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Introduction and Sumary

An important class of problems is concerned with the selection and rank-
ing of k populations. For most univariate problems the selection and rank-
ing has been defined in terms of location or scale parameters (see, [ 6 1, [87,
(91, [10], [11], {123, [13], [18], [20], [21] and [22]). In problems dealing
with multivariate populations, one is usually interested in the ranking and
‘selection problems in terms of suitably defined functions of the several para-
meters. These functions are usually gome scelar quantities. For example,
Tor k multivariate normel populations with mean vectors p_i(iul,a,...,k)
each of which has p components, a function that ngturally arises and is of
interest, is the Mahalanobis distance function l.i= E.i E-l By where ¥ is
the common covariance matrix of the k populations. Thus the ranking of

multivariate populations in terms of A, reduces to the ranking with re-

i
spect to parameters of non-centrality of non-central chi-square populations
each with p degrees of freedom.

In this paper, we are primarily concerned with the selection problem
for the k (k > 2) non-central chi-square populations. We are interested

in selecting populations with large values of the parameters )“i » selecting

as far as possible the best ones. The procedure to be defined is such that

This research was supported in part by Contract AF 33(657-11737) with the
"Aerospace Research Iaboratories. Reproduction in whole or in part permitted
for any purposes of the United States Government. :



the probability is at least equal to a given number P¥ (l/k <Px<1)

that the population with the largest value of the parameter is included

in the selected subset. The size of the subset is an integer-valued random

variable which takes values 1,2,...,k. We are clearly interested in proce=-

dures which select & non-empty subset which is small and yet large enough

to guarantee the basic probability requirement and which have some desir-

able properties. In the above formulation, the loss connected with the

selection and non-selection of the population with the largest value of

the parameter i.e. the best population is O or 1 and the risk is bounded

above: We guarantee that the least upper bound of this risk be < 1-P*,

It should be pointed out that this ''selecting a subset®'? fo;ﬁulation

is different from the ''indifference zone'' approach where the selection

is in terms of a subset of fixed size, which is usually one. In the latter

formulation, the width (ratio) of an indifference zone in the parameter

space is specified, the numwber of observations needed is tabulated and the

final decision is the selection of a single population which is asserted

to be the best one. Contributions to selection and ranking problems using

this approach are presented in [3], [4], [5] and [7]. The present Formula-

tion is more flexible in that a decision can be made on any given number of

observations with the assertion that a certain subset comtains the best

population, the size of the subset depending upon the observed results.

In Section 2, a formal statement of the problem is given. Section 3 deals

with a result relevant to ranking and selection in terms of any general para-

meters (not necessarily scale or location). The procedure for the non-central

X? populations is given in Section 4 and its application to the ranking of

multivariate populations is presented. An approximation to the Probability

of a correct selection and its infimum is given which enables us to compute



constants (approximate) to carry out the proéedure.

Sections 5 and 7 deal with the distribution function, and the moments
of the ratio of the maximum of several correlated statistics each of which
has a non-central XQ, in the numerator and a non-central X? in the de~
nominator. An exact evaluation of the probability of the correct selection
and its infimum is accomplished in Section 6 and it is shown that for this

case the infimum of this probability is sttained at xl= h2= 0.



2. Statement of the Problem

Suppose each of the k populations MyaTny e e s has an observable

random variable Yi(i=l,2,...,k) whose density function is a non-central X2

given by (2.1)

. Baga
(2.1) o et T
2-1 f X) = R Py - - f} X _>_ O,
! oP/2 oo 32 1@ +)

where M (> 0) is the non-centrality parameter and p is the degrees of

freedom. Iet the ranked A's be denoted by

XDJE%Q§.“§N

(k] ?
and it is assumed that there is no a priori informetion available about the
correct pairing of the ordered x[i] and the k given populations.

Any population associsated with }"[k] will be called the best popula-
tion. A correct selection is defined as the selection of any subset of the
k populations which inc]_.udes the best population. Our problem is to define
a selection procedure which selects a, small, non-empty éubset of the k
populations and guarantees that the best population has been included with
probability at least P¥, P* being a specified number between 1/k and
l. Mathematically, if CS stands for a correcl:t selection then our goal is

to define & decision rule R such that

(2.2) inf P{CS|R} = P*
Q



where 0 = {) = (hl,...,xk): M; 20} In the limiting case where all A's
are equal (we need to consider s;;h cases for evaluating the infimum of the
probability of a correct selection) the definition of a correct selection is
modified to mean the selection of a ''tagged'' population.

The above formulation uses a Zero-one loss function i.e.

. . = £ i s. th
(2.3) L(SJ, M) =0 if Ty VR My €Sy the
selected subset,
= l f . S. .
i “[k] k 3
Thus
(2.4) Risk = E, L(sj,y = 1-P{CS|R}.

Hence, the above formulation requires that we f£ind a procedure whose
risk < 1-P*.

HSQever, the problem could be considered within the framework of more
general loss functions. Multiple decision problems for the subset selection

and with a more general loss function of the type

(2.5) e = ) oy (g M) @ 20

€S, -
485

have been considered recently by Deely (1965).
After giving the procedure in Section 4, we also show that the proce-~
dure possesses a desirable monotonicity property, namely, that the proba-~

bility of selecting or population with a larger value of A is at least



as large as the probabllity of selecting a population with a smaller value

of As An appfoximtion to the procefure is glven which also can be used to
provide simultaneous iipper '(lower) confidence bounds on certain ratios of the
linear functions of the parameters. An important spplication of this problem
is to the ranking and selections of muttivariaste populations in terms of the

Mahalanobis distance from the erigin.

3, A Qlass of‘ Se ction_and

Iet ny be the population with density £, (x), 3= L2yeeerks et
A5

(3.1 M $323 S 000 S

be the}ordered M 'se It is not known what the correct pairing of the ordered
and unordered A's is, