2,..., k such that
G._

X, +\ rx, + A\
i T - =4
r O!i _1535k x Q'J

is the Bayes procedure with respect to G = ﬂGJ vhen oy Xj are known

j =l’ [ XA X k.

(2.15.2) te (x*) = i}, where i is any integer 1,2,..., k such that

n
r§_+a.-§- : TR, + @.X
i i"1 J ;_i;j
r +o = max { r+a}
| i 1<j<k ° 3

is the empirical Bayes procedure which is asymptotically optimal to tG.
It is based upon 'n" prior observé.tions and assumes a:j known for

J = lg see k.
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CHAPTER III
PARAMETRIC CASE - BAYES PROCEDURES
FOR SELECTING THE BEST
A. Introduction

(1) Background - In many situations only the "begt" of k-populations
is desired contrasted to the subset formulation given :l_n‘ Chapter II.' Such |
authors as Bechhofer [4], Bechhofer and Sobel [5], Bechhofer, Sobel and
Dunnett [6], Sobel and Huyett [35], Chambers and Jarratt (7] have made
contributions to this problem. These authors usually work under the re-
striction of an “indifference zone." For example in the formulation by
Bechhofer [4], ome is interested in guaranteeipg the probability of se-
lecting the "best" population to be a s'pecified numBer B .Whenever the dif-
ference betwzen the "best" and the second beé‘t is at least equal to a
specified numbar 8. A decision procéduré is given which depends upon
the sample size r and the problem of explicitly determining the common
sample size r to guaranteé the probability P* under the "indif:t"ez_'ence .
zone" . § > 5" 1is solved therein. Various modifications end extensions
have been made by ‘orther- authors, but the approach is basically similar.

A tryly Bax.esian approach to this problem was teken by Dunnett [8}, and
more recently by Guttman and Tiao [17], in which an g priori distribution

on the parameter space is assumed. In [17] a tolerance region as a function
of the parameter is defined and utility isb then defined as same function

of this tolerance region. Procedures which select the best population are
derived from maximizing the expected utility.

In this investigation a basic decision theoretic framework as deseribed

in Chapter I is adopted and‘ erpirical Bayes procedures for selecting the
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"best" population sre sought; the difference between Bayes and empiricel
Bayes being that in the empirical Bayes approach, only the existence of an
a priori distribution is assumed. Recall that in the context of Chapter I
we have:

Al = {al, ;a2,...,ak} i's~the action space;
L(ay, 8) - 9rx]~ 0 18 the loss function;

£(x|o,) is the density of X,

with parameter ei;
Gi(e) is an g priori distribution on B, az;q |

i=k

G=1_4 Gi is an a priori distribution on Qk, the parameter
space;

tG denotes the Bayes procedure with respect to G; |

l y*,... ,x* denorte prior observations of the random matr:.x X ’

with x* being considered the present obgervation of _)_C with G re-
maining the same for all observations (note that the "%" indicates

r obse;-vations per population f"ér eaéh observation vector);

R(t, G) denotes the overall Bayes risk of a decis;on procedure t

with respect to an a priori distribution G. |

In this chapter the main result is to show that under certain regularity

cond:.tiops the Bayes procedure with respect to an estimate G, of G is

also empirical Bayes with respect to G; (i.e. R(tG , G)-bR(tG, G)).
. _ (% . ,

Of coursé to apply this theorem, a suitable estimate G is required. A
vc'ompletely satisfactory. answer to this problem is not yet available (see
Robbins [36] ), but one approach is to extend the existeﬁce assumption on
G to say further that G belongs to some-parametri&family ?}’, e.g. the.

clagss of all normal distributions. This extension is valid in many practical
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situations and will be essumed in this chapter and Chapter IV as well. In

Chapter V results are obtained without this additional assﬁmption on Gj

rather we assume only that

I ei dGi <o for i=1,2, ceey k. Herein lies the motivation for

calling Chepters III and IV the "parame’eric" case and Chapter V, the "non-
paraﬁetric" case. o

Now if G belongs to some parametric family having parameter _
A= (Rl, 12,...,xk), then finding an estimste G, of G reduces to finding

an estimate AN of A; and hence by the theorem below, %, will be
o . n
empirical Bayes with respect to G. But Gn is a member of the parametric
femily G as well, thus finding th (the miri'cal Bayes procedure)
amounts to f:.nd:.ng the Bayes procedure with respect to the fam:.ly G3
‘i.e. finding the Bayes procedure as a function of the parameter A .
Therefore besides the main theorem below, Bayes procedures with respect
to specific classes G will be derived in this chapter., Then in Chapter

IV the corresponding empirical Bayes procedures depending upon the esti-

mates AR will be obtained.

(2) Relation to the subset problem - From the above one can easily
see the usefulness of the results in Chapter II in deriving empirical
Bayes procedures for selecting a subset. Namely, if the empiricel Bayes
_procedure is really a Bayes procedure {Jith vreepect to some distribution
Gn’ then by Corollary 2.9 of Chapter II, the empirical Bayes procedure
for selecting a subset is given by the empirical Bayes procedure for
selecting the "best”; provided of course the conditions of Corollary
2.9 are satisfied. Hence under those condisions, the procedures derived

in Chapters III and IV for selecting the "best" are also Bayes and
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empirical Bayes for selecting a subset; i.e. only ‘one population is selected

even in the subset formulation.

B. Main Theorem

We now proceed with the main theorem of this chapter and also Chapter
I,

‘Theorem 3.1l: Let Xl, X2,... be independent random vectors; }_c having

density f(g ) and consisting of k-componenhs which ere independent
random variables., Let G be a cumlative distribution function on@

Suppose G is a function of xl’ Xoseeesr Xy X  such that

- P{ lim G, (8) = a(8), for every continuity point 9 of G" = 1; wvhere G
n [}

{s a k-dimensional cumlative distribution function on ©F and does not
depend upon the X's, and the probability P is taken with respect to
Xys Xpreee o Let the 1oé$ function L(ai, g) and densities f(xle i)' be
such that L(a s e)f(_L) is bounded and continuous in 9§ <for every

a; ¢ A and x e x. Let L(g) = max(L(ai, e) 8 € A}. Then {t 1 is
Gy

asymptotically optimal with respect to G if I L(g) ac(s) < «.
k
| @
Proof: We first prove the following lemma.

‘lemma 3.2: Under the hypotheses of Theorem 3.1,

P{ lim an(tG ) X) = ch(tG, x)} = 1; where the function
n o n

o is defined in (1.4).
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Proof: (i) Since L(ai, _e_)f(;_:‘_g) is bounded and continuous in § for
every a, € A and x e ¥, the Heily Bray Theorem can be applied to
% (t, x) to obtain:
n .

(3.2.1)  lm g, (%, x) = g4(t, Xx) for any decision procedure t.
n-so n -

By hypothesis in the theorem above, P{ lim Gn(g) = 6(g)} = 1, and hence
n—po

P{ lim g (t, x) = ch(t, _i_c)} =1, That is, there exists a set B¢ ¥
n~»® “n '

with P{B} = 1 and such that s (t, x) converges to ch(t, x) for each
n v .. '

element in B. (Note: an element in B is just one possible observation

of the infinite sequence _.3_’.1, 52,. .+« Tfor which the convergence above

holds.)
(i) Now t, denotes the Bayes procedure with respect to G
n . '
and hence is considered a function of x,, X, ... X, and x. So for

a given sequence Xys cees Xpo tG is a decision procedure mapping ¥
n

to A. Further %, is a Bayes Procedure with respect to G and is a

G
function of x only. By definition of a Bayes procedure we have:

(3.2.2) %ulter ) = gt » x) and
0g (tg » 2) < g (tg )
A Y

for xeyx. Let ¥y be any element of B and let | e > 0. Then using

(3.2.1) we obtain:

(3.2.3) chn(tG» x) < ¢G(th x) + 3 and
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€
o, (t, » x) < o, (t, , x) + 3 for
G Gn Gn Gn 2

n > Ne(gc_, y) where

Ne(?_gﬁ y) = max Né 1(5’ ¥)s
1<i<k 7

N, 1(5, y) being a number such n > N, i(-’-{-’ y) dimplies
’ ’
(a., x) - 0 (2,5 %) < %
ST A

(Note: the decision procedure tG must always select one
n v

of the "k" possible actions s 8 50005 & foOr any n.)

%10 %

We now return to the proof of the theorem. . We want to show that:

(3.3.1) iim R{(t, , Q) = R(tG, ¢).
n -4y © Gn

Now

(3.3.2) R(tG , G) = [ E\'_q;G(tG , x)]dx, E being taken with respect
n n
' p

to ‘}"Cl’.." _x_n, and

(3.3.3)  Rltg G) = [ ogltg x)ax by definition.
X

Thus, if E[ch(tG » Xx)] is bounded by an integrable function on ¥
n

and E[ch(tG s X)] *?"‘PG(tG’ x), then (3.3.1) is a result of the
n ,

Dominated Convergence Theorem. (See Loeve [23], ». 152)., It suffices

then to show that these two conditions are satisfied.

Let q(x) denote L L(e)f(x 9)aG(6); then we have
) £
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(3.4) ch(tG s X) S coG(_Js) for every x € ¥ end for every
n _

n, Also

(3.5) [ agladex = jk o) { [ txjoax acte)
p S

X

= | 1(e)ac(e) <= vy hypothesis.
X

(Recall the integrability’ assumption made earlier which allows the change

of order of integration in (3.5).)

Now

(3.6)  0< Elgylt, » x)] < Elgg ®)] = oglz) <=
n

using (3.4), =and noting that the expectation is taken with
respect to the random vectors X;, Xjse.«» X, and that og(x)
is a constant with respect to these random vectors. Thus (3.6)
and (3.5) give the boundedness condition on E[ch(th, x)].

Also for a fixed x ¢ ¥, we can see from (3.4) that

ch(tG s X) is bounded by an integrable function (1.e. &
n
. a.e.
constant); and from Lemma 3.2 <pG(th, x) —> q;G(tG, x).

Hence we may reapply the Dominated Convérgence Theorem to give:

(3.7) 1lim E[(PG(T‘G s X)] = cpé(tG, x), for each x € % .
n

1 =D

This is the second requirement stated above and completes the

proof of the theorem.
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C. Remarks on Theorem 3.1 ,
(1) If r observations are taken from each population for each vector X ,.
then the same proof holds with £(x | 8) replaced by f@rj @) and x

replaced by Xr .

(2) The requirement that L(a,, 8)£(x}8) be bounded and contimuous in §
can be weakened to that which is necessary to allow application of the Helly -

Bray. Theoren.

(3) This theorem can be obtained indirectly from Robbins [30], however
the sbove statément and proof is more directly related to the problem at

hand.

(L) AS mentioned earlier, finding estimates G is the problem., We will
ea.se"bhis difficulty somewhat by assuming G to be a member of some
parametric family ‘G with parameter A. Then the theorem suggests the
following procedure. (i) For specified 'E, find the Bayes procedure t’G
as a function of the cbservation x and the parameter X} of G; say
to(x) = b(x, 2). (ii) Verify the hypotheses; mamely, that

L(ay, g)f@'g) is bounded and comtimous in 8 for each -x and for any
e, in A, and that jk 1(e)ac(e) < » where L(g) = mex  Lla,, 8).

* 1<i<k

(1i1) Theri, using the prior observations 2:-1""’51;1’ find -an estimate

}_n of A such that G, converges to G with probability one. If this

can be done direct application of the theorem implies t, (x) = n(x, ln)- is
n

empirical Bayes with respect to G in ?‘:

The remainder of the chapter will be concerned with finding the

function h(x, A) for specific situations; whereas Chapter IV will be
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concerned with verifying the hypotheses and finding A, (and hence t, )

n
for these situations covered in Chapter III.

D. Bayes Procedures for Selecting the "Best"

Each of the k populations has an associated random variable X 3
with density f(x\e J) where ej is an unknown parameter and Xi s X 3 are
independent, i # j. But an a priori distribution G, of each 8, exists
and is specified by a given parameter A 3¢ (lj itself may be a veetor.)
Suppose "r'" observations (r =1, 2,...) are taken on each xj. Denote by
_}_(* the random matrix (xl*, cors X;) and by x*, an observation of X

where x* is an r-dimensional column vector representing the "pt

J
observations on Xj. Then the quantity f(;,g) = "3:1; f(xj| ej) in (1.4)

. _ j=k | _ g (s)
becomes f(_)g*i 8) = a1 f(xj*l ej) .where f(x:’j"l ej) uyie f(xJ. ‘ ej),
X j(,e, ) being the ",eth" observation on XJ. Thus from (1.4) we have

(3.8) oyt x*) = jk L(t(x¥), 8)2(x*{@)ac(e), and

(3.9) oglays x¥) = jk L(a; e)f(x*|g)ac(g), for

ai e Al.
Then from (1.6) we see that a decision procedure "g"  which minimizes

the quantity (a,, x¥) in (3.9) overi=1,2, ..., k 1is called a
tPG i —

Bayes decision procedure (denoted by tG) with respect to the a priori

distribution G = -rr'J.fk G..
=1 3
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As indicated in Chapter II (2.2), the linear loss function

(3.10) L(ai,_g) = e[k] -6, fore e A, (1 = 1,2,...k)

will be used both in this chapter and Chapter IV. For this loss function

we see that for each a, in Al’ (3.9) becomes

(3.11) aglags ) = [ j e[k]f(xﬂe)de(_)- j ef(g_c*|e)dG(e)],

and this quantity is minimized over "i" when the second integral is maximum
since the first integral is independent of "i". Thus the Bayes procedure

is defined by:

(3.12) tcﬁz*) = 8y where j is any integer 1,..., k such that

(3.13) X 6 f(x*‘ e)as(e) -mex { I 0,2(x¥ e)dG(e)}

That is, the Bayes procedure Sélects that population with largest
jk eif(g_cl‘_e_)de(g), i=1,2, ..., ke

Thus it remains to evaluate this integral (3.13) for various cases

and obtain t., as an explicit function of x* and the parameter ).

G
This will be done for the following cases: (1) Normal-normal (2) Normal-
eniform (3) Binomial-beta (4) Poisson-geamme (The first distribution
referring to fgx?ej); the second to Gj) A eoncluding remark is made

regarding the general case.:

3,14 Normal-Normal: ILet f(xlei) be a normal density with mean 0,

and variance c?, and let Gi be the cumlative distribution function

for a normal density g.(8) with mean ), and variance B2. Now we
i i i



want to compute the integral given in (3.13). First observe that

(3.14.1) Ik eif(_:_:_*‘ g)ag(e) =

{ L eif(xg{]ei)dei(e)} ni‘j{ { L f(xj*‘é j)dGJ(O)}
3#

Then looking at the first integral on the right hand gide of (3.1k.1),

we have

-] -4

(3.14.2) f 8 f(xﬂei)dGi(e) =I 0 f(x‘;‘ei)gi(e)de

o

={ o gi(e|xg)fsi(x§)de

where
(3.14.3) £ (c¥) = j £(x#|e;)a0(6) ena
i -
£(xte, ), ()
(3.14.4) 'gi(e|x'!1(') = )
Gi i

For the normal case being discussed

£(x#fe,) = o f(ng@.)lei) =

Hp=1
ZZ:J: ("y) - 91)2}

|-

(2no§) -_r2_ exp {-

(DY

2o

(3.14.5) £(x¥ ¥0,) =

' (2110?)

ol

exp{ - —% [rSi + r(x, - 91)2]}
204

35



36

with
2:“ (

2) _ =42
e Gy - )T end

- 1 A=r (1)
(3.14.7)  x, =3 Zz=1 X3 .

2 1.
(3.14.6) 5] =%

thy thy

(Note: xgz) is the "2"P" observation from the "i" " population.)

Putting (3.14.5) into (3.14.3) we obtain

Y = S - :
(3.04.8) £, (1) = (o) 2 o, 28I

1

I - [ rs + r(x - ei)z _ (o, - hi)a ] ).

2
2By
Then
.2 S o rs;
(.14.9) £ ) =fem) F ooy FB em-—3) X

i
[

| e - %(i -91)2 exp-‘l‘(ei”hi)2 ael .

-] /r Bi

One can see that the last quantity in brackets on the right side

of (3.14.8) is

2
(3.14.10) {-— 2 exp { -3 21 ; } )
+ B
Gi rt Sl +Bi
r

- X - X + 1
(2'1,) 2 oi 2
(3.2.21) 2, (8 = { —5— H
h o‘i + I‘Bi



rs? r(x, = A %

exp{""? - —% 12]}'

z(cri + rBi

Observe further that in (3.14.4) the expression

I . S
(3.14.12) £(x¥|s,)g;(8) = (2n) 2 o, 25;
2 2 2
rsy r(x - i) (91 - 11)
exp (- —3 - 2“’ 2 .
Zai 201 231

Now putting (3.1%4.12) and (3.1k.11) into (3.14.4) we obtain

(.1.13) g (o]x) = T (any3e2 + D)2 o0 )'1][

2 2
{ +..!'Bi" 5. - 1'8 x + O'i i }]
exp 2 2 i°- +rB
. ci i ! -
vhich is the normsal density with mean
T rBf 1*°§"1
(3.14.14) j o g, (olxt)ap ' et dd
~1 i
Therefore (3.14.2) can be written as
= -—-————————" %
(3.14.15) L o, £(x¥{o,)dc, (o) x  £g, (x¥)
i . .
and thus the desired evaluation of (3.1k. 1) is given by:
2 -
r8< x, + o l
J1h, i “i i
(3.14.16) i“ o, (x¥ _g_)dG(e) { > } £,(x*)
oy * T8
where
(3.14.17) £.(x¢) = WTF £, (x%)
e G- j=1 GJ J

and f, is given by (3.14.3). Note that in (3.14.16) the term f,(x¥)
3
is independent of "i" and hence the largest of the integrals over

37
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i=1,2, ..., k is determined by the largest of the terms in parentheses

in (3.14.16). The following theorem is now immediate.

Theorém 3.14: From each of k-populations let r independent
observations be téken on a random variable which is normally distributed
5 and variance oi . If © i is distributed normally with
meaq A " and variance B? s, then the Bayes proceduz_‘e for selecting the

with mean ©

"best" population (i.e. the population with largest ei) under the linear

loss function (3.10) is given by:

to(x*) = ay where j is any integer 1, 2, ..s5 k such that

2 - 2, 2 - 2
T + O\, : : T . +o, A
_Eig 57 %% = max { B:l.ale. 12 i
O3 o+ re;j 1<i<k ?i + B
where x, is the mean of the r observations from the 3tB population,

i
i=l’ 2’ L ] k; .

Proof: The proof is immediate from the results obtained above in
(3.14.16) coupled with (3.12) and (3.13).

Corollary 3.15: let the conditions of Theorem 3.14 hold and in addition

assume o? = 02 and Bi = og fo_: alli=1l, 2, ..., k. Then the Bayes

procedure for selecting the "best" is:

tG(§*) =a, where "5" ig any integer 1, 2, ..., k such that

- 1, 0 \2 : - l ,0 42
x, + =(=)° A, = max x, += (=) A, -
J r' o, J"l__i_<_k { i r o, 1}

Remark: The procedure given in Corollary 3.15 is the procedure used by

Dunnett [8]. A statement without proof is made therein that the above
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procedure is Bayes.

3.16 Sufficiency: It may have occured to the reader that "sufficient"
statistics may be useful to simplify the calculations above. Sufficiency
here will be taken in terms of the factorization criterion in which we will
say: yj =y, (xg) is _slz_fficieét for f(x'!a"l ej) if

16,1 T(x*16.) = hiy.l6 x%
(3.26.1) (x*|0,) = hly,|e,)pGxt)
where h depends upon the observations only through yj and p does not

involve the parameter © 3 The following lemma gives the expected result.

Lemma 3.16.2 (Sufficiency Lemma): Suppose f(x§|aj) admits a sufficient

statistic vy = yj-(xg') for j=1,2, ooy k. Then

if and only if

j‘k th(g\_g)dG(g) =l ?;; < Ik ;) ih(x'g)d(}(e)

ke
where - h(gle) = Hg.=l h(yjle.j).

Proof: TFrom the definition of f(z*l 8) and (3.16.1) we have.

(3.16.3) (x4 8) = rtg_:li £(xsle,) =

R CACREC {32 oeen} {nd2 niryfo)} =

.

p(x*) n(yle)
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and p(x*) 4is independent of § and "i". Hence using (3.16.3) we see
that

:

) .{ Ik.ei fcﬁ*lﬁ)dG(g)}"=

=
LA

[WN
IA

1<1<

m, (e | spaome)

= p(x¥) 1< r:a;c . { jk 0 ih(;,:|g)da(_t_a_)}

and the proof is complete.

Remark: One can see the applicstion of Lemma 3.16.2 to the case just
considered by looking ét'(3;1h.5). It is clear that ¥y = ij is a

sufficient statistic for f(xg'ej)' when c?'s are known; and

(3.16.%) h(yjlej) = exp[- =5 (v; - 93)2]

J

Using the results of the lemma and h(xl_g) in place of f(ﬂ_e_)
simplifies the calculations made in deriving Theorem 3.1l4. These
calculations vwere made for illustrative purposes but in the following
cases, the Sufficiency Lemma will be used when applicable in deriving the

Bayes procedures.

3.17 Normen-uniform: Iet f(x,ej) be a normal density with mean
ej and variance o? s &and let Gj be the cumulative distribution
function for a uniform density g(6; AJ) on (hj o R dj)‘ We

want to compute the integral in (3,13) which can be written as (3.14.1);

but since ¥y = x. is a sufficient statistie for f(xglej) when o?

J
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is known, we can apply Lemma 3.16.2 and replace f(xg‘ej) with h(yj‘ej)

given in (3.16.4). Then (3.14.1) Dbecomes

(3.17.1) :jk-ei n(y|a)ac(e) = {]e h(yi1ei)dai(e)} {

b ] h(yﬂe Ja (e)]}

Ji‘l
and
(3.17.2) - j eih(yi|ei)dGi(9)- =
' A, + d
1 t4 i r - 12
= 6 exp { -——5 (6-%x/)° de
I N { 207 o
1 1 i
%, +4d ’ ' '
B W X (9 - %.)° -
T 24 j;: . e"p{ o2 (- xi).} ® -
i~ % i
{Zdr exp"”‘(e'x)f\
i =2y -4
-{%] h(yi‘ei)dGi(e)} -
52 0 =2y +d
i 2
{2dir exp = (e-x)}\
| =1

Using this expression in’(3Ql7.l), we obtain

(3.17.3) [ e, nlzje)es(e) =
k



-
es}, + 4

oy i
"y o (9"‘)]\
{%_ 24 A+d[ "? i-dl}hgh
B[, =l
‘where
(3.17.4) -thz> - ng:i { h(yj‘ed)de(e). and is

independent of "i". Let «(u) the standard normal density function

and &(u) the standard normel cumulative distribution function. Then

(3.17.5) jk o;h(y|elac(e) =

For convenience let U, = U(ii, Ois Ty Ay di) denote the term in braces
in (3.17.5). As noted in (3.17.4) h.(y) is independent of "i", hence
the largest of the U;'s (i =1, 2, ..., k) determines the Bayes procedure.

Thus we have proved:

Theorem 3.15; From each of k-populations,let r iﬁdependent observations

be taken on a random variable which is normally distributed with mean ei
and varience c?r. It ei distributéd uniformly over the interval

(hi TR di)’ then the Bayes procedure for selecting the "best"
population (i;e. the population with the largest Gi) under the linear
loss function (3.10) is given by: tG(g*) =8y where J is any integer

1, 2, ...s k such that [Ui}, where U, is defined above.

J 1<1<x
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Proof: The proof is immediate from the results (3.17.1) end (3.17.5),

and recalling that (3.12) and (3.13) define a Bayes procedure.

Remark: The above theorem would be very useful in the situation in -
which the only prior information available is ‘a bound on the parametér’
space. It would be interesting to investigate the performanée of fhe.
above decision procedure when in fact the a 2;3__; distribution is some-
thing other than uniform, Such an investigation was not performed at

this time.
) o
3.18 Binomial-beta: Let £(x|8,) = (xj)eg(l - ej)“j x

the binomial distribution with u, trials, x successes, and o, the

J

probability of a success on a single trigl. Iet G, be the cumulative

J Xj-l _vJ-l
distribution function for a beta density 35(9) cje (1-6)

That is; g "has a beta'distribution on (O, 1) with parameters vj and

.
kj. Even thoudh a sufflclent statistlc exists for f(x*'e ) the compu-

tations are not simplified; so Lemma 3.16.2 is not used here, For this

case
| s -8

(3.18.1)  £lx#ls,) = BT £(x (ﬂ);e ) =ver 1(1- o, )ml 4

i i f=1

p=r O =1 : :
where Vi = HE_l. %z)v_ and S = . Putting

‘ -xi vl =1
(3.18.1) into (3.14.3) we obtain
(3.18.2) £, () =

1
1 S +h -1 Lm Sty - -l
j V.c, © 0 (1-9) as,



Then using the identity:

1 : -
(3.8.3) [ o} - p)°ep - L(a)l(®) , where
0 I'(a + b)

(o]
(3.18.4) r(a) = j £21et dt, the gamma function,
0

in (3.18.2) yields:

I‘(Si + hi)r(vi +ru, - 8 - ki)

.18. £, (x¥) =7V.c,
(3:18:5) 1, () = ey Ty

Now with (3.18.1) and the beta density for f in (3.14.2)

we have

1
(3.18.6) | o, r(xtle;)ac,(e) =
0
1 s,
| Io 9 v,6 X1 - o)

T ¢ ) i
Using (3.18.3) in (3.18.6), we have
(3.18.7) j 0, £(x¥{e, Jae, (8) =

1“(s:.L Ayt l)F(vi +ru; - 8, - xi)

Vici
F(vi>+ ru, + 1)

For the gemma function T'(a + 1) = al'(a), hence (3.18.7) Dbecomes

L

ru, - S, A, - 1 v, = A, = 1
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S, + A\,

(3.18.8) X 0, f(xfle;)dGi(e) e i 3

—————mae— . ¥
v, * ru, e &9
1 1 1

where fo (x?) is given by (3.18.5). Therefore putting (3.18.8)

1
into (3.14.1) we obtain:

Sy + 2y
(3.18.9) Ik e, £(x*|9)ac(e) = :Efzr;ﬁz } fG(g*) where
- i=k \ -
(3,18.10) ngg*) = gj=l ij(x§) =
J=
o f f(x§|aj)dcj(e) .

Since fG(g*) is independent of "i" the Bayes procedure is determined

S. + A,
i

by the largest of the terms I r . Hence the following theorem
- i i '
has been proved.

Theorem 3.18: From each of k-populations let r independent observations

be taken on a binomial random variable with probability of success ei
and uy the number of trials. If ei has a beta distribution on

(0, 1) with parameters vy and li, then the Bayes procedure for
selecting the "best" population (i.e. the population with the largest

ei) under the linear loss function (3.10) is given by:

tG(g*) = ay where j is any integer 1, 2, ..., k such that

Sj + A, Si + li
v. + . max { v, + ru. } » Wwhere
J 1<i<k i i
S (2)
_ 2
5 = ji Xy .
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Proof: The result obtained above (3.18.9) wused in the definition of a

Bayes procedure in (3.12) and (3.13) completes the proof.

3.19 Poisson-Gamma: ILet f(xleJ) be a Poisson distribution with
parameter ej > 0, and GJ(B) be the cumlative distribution function

A A, -1 - a,p

for a gamma density gj(e) = [F(xj)]-l 8 J ¢ J e 3°  in which

aj and hj are non-negative parameters. FPFollowing the procedure used

in the previous cases we write:

(3.19.1) Ii: o e(x¥@)acte) = { [ o,70x|e,)ac (o) }{

w2 [ elaie,dac,(0) |
4

Then we compute

(3.19.2) ij(xg) = I £(xlo,)ac, (o) = j (T’z_1 (xgz){ej))dGJ(e) =

©

: - A A. -1 -a.b

[ c.e-reerxj [F(h.)]-l a, d g9 e I ap

- d dJd J

0
using f and Gj as given above and letting

(f:) "l THyett . . .

(3.19.3) ey [-”_1 5 1 ("I'" indicates the gamma function
as in (3.18.4).) Thus, simplifying (3.19.2) yields
A r(ri. + xd)

a
J rx, + k
(r + 8 ) d

(3.19.8) £, () = oyfr 17
J
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Next, we compute

(3.19.5) f o, f(x§0ei)dGi(e) =

. -r0 T, g A M-l el
j Bee o I e Yo e a0 =
0

A, D(rx, + A, +1)
-1 i i i
ci[F(hi)] a;

TX.+ A, + 1
(I‘ + a‘i) 1 1

Using the property of the gamma function as in (3.18.8), and (3.19.4)

in (3.19.5) gives

. rii + Ay
x#{9 (g) = x¥) .
(3.20.6) [ o,2(xt|s;}de;(0) = — o, )

Then using (3.19.6 and (3.19.2) in (3.19.1), we have

. X, + Ay
G [ o seHeas(e) - {7
where
T =
(3.19.8) 2% = W g (et

The following theorem can now be proved.

Theorem 3.19: From each of k-populations let r indpendent observations

be taken on a Poisson random variable with parameter 6. (i = 1,2,..., k).
It ei has a gamma distribution with parameters ay and li’ then
the Bayes procedure for selecting the "pest" (i.e. the population with

the largest ei) under the linear loss function (3.10) is given by:
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t ( x*) = 8, where j is any integer 1, 2,..., k such that

X, + \. X, + A
S S E {.__1_____1.} .
r~a 1<i<k r+ay

Proof: The proof follows immediately from the result (3.19.7) above

and the definition of a Bayes procedure given in (3.12) and (3.13).

3.20 General case: The preceeding cases indicate that a more
general result is ppssible. For suppose that Gi possesses a density
funetion gi(O). Then as in section 3,1k using (3.14.1), (3.14.2) and
(3.14.4). (assuming of eccurse f is such that (3.14.4) is meaningful),

we can write:

(3.20.1) j 3 f\yxln\du 8) =
k

(1 o sominge } (8 o) -

[ 0 ao)xt) ae} £,x0) = Hejxs] . £,9 ,
in which we have set

(3.20.2)
E[e\x§] = j 0 g(G‘xg)de.

The quantity E[elxi} is called the a posteriori mean for the ith

population, i =1, 2,..., k. Then from (3.12) and (3.13) it is seen
that the largest a posteriori mean defines the Bayes procedure with

respect to G. This of course is intuitively reasonable since in general
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estimation theory, the Bayes estimate is the a posteriori mean. (e.g.
under squared error loss, if “a" is a parameter of a distribution for
an observable random variable X, then the Bayes estimate t(x) of “a”
js obtained by minimizing the overall expected loss, E[t(x) - 3)2].
But this quantity is minimized by taking t(x) = Ela|x], which is the

distribution is known.) Thus *he- general theorem.is:

Theorem 3.20: From each of k-populations let r independent observations
be taken on a random variable which has a density function f(x‘@i),

(i =1,2, ..., k). If 9; 1is distributed according to the density
gi(e), then the Bayes procedure for selegting the "best" (i.e. the

population with larzest 2.) under the linear loss function (3.10) is

E
e

given by

tG(E*) = ay where j is any integer X, 2, ..., k such that

Efo|x¥) =  max {E[e|x¥]}, where Ble|x¥] is
J <i<k 1 1

- —

the a posteriori mean of the ith population and is given by (3.20.2).

Froof: Using the conclusion in (3.20.1) and the definition of the

Bayes given in (3.12) and (3.13), the proof is immediate.

Remark: If f(x?‘ej) admits a sufficient statistic yj in the sense
of (3.16.1) then by the Sufficiency Lemma (3.16.2, E[elx§] in the
above theorem can be replaced by E[G‘yj] and this often will reduce

the computations involved.
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CHAPTER IV
PARAMETRIC-CASE-EMPIRICAL BAYES
PROCEDURES FOR SELECTING THE BEST

A, Introduction

In this chapter we are continuing the investigation started in
Chapter III into the problem of selecting the "best" of kepopulations;

and in particular we want to derive empirical Bayes procedures that will

accomplish this. The notation and background here is the same as that
given in Chapter III and will not be repeated here; particular reference
should be made to the Introduction and Part C, (4), of that chapter.
Thus for eacﬁ of k-populations there exists an observable random variable
X, with distribution f(x‘BJ) depending upon a parameter ej which in

J
turn is assumed to have an a priori distribution Gj’ (3 =1, 25000, k).

G = ngi Gj is then an g priori distribution on the parameter space Gbk;

and this product is always intended when referring to G. If G is
specified completely, they the Bayes procedure for selecting the "best"
under the linear loss function (3.10) can be obtained from Theorem 3.20
depending of course upon whether or not the a posteriori mean can be
computed. -However, if only the existence of G 1is assumed, the clearly
the Bayes procedure is not available to us, and hence cther "optimal"

decision procedures must be sought. One such "optimal" decision procedure

is the so called empirical Bayes procedure and was first suggested by
Robbins [28] (For a general decision theoretic discussion of empirical
Bayes procedures, see Robbins [30].) 1In this investigation we are

interested irg partieular application of the empirical Bayes approach to

decision theory. So, what is said here will be specifically related to

kS
Y%
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the problem of selecting the "best” of k-populaticns.

The idea then of empirical Bayes related to this problem is first

of all to assume only the existence of an a priori distribution G on
the parameter space@jk. Thus the Bayes procedure is not available;

but suppose independent observations (5*1, gl), (53, gz), cees Qg*n, gn)
on a random varigble X are available with gi's all being drawn from
the same a priori distribution G. (Note: +the "%*" on each §§'indic§tes
that "r" observations from each population have been taken Ifor each
i=1l, 2,..., n,) The "prior observations" contain information about G
and thus if a.decisiqn procedure t =~ based upoﬁ z#i5 XEseres g: could
be found such that R(tn, G) converges to R(tG, G), (i.e. the Bayes risk
of tn converges to the Bayes risk of the Bayes procedure 'tG which we

o ~
would use if we knew G at the start), for any G in some femily G,

then the procedure b, is asyriptotically optimsl “to -tG and is called

an empirical Bayes procedure with respeet to the unknewn G, Now .

Theorem 3.1 gives a method for finding empiriqal Bayes procedures for
this problem; Namely, if a "suitable" estimate Gn based upon
3{,'33,..., E*h can be found, then the Bayes procedure with respect to
Gn is empirical Bayes with respeet to G provided the other gonditions

of the theorem'are‘satisfied. To find Gh’ we have made_an additional
restriction on G in Chapters III and IV; thal is, we assume G to

be a member of some parametric family ¥ with parameter A = (hl,...,hk).
(Chapter V will be ccncerned with this same problem, only without this
restriction on G.) Suppose now an estimate knj depending upon the
prior observations from the jth population of lj can be found such that
Ghj converges to Gj with probability one, probability beipg taken

with respect to the random variables le, ij,... Then by the lemmas
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j=) )
below, G = P{L{ G,y converges to G = rgf‘; G, with probability

one, probability here being the product of the above probabilities.

~ .
Furthermore Gn,n 1§ also a member of G and if the Bayes procedure
with respect to any G in 15 is available, then in particular the
Bayes procedure with respect to Gn,n is available and thus an emglrlcal
Bayes procedure with respect to G is obtained via Theorem 3.l. But
Chapter IIl has dealt with the problem of Bayes procedures for various

classes E Hence, using the notation and ideas established in Chapter 111,

it will suffice to:

(4.1)  Verify the hypotheses of Theorem 3.1; namely that L(ai, 9)f(x|e)
is bounded and continuous in ) for each x and any ai in Al’ and

that I 1(6)aG(e) <oo; and
k ,

® . S
(4.2) TFind an estimate an of lj such that Ghj converges to
Gﬁ with probability one for j =1, 2,..., k; thelgstimatgn xnj - being

a function of the prior observations from the Jth population.

Hence, after satisfying (4.1) and (4.2) ebove, direct application

of Theorem 3.1 will yield empiricai Bayes procedures for selecting the

"best" in each situation discussed in Chapter III; i.e. 3.1k, 3.17,

3.18, and 3.19. We proceed with two preliminary lemmas which prove that
K
=

J=k G . converges to G = Hqg
nj J

(k.2) implies G = ey y G with

probability one., After the lemmas a remark is made relative to the second

requirement in (4.1), and then the specific classes ?; treated in

Chapter III are discussed with the corresponding empirical Bayés

procedures being obtained thereby.
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E. Preliminary lemmas

Lemma 4.3: ILet G, be a one dimensional curmlative distribution

J

function and suppose Ghj (n =1, 2,...) is a sequence of cumulative

distribution funetions converging to Gﬂ at the points of continuity

i = = 'j=k '
of Gj’ (3 =1, 2y0..5 k). Then Gn,n nj=l an converges to
G = Hj=k Gj at the points of continuity of G.

J=1
Proof: Iet § = (91""’ ek)- be a point of continuity of G. If

is a point of continuity of GJ for

J

- J=k J=k
=1, 24..49 k and thus nj=l an — ngl Gn at‘ 9. Suppose then

G(8) # O then clearly @

that G(9) = O. Then Gj(ej) =0 for j e K, a subset of
{1, 2,..., k}. Certainly K is non-empty, otherwise G(8) # 0; and
for some J in X, ej mst be a point of continuity of Gj‘ For

otherwise 0 cannot be a point of continmuity of G. Thus

Gnd (ej)-»ej (93._) .= 0 which gives Gn,n —» G at § and the p;f?of is
complete.
Lemma L.b: Let zi, 32 ... be independent k-dimensional random vector

consisting of k components which are independent random variables.

Let Ghj be a cumulative distribution functinn on and suppose an
is a function of le, ij,..., an
probability one to Gj’ a cumlative distribution function on s

such that an converges with

(3 =1, 25004, k); probability being taken with respect to the random

oy J=k . .
X . = T s
sy X Then Gﬂ’ GnJ converges with

variables XlJ 032" n )

probability one to G = n:?:l‘ G , probability here being the product

of the above probabilities.



Proof: Let Bj = {y = (xlj, xzj,...): an-¢ Gj at y}. |Then

P{Bj} =1 by hypothesis, (j =1, 2, ..., k). Then by Lemma 4.3
= =k =k o - o=k

qn,n i =1 GhJ-—’ ¢ =1 j=1 j for yeB= HJ =1 BJ s &and

hence. P{B} = ﬂg i E{Bj} = 1 which completes the proof.

Now as indicated in (4.2) if an estimate Ay OF Ay the parameter
of Gj’ is available with the property that an, the cumulative
distribution-function corresponding to xnj, converges to Gj with
probability one, then by Lemma L.k G"’n = ng:?-an converges to
G = 1‘[J J with probability one. Examples of such estimates- lnj
will be given in Part D for the various classes 'E discussed in
Chapter III. Note that Lemma 4,4 agsumes r =1 (i.e. only one observation
on the random variable Xij)’ but it can be extended to the case in |

which r is'any;positive,integer.-

C. Discussion of (4.1)

To verify the hypotheses of Theorem 3.1 two quantities must be
considered. They_ére given in (4.1). The boundedness and continuity
requirement on the function L(ay, 8) £(x}g) will be discussed in each
example in Part D. Now we will show what assumptions are necessary in
order that f L(g)dG(9) < ». As stated in Theorem 3.1

e o . .
®
(L.5) - n(e) = max{L(ai, 8): a; e Al} ,

and the loss function being used is the linear loss function (3.10).

Thus

4.6 = €r.~= 9. 9
(.6) éfk 1(8)ac(e) @jk L 2% g o, } ac(e)



= jk (G[k] - 9[1])dG(§), where

(1}07) . 9‘-1] = min 0. .
Now

o ) N
(%"8) jk (0 p = Opap)ac(®) < u[k 2 D%‘J‘ ac(s)
® ) i

(A

20 1l e

- i=k
PRI

Therefore, using (4.8) in (4.6), gives

(k.9) . Ik- L(e)ac(s) <= if E[|g,|] <= forall i=1,2, ...,k
That is, the condition: I L(g)ac(g) is finite, will be satisfied
k
provided each a Briogi,dé%tribution Gy has finite first absolute moment.
D. Empirical Bayes Procedures
We now turn our attention to the various classes '5 discussed in

Chapter III and derive the corresponding empirical Bayes procedures.

4,10 Normal-normal: Let f(x}ei)_rbe,a normal density with
unknown mean ei and known variance ci, and-let Gi be the cumulative
distribution function for a normal densityv gi(e) with unknown but
finite mean \; and known variance Bi. Note that the finite ) 's

for the normal case implies (4.9) which is one part of (4.1). To check
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the other part of (4.1) we look at:

(4.10.1)  L(a;, 9)£(x*{8Q) (0[11' 3,) ng 1; f(xj*‘ej)

M(e[k]- ei)‘egp {- Zj x.-e. 2 }

where
- E ;rse
(4.10.2) M= HJ (2n0 ) 2 exp ( - -—-l-) which is a constant
J

with respect to ¢ (for fixed x%); ij and s§ given (3.14.7) and
(3.14.6) respectively. From (4.10.1) one-can see that the function
L(a R “)f(x*le) is bounded and contlnuous in § for a given x* and

any a, in Al.v Therefore (4.1) is satisfied.

To £ind an-estimate an of xj as suggested in (4.2) we look at

the prlor observations x¥s 245000, x¥. From (3.12.11) with r equal

=12
one, one see that the random variable Xj has a normal unconditional
density with mean hj and variance og + 6?. Thus the nr prior
independent observations on X:j provided a suitable esfimate of - hj;
namely define . bmwe
Y XnJ b

E1L R

—di=n | A=
| =3 o L e

which is merely the overall average of the nr observations on Xj’
(J =1, 2,..., k). The Strong Law of Lerge Numbers guarantees that

Anj converges to lj almost surely; and thus if we define Ghj by
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G;j with )\, replaced with A nj? we have Gn j converging to G‘1 with

J
probability one which satisfies (4.2). This gives the following theorem.

and known variance

J
a§ s and let e.]' be distributed normally with un};nown but finite_ mean

Theorem %4.10: Let f(xlej) be normal with mean ©

xj and known variance B? « Denote this lattezf cumilative distribution

and define G(9) = Hj k G (6) . Let x*, x¥, ..., x*

function by G XT» X3 x¥

J
3 L] - 3 * Y
be independent prior obssrvations of the random metrix £ and call x*

the present observation of X*. Then the procedure tG (x*) = 8,

0
where “j" is any integer 1, 2,..., k such that
2 - 2= 2- , 2%
25 R B R TRy X oy,
% T P i i
is an Eirical s procedure with respect to G for selécting the "best”

population under the linear loss functimn (3.10); X, ‘being given by
(4.10.3). | o

Proof: By the remarks ahove we see that (4.1) and (4.2) are satisfied

hence Theorem 3.1 can be applied and thus tq s the Bares procedure
. T .

with respect to ,Gn,n is an _e‘rggirlc_a_l_lBay_.;_ procedure. But G-n,n =

_ ﬂg:; nj end each Gn.j is a normal distribution with mean ij and

variance B? . Thus Theorem 3.14 gives the Bayes procedure under these

conditions and t3 is obtained by replacing A 3 with x I’ "This
L 1Y} ) . . )

completes the proof.



»0
h.ll Normale=uniform: Suppose that in 4.10 the a priori distribution

G + di) where A

i

is uniform on (xi TR 1

i is unknown but d. is
, i

a known positive nuvmber, (i = 1, 2,..., k), The same argument as that
used in 4.10 shows that (4.1) is satisfied. To find Apy (using the

prior observations x¥, ..., gg), we compute

At d,
3 , o
(4.11.1) E[Xd] = I J(1/2&5) {_i xf(x‘ej)dx } e
A= d
J 3
At d
J
= (1/2d3) j ! 6de
: Ay dj
8)\50

Hence by the S¢rong lLaw of large Numbers the estimate A\ defined by

nj
(4.10.3), based upon the nr independent observations on Xj, converges

almost to *3’ (3 =1y 25 veay k). Thus an defined by Gj with xj

replaced with ij (see 4.10,3) converges to Gj with probability ane.

We can now prove:

Theorem 4.11: Let the conditions of Theorem 4.10 with the exception that

G'j is a uniform cumlative distribution function on (hj - dj, xj + dj);

Aj unknown but finite and dj

procedure

a known positive number. Then the

(x*) = 2y where "j" is any integer 1, 2,..., k such that
T,0



+ -—-ll = nax
olag) - 8(B;)  of 1sisk Ce)-2e) o

is an empirical Bayes procedure with respect to G for selecting the

"best" population under the linear loss function (3.10); o(x), 2(x)
being the standard normal density and cumulative distribution functions

. l = - i- -
respectively; oy = (r/crja)2 (x'j +'d3 - xj) s Bj = (r/cja)a(x - dj - xj) ,
and ij given by (4.10.3), (j = 1, 25..., k).

Proof: From the remarks of 4.1l we see that (4.1) is satisfied.
Furthermore the work above shows that (4.2) is satisfied. Hence Theorem

3.1 can be applied and thus tG s the Bayes procedure with respect to
* ) ﬂ’n

q" n; and empirical Bayes procedure with respect to G3 and Theorem
3

3.15 gives the Bayes procedure with respect to any uniform cumulative

distribution function. Therefore tG is defined as in Theorem 3.15
TN

with \. replaced by i This completes the proof.

J 3’
4,12 Binomial-beta: The distributions here are as given in 3.16

with ej's unknown, and xd's unknown but finite. Note that the

finiteness of the hj's gives I L(e)ac(e) <= by (4.0), which is one

part of (4.1). For the other part of (4.1) we look at:

(+.12.1) L(ags 0)£(x*Q) = (Bpyy- ©;) ngf{ 2(x¥lo,)

.. IX, - rx
= (opy= &)@ 6, T -0y

oy J)



where

(4.12.2) nj=l EH%Z ( ( z)) ], & constant with respect to 9

for fixed x* , The function in (4.12.1) is continuous in @ and
since @k is bounded, it is also bounded. Thus (h.i) is satisfied.

To find Kn.j (using the prior observations _:g’l*, x"2", cees gr*l'), we

- compute

(4.12.3) E[X ] = E, {E [x = By 1 ea} =u, Ee {e

u, (A./v,
3(s/vy)
As before the Strong Lew of Large Numbers inplies that i;l in (4.10.3)

cohverses almost surely to (ujxj/vj), and since u, and vy are known,

v # 0, )‘nj defined by:

(k.12.4) )‘n,j = (vj/uj) ;;‘j , converges

almost surely to 7\3. . Thus an defined by G,j with hj replaced

given in (4.12.4) converges to G, with probability one.

with A 4

nj

We can now prove:

Theorem 4.12: Let f(xlej) be a binomial distribution,

u u, = %
(xj) ef_,.‘ (1- e:]) J , and 9 3 be distributed according to a beta
-1 e, -1
A vJ j

density, gj(e) = c:]g J (1 - 9) vhere

= r(vj/(r(xj)r(vJ - xj)). et G, denote the curulative distribution

% 3



e

function for gJ and define G = ng:g

*
independent prior observation of the random matrix X and consider x¥

GJ. Iet 5{’ 53,.0., 5: be

to be a present observation of X¥. Then the procedure

t (x*) = 3, where "3" is any integer 1, 2,..., k
Ty

such that

o+ (/e

rae, + v l<i<k ra, + v,

J

is an empitical‘Bayeé procedure with respect to G for selecting the

“pest" population under the linear loss function (3.10); x given in
(4.10.3). |

Proof: The remarks of this section preceeding the theorem show that

(4.1) and (4.2) are satisfied, hence Theorem 3.1 guarantees that

t (the Bayes procedure with respect to Gn n) is empirical Bayes
ﬂ’n 3

with respect to G. But Theorem 3.18 gives the Bayes procedure under

the given hypotheses on f and G; hence tG is obtained therein
myn

by replacing lj with ij . This completes the proof.
4,13 Poisson-garma: Let f(xlej) be a Poisson distribution with
parameter ej > 0 and assume 93 is distributed according to Gj’

the cumulative distribution function for a gamma density

1 A A=l -nﬁe :
gj(e) = TTX‘? o Je J e H hj unknown but finite, dﬁ a
J

known non-negative number, (j = 1, 2, ..+ k). As before the finite



Xj's with (4.9) given the finiteness of I L(g)ac(g). To see the
k

condition on L(ai, _g)f(_:_:*l_@), ve write:

(.13.1)  Llag, ©)2(8) = (opq- 0)) Moy £(xkle,)

J=k ;‘J
(0r31-0,)(M5_7 0,°)

=c
E
(exp z j=1 ej)
where
(4.13.2) c=[ pg_f;_ ey (r§‘”') N0 is a constant with

Oc

respect to & and for fixed x¥*. Thus from (4.13.1) one can observe

that the function L(a;, 8)f(x*|g) is bounded and continuous in 9.
Therefore (L.1) is satisfied.

Now to find km. ,consider the urccriditionsl exgectation:

(%.13.3) E[XJ.] = By {Ex[leej]} = Eé {ed} = (kj/aj) .

Thus as before, by the Strong Law of Large Numbers the rn independent

observations of Xj prbvide the proper estimate of lj’ namely

a.x. given in (4.10.3). Then G ; with A

laced by o.%
%3 j J rep acev yajxj

converges to Gj with probability one and hence (4.,2) is satisfied.

The following theorem can now be proved.



ot

Theorem 4,13: Let f and c.J

Let 5{, 53,..., 5: be independent prior observations of the random

be as given above, and define G = n.Gj.

* * '
matrix X and consider x¥* to be the present observation of X . Then

the procedure

(x*) = a, where "j" is any integer 1, 2, ..., k such that

J

r + oy l<i<k r+a,

is an empirical Bayes procedure with respect to G for selecting the
"best" population under the linear loss function (3.10); ij being

given by (4.10.3).

Proof: The remarks preczeding the theorem show that (4.1) and (4.2)
are satisfied, and hence Theorem 3.1 can be applied to guarantee that

tGﬁ . » the Bayes procedure with respect to Gn,n s is empirical

’

Bayes with respect to G. But Theorem 3.19 gives the Bayes procedures

with respect to the gamma family, hence tG is obtained by replacing
Y

A in the procedure of Theorem 3.19 with &jij and the proof is

complete.

4,14 General case: As indicated in 3.20 the Bayes procedure for
selecting the "best” for a known a priori distribution G is to choose
the population with the largest a posteriori mean, E[eilxgj,

(i =1, 25..0y k). In the situation in which G is unknown but prior
observations 5{, 55,..., 5: are available, an empirical Bayes procedure

is available via Theorem 3.1 provided an estimate Gh (a function of the

prior observations) of G with probability one can be found; namely, the



Bayes procedure with respect to Gh' Therefore the procedure which
selects the largest a posteriori mean En[eilxgj, where En denotes
expectation with respect to Gn’ is Bayes with respect to Gh and
empirical Bayes with respect to G; provided of course all the
conditions of Theorem 3.1 are satisfied., This gives the following
theorem (Note: we draw particular attention to the fact the "*"
indicates r observations are taken from each of k~populations for a

particular value of the parameter 8).

Theorem 4.15: Let f(xlej) be the density of an observable random

varisble X; with parameter O, ¢ @ and such that L(a,, 8)f(x|8)

is bounded and contimuous in §; f£(x|g) = Hg:§ f(xj|ej) and

L(a,, 8) being given by (3.10). ILet Gy be an g priori distribution

on () with finite absolute mean. Suppose prior observations on the

mvam&r}r(H”u,ﬁ)amawuwm;i@.@%ﬁﬁ,

(g s gz),..., (53, gn), with (x*, §) being the present observation.

If a cumulative distribution function G , on ® can be found which
H

is a function of xalej, xgj, erey x;;j (3 =1, 2, «ovy, k) such that

Ghj converges to Gj at the points of continuity of Gj with

probability one, +then the procedure:

G (x*) = a where "j" is any integer 1, 2, ..., k such that
o0

#1 = ¥
E Lo |x¥] e {e o, fx¥1}

is an empirical Bayes procedure with respect to G for selecting the

"best" population.

o4



o

Proof: With Gﬁ n ‘taken as in Lemma 4.4, we see that the conditions

H
of Theorem 3.1 and Theorem 3.20 are satisfied. Since Theorem 3.20

gives the Bayes procedure with respect to an g priori G, th‘g Bayes

procedure with respect to Gﬂ n is given by tG . as above.
! H
Ty
But Theorem 3.1 asserts tG' ‘o be asymtotically optimal to tg
TN

and hence an empirical Bayes procedure with reépect to G. The

proof is thus cdnpiefe.

o1t



CHAPTER V
iNQN-PARAMETRIC CASE - ENMPIRICAL BAYES
PROCEDURES FOR SELECTING THE BESE-
A. Introduction

In this chapter we continue our investigation into the general
problem,ofvselecting,the,"béétf of k-populations.. The work already
done in.Chapters IIT add IV on this. sume :problem has reliad. heavily
upon the assumption thet the a priori distribution G be a member of
some parametric family. However, in many situations this may be an
undesirable restriction. Thus, using the notation and terminology
established in earlier chapters, it is our specific purpose in this

chapter to derive empirical Bayes procedures for selecting the "best"

of k=-populations under as general assumptions as possible on G,
the a priori distributicn, and f(xlej) the density of an observable

random variable Xﬁ N

In the strict sense of the term, the work to follow is not
really "non-parametric" since it is always assumed that the density

f(x|ej) ‘has an "indexing parameter" 6, which is of primary

J
importance; +that is, the "best" population is defined in terms of

8 But what is intended here is a "non-parametric" approach

j .
relative to the distribution G in contrast to the "parametric"
assumption on G made in Chapters III and IV; and it is in this

sense that the term "non~parametric" is used.

The basis of the work done in this chapter is a result due to

Robbins [30], and his proof is included for completeness.



B. HMain Theorem

The notation and definitions below use the same background as
already established in previous material. Before stating the theorem
we introduce the following quantities:

(5.1.1) T = {Gs I : L(ai, 8)ac(s) < = for 8 ¢ Al}.
@k

(5.1.2)  agla;, x) = jk [L(e;» 8) = L(ay, 9)1(x]8)ac(a)

for arbitrary 8y in Al’ (al is chosen for convenience only), and

X in x .

(5‘1‘3) Ai,n('}s) = l’n(Xl, xa’ocs’ xn, X) fOI‘

n=1, 2,0.ey and i = 2, 3,044, k J.S a function of the prior

observations of th‘e random variable _Jg, and x, the present

observation of X.

Theorem 5.1:  Suppose A (x) -—-P—-e b (a » X). for i=1,2,..., k.

Define Al‘ﬁ(gt_) 2 0 and a decision procedure’ tn(g) T by:
’ -

tn(_:g) = 8, whére j 1is any positive integer such that

Aj,n(-’-[)g m1n {Ai,n(}_{)} .

1<i<k

Theh tn is an empirical Bayes i)rocedui'e with respect to any G

Pt

in G.



Proof: We must show that '

(5.1.4) Lm R(t, G) = R(t., G) for Ge G
n -y n G

where tG denotes the Bayes procedure with respect to G, and

recalling from Chapter I that:

(5.1.5)  Rltg ) = | qltg x)axs

X

[ gt x)lax, E being
pid

(5.1.6) R(tn, G)

taken with respsct to the random variable Xl, §2,..., Kn H

and

(5.1.7) gt z) = [ 1(e, )e(x|elac(e) for any
@Dk

decision procedure t. Thus (5.1.4) follows from the Lebesgue

Dominated Convergence Theorem provided:

(5.1.8) lin Egylt,, X)) = @yt 2) for all x, and
n —» o '

(5.1.9) Elgg(t,» x)] <H(x) for all n with

[ Bl < ». Butar
X | |

(5.1.0) g4ty X) Ly ¢ty ) for each x and

4

ogltys X) < = for all n,

s



oY
then (5.1.8) is true. Thus it suffices to show (5.1.9) and

(5.1.10) .

(1) Letx e¢ x . Define

(5.1.11) B = [ n(e)e(x|e)ac(e) with

@k

(5.1.12)  L(p) = max {L{a;, 8): a, e A .

‘Then for G ¢ G we have

| i=k
| fk L{g)ac{e) < Zi=l j'k L(a;, £)aG(g) < = ;

® | ®

and by Fubini's Theorem

(5.2.13) [ Hziax = | ne) { [ £ adex} acte)
X .®k b

| e < =

k

®

Also from (5.1.7) we see that ch(tn, x) < H(x) for all n and

hence Efng(tn, x)] < H(x) for all n. Thus (5.1.9) is satisfied.

(ii) To show (5.1.10) is suffices to prove that ch(tn, X) converges.
in probability to (pG('tG, Xx) since we have shown above that

ch(tn-,- Xx) < o for all n,



Note that from (5.1.2) we can write
(5.1.14) q;G(ai, x) = AG(ai’ x) + (pG(al, x), i=1, 2‘, cees kK &
Let ¢ n be a decision procedure as defined in the theorem. Then
(5.1.15)  aglts x) = Agltge X} = gglty, &) - ogltgs )
which is nén-negative by quinition of tG‘ Thus

(5'1'16) o S AG(t'n’ 2_{) - AG(tG’ _x_> = AG(tn, _JE) -

,on
W) A‘f:-

By o () - 8 n@) + By ) -

n n
n’ G"

AG(tn’ _JS) .

. v-" S - . 3 =
(Note that A_t,n(:" is Ai,n(:g) for some 1 =1y 2, eooy k if &
is any decision procedure teking action in Al.) Tet € > 0., Then

for n sufficiently large, we have

and

IA
o

(5.1.17)  aglt, x) - b (%)
n)
(5.1.18) AtG,n(}_}) - Bgltg x) S €

with probability near one since &, (x) —_—E > p (a,, x)
i,n= G i’ -

for i =1, 2, +sss k. Furthermore, by definition of tn, we have

(5.1.19) Atn’n(_:_c) EtG’n(z) for all n.
Hence using (5.1..7), (5.1.18), wnd (5.1:19) in {5.1.13),

we obtain



(5.1.20) 0<aL(t,, x) - Bltg x) <2

with probability near one for n sufficiently large; and therefore

by (5.1.15) we have the desired result that q,(t s x) ~—L oty %) -
The proof is thus completed.

Remarks: (1) We indicate how the above theorem could be used to
prove Theorem 3.1. If Gn is an estimate of G such that
¢ 2525 g, then A, (x) taken.as A, (a., x) defined in
n i,n*= Gn 17 =
(5.1.2) converges in probability to Aé(ai, x). Then if follows from

Theorem 5.1 that tn’ defined therein, is an empirical Bayes procedure.

Further it can be shown that tn is also Bayes with respect to Gh'
Theorem 3.1 is now an immediate result of Theorem 5.1, However, it
was felt that the proof as given for Theorem 3.l was more directly
related to the problem at hand at that point and was more instructive
relative to the development of later work which was based upon the

theoren.

(2) The above proof is for the case r = 1 but can be extended
for any positive integer r by replacing f(x|g) with £(x¥8) and
x with ¥* .

Theorem 5.1 gives rise to an empirical Bayes procedure for
selecting the "best" of k-populations proveded of course the.

hypotheses of the theorem are satisfied; namely,

(5.2) Ik L(ai, 8)ac(g) <= for g, € A, and
®
(5-3) Ai,n(fﬁ) _‘L—> AG(ai’ Z‘E) for 1 =2, 3, o0y k
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where these terms are defined in (5.1.2) and (5.1.3) respectively.

These two conditions will be discussed below using for the-lass
function the linear loss given in (3.10). This discussion will then
be followed by some specific examples in which the conditions below
are satisfied, In particular we will consider (1) the normal case.

(2) the Poisson, and (3) the class 6 g(x)h(e) .

C. Discussion of the Conditions of Theorem 5.1

5.2 First condition: For any loss function we have
(5.2.1) [ (s, e)acle) < [ n(e)ac(e)
Ji 3

where L(g) is given by (5.1.12). . But for the loss function given

by (3.10) it has already been shown that the integral on the right

in (5.2.1) is finite if the first absolute moment of G, (1 = 1,250005 k)
is finite. (i.e. if the g priori distribution for each population

has finite absolute mean.) Thus we define:

(5.2.2) ‘E ={G: @= ngi Gj and Gj is a cumlative distribution

function on ¢ such that I 2] de(e) < @ for j =1, 2, «ouy K} .

®
Then, if an g priori distribution G on " belongs to G, we

will say (5.2) is satisfied,

5.3 Second condition: In accordance with (5.3) our task is to find
a suitable estimate of AG(ai, x) for i =2, 3, ..., k. We will
now expand (5.3) for the given loss function (3.10) and arrive at
simplier quantities for which we need suitable estimates. Observe

that (5.3) can be written as:



(5.3.1)  nlay =) = Xk [La;s 8) - Llay, 8)1£(x¥|e)ac(e)
@

- j- (e]_ - ei)f(z*lg)dG(e) for the
6Dk

given loss function (3.10) and i = 2, 35...5 ke (Recall that

¢ A, is arbitrary and was chosen as a, merely for convenience. )

% 1
As in (3.14.1) we can write:

.3.2) | sparedc = { [ oreieas et {
0" &

J=k

iy f(x§|ed)dsj(ejj}
@

Let

(5.3.3) vy () = [ o;2(xFlo,)ac;(e;) and
®

(5.3.4) £, (=%) = { £(x¥}e,)ac, (6) .
J ®

Then using (5.3.2), (5.3.3) and (5.3.1) in (5.3.1), we have

(5.3.5)  bglay 5 = {v () 12 ij(xg;)} -

{Yi(X§) Hg:? fq (x§)} )
Jfi

for i = 2, 3, «+ss k. As before let _x_"f, g_r’g",..., g_c'r’i be prior‘ observations

of the random matrix X* . If sequences f ng (x's.f) and Ynj (xg) which



are functions of the prior observations can be found such that
%* * * *
fn;](xj) —2 ij(xj) and Ynj(xj) £ 'Y;](xj) for

j=1, 25.4¢5 k, then

(5.3.6) by 060 = {y G w2 G0} -

* J=k
{Vni (x¥) MWy £ (xa.e)}
I
converges in probability to AG(ai, x*) for i =2, 3,..., k. Thus

(5.3) will be satisfied if the sequences of (5.3.6) can be found.

We will now show that a sequence fnj(xg) can always be found
thus reducing the problem to that of finding a sequence Ynj(x§)

which converges in probability to yj(xg) . Note that due to

independence, (5.3.4) can also be written as:

(2)

) - T e )

(5.3.7) £, () = gg G P

b
3 § J Jd
where

(5.3.8) fG;(xgz)) = X f(x§z)| ej?de(ej) , the marginal density

or x4,
J

Thus we want to estimate this marginal density £ (x) et r
points; namely xgl) ’ x§2) gseed xgr). Since the random

variable X, for each (i = 1, 2,..., n) has the same marginal



density f, (x), we can use the prior observations as well as the

J
present observation to find our estimate. In particular define

(5.3.9) P (xa{‘-Z)) = ((n+ 1)r)t (total mmber of prior

observations from the jth population which are

< xg'a)) 3

that is, the so called empirical cumulative distribution function

for the jth population, Then

(#) , 52/ NOBSYE
G310y £ Wy o m®i TR - Fyly - e )
! nj g 2n-1/5

converges in probability to fG (x§2)) for 4 =1, 25, ceesy T
J

and for J =1, 2, ..., k. (See [31], [32], [29]) Note that

other estimates of the density function could be made. However for
our purposes here, we require only that the estimate be consistent.

Hence

s (2)
(5.3.11)  £,0x%) = W £ Cxg —E ij(fo) ,

for j = 1, 25 eaey k and fnj(x§2)) given by (5.3.10).

Therefore if a sequence ynj(xg) can be found which converges

in probability to Yj(xg) defined in (5.3.3), then by using such

a sequence and fnj(xg) defined in (5.3.11) in the expression

J >0
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(5.3.6), we have that By n(_J_g*) converges in probability to AG(ai’ x)
b

for i = 2, 3,..., k thus satisfying condition (5.3).

Such sequencéds will now be obtained for the specific cases

mentioned earlier.
D. .Empirical Bayes Procedures for Selecting the "Best"

Once the sequence mentioned in 5.3 . can be found, the empirical

 Bayes procedure t, is given by Theorem 5.1 in terms of the
min{Ai’n.(_}_c.):'i =1, 2,.0.5 k}. Observe that from (5.3.10) and (5.3.11), -

fnj(xg):> 0; hence we can write (5.3.6) as:

\ Ynl(xf) Ynl
(5'3013) - Ai’n(lt*) = {W - —'”7';(';(_'7} fﬂn(-’s*) :
" where we have set
- mi=k
(5.3.14) £l = I £ 08 .

Hence from (5.3.13) one can see that:

(5.3.15) by,nE*) = L <m:1:Ln< . d; n&*)  if and only if
(x¥*) x¥
(a6 WL, YD
£ . (x¥) 1<ic<k % (x¥)



T

Therefore we can define tn in Theorem 5.1 as follows?

(5.3.17) , tn(g*) = 8y where j is any integer 1, 25 «ee» k
such that
x¥ (x*
L L
% . ) * ’
fnj(xj) 1<i<k £ (x¥)

5.4, Now in view of 5.2, 5.3 and (5.3.17), it remains only to find
conditions under which sequences yni(xi) converging in probability to

yi(xi) can be¢ obtained for G in T. Once such a sequence is found

an empirical Bayes procedure is given by (5.3.17). Three specific

situations in which such sequences are found will now be given. First,

f(x]ej) is taken to be a normal density; secondly, f(x|ej) is taken

to be a Poisson distribution with parameter 8,3 and thirdly, f(xlej)
is assumed to belong to the class of densitiés expressible as eﬁg(x)h(ej) .

We remark that a general solution to this estimation problem is no

available at this time.

5.5 Normal case: Let f(xlej) be a normal distribution with mean 8,
and variance c? . Let Gj be an 2 pgig_; cumulative distribution
function for ej with finite absolute mean. Then G = ng:i Gj is in

G. We desire a sequence (x¥) converging in probability to ns (x%)
Ynj " i3

given in (5.3.3). To do this, we first observe that the Lemma 3,16.2

can be used in this case since ij is a sufficient gtatistic for



f(xg‘ej). Hence

L
2

(5.5.1) CwEJe,) = (r/emo,)? expl-(r/200) (%, - 6.)°]
Jt73 J J°Ta J

may be used in place of f(xglej) in Theorem 5.1 and in other

pertinent equations. Thus we seek a sequence ynj(ij) converging

in probability to yj(ij) where

(5.5.2) ;&) = | o, njle;lac(e,) .
()]
For this case it can be seen that (5.5.2) gives rise to
’ og
(5.5.3)_ yjiij) = ithﬁ(ij) + ( ;%) héj(ij) , where
(5.5.4) th(?:j) - gh(ijlej)de(ej) and

he, (ij) is the derivative of (5.5.4) with respect to ij . To find
J

an(ij)’ it remains to find gnj(ij) which converges in probability

to hy (ij). Using the sufficient statistic ij will change (5.3.9)
J

and (5.3.10) to

- B -1 ' -, .
(5.5.5) Hnj(xj) = (n+ 1) (total number of kis's which

< ij for i = 1, 25..., n and including the present

—

observation ij),



- -1/5y .. (= -1/5
Hnj(xj +n ) = ﬂnj(ij- n )

2n'l/5

(5.5.6) hnj(xj) =
respectively, where x.,, = L Z (2) 1=1,2 n
’ 13 T =1 1J ’ 3 23000y I
Since G is in G, it can be shown that the derivative of h, (ij),
J
exists in a neighborhood of ij and further using fnj as in (5.5.6),

that the sequence

(5.5.7) gnj(;ca.)

converges in probebility to hj (ij) . (See Robbins [29], p. 204.)
_ G )
Therefore the sequence ynj(xj) converging to Yj(xj) in probability

is given by

(5.5.8) voy &) = EhE) ¢ (03/re ).

This allows us to give an empirical Bayes procedure using (5.3.17)

which becomes:

(5.5.9) tn(ij) = 8 where j is any integer 1, 2,..., k
such that
2 ( 2 -
%.) o; g..(x,)
X, + ( —A ) -—Ji =  max { x, +—= —E&-:E—‘} s
J ( ) 1<i<k*- * T hni(xi)

the functions 81j end h . being given by (5.5.7) and (5.5.6)

respectively.
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This 2stablishes the following theorem.

Theorem 5.5: Let f(x\ej) be a~normal density with mean ej and

variance G? . Let ej be distributed according to Gj such that

1 2

G = n?:k G, belongs to & defined in (5.2.2). Let x¥, x5 ooy X¥
%
be independent prior observations of the random matrix X with x¥
*
" being the present observation of X . Then the procedure (5.5.9) is

an empirical Bayes procedure for selecting the "pest" of k-populations

under the linear loss function (3.10).

5.6 Poisson case: let f(xlej) be a Poisson distribution with
paranmeter ej > 0, and ej distribution according to Gj' As indicated

in 5.4 we seek a sequence Ynj(x§) converging in probability to

Ynj(xg) ~of (5.3.3). For this case we can write {5.3.3) as:

(5.6.1) yj(xg) = j o f(x§ lej)de(Sj)
®
} s=r (1)
P Y e
= 6 : ag, (e
J 3+
I=r ,(z)l
0 ng=l (LJ ')
- (2) | - =r (2)
\ R A .Zfi* E
) 4 1) J . J a6, (8,)
d F (Z) 1 = (,ﬁ |) J j
0 (Xj + 1)} I,_p (%577

(xgl) + 1) fw f(xgz) + 1}93) nﬂ=f f(x§ﬂ)|e.) ag, (e.) .



L
(Note: the selection of x§l) was determined by convience only;

(2)

any xj s 4 =1y 25004y T, could have been used in the above. )

Now due to independence

(5.6.2) fo (x%¥) = H%fi f (xgz)); but we also have
‘ j J K GJ J
- (e)), i
(5.6.3) ij(xg) = j “z=1 £ (x5 |ej)ac;(o;) . Thus using

(5.6.2) and (5.6.3) in (5,6.1) we have

(5.6.4) ) = & (l) +1) £ j(x(l) +1) m £, (x gZ))

However we have established that fnj(x§z)) defined in (5.3.10) converges

in probability to f (X(Z)) Therefore, if we define

J
(5.6.5) Vo3 () = v e 6 v 1) 0fT fnj(x§2)) ,

then ynj(xg) converges in probability to yj(xg) in (5.6.4). Note

that we can write

(1)
o (1) f .(x + 1)
(5.6.6) RE {(xj £ 1) “J( o } £, (%)
ng*"J
where fnj(xg) = nﬁ:i fna( 52)), gince f (x(l)) > 0.

Then statement 5.4 implies that an empirical Bayes procedure with respect

to G ¢ G is given by



(5.6.7) tn(g*) = a, where Jj is any integer 1, 2,..., k such that

(1)
£ .(xx7 +1)
(xgl) +1) - J(l) = max {(x§l) + 1) ) ,
fnj(xj ) 1<i<k fni(xi )

1
fni(x:g ) + 1) 1

using (5.6.6) in (5.3.17) and fnj defined by (5.3.10). We have

thus proved:

Theorem 5.6: Let f(xlej) be a Poisson distribution with parameter

ej. Let ej be distributed according to Gﬂ such that G = ngi Gj

belongs to G defined in (5.2.2). Let x> x%,..., X¥ Dbe independent

' *
prior observations of the random matrix X ; x* being the present
observation. Then the procedure (5.6.7) is an empirical Bayes procedure

for selecting the "best" of ke~populations under the linear loss function

(3.10).

5.7 A Class of densities: ILet f(x|ej) be expressible as

Bjxg(x)h(e). Then we write w.( g) as:

J
(5.7.1) RCOREIN R {C TRLLACH
g=r (2)
= Jee, T @ eGi*))mo,)) a0 o))
(1)
g0, (1) g=rqp, (2)
- QEQ%TTI"I) é; 2"+ 1e,) W7o o, )ag (o)
J
s (1) ! (£)
= e £ (e 1) Mg T (x57)
8(x(l) + 1 % el =2 G E
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using arguments similar to that in 5.6. Since the function g is

known, finding a sequence Ynj depends upon finding a sequence fnj
converging in probability to fG which we have already found in

J
(5.3.10). Thus by defining

e(x (l)) N - )
(5.7.2) v ;1) = -—(—%ﬁ*—; (x( )+ 1) n§~2 fnj(xgﬂ’ ) »

we have our desired sequence which converges %o yj(xg) in probability.

Notice that (5.7.2) may be written

(5.7.3)  vpy(x¥) = {g(x§1)+l - (1) } £, 6)
dJ nJ J
where fnj(xg) = ng:i na( {z))’ since f (x(l)) > 0. 1In accord

with statement 5.4 the following procedure is empirical Bayes with

respect to G ¢ G.:

(5.7.4) thE*) = ay where j is any integer 1, 2,..., k
such that
g(xgl)) £ (x(l)+ 1)
et v 1) () )
nj 4




where fnj is given by (5.3.10). Thus we have proved:

Theorem 5.7: Let f(x‘ej) be a density such that:

f(xlej) o* g(x)n(e), x>a

= 0 » x<a for some constant

"a," Let Bj be distributed according to Gj such that

G=m=

- - * * '}
j=1 Gj belongs to G . Let ¥y XEyeors §§ be independent

=2

prior observations of the random matrix .E*i x# being the present
observation. Then the procedure (5.7.4) is an empirical Bayes procedure
for selecting the "hest" of k-populations under the linear loss

function (3.10).

' Remark on Theorem 5.7: After a suitable transformation a large class

of exporéntial densities can be written as in Theorem 5.7. (See

samel [32].)
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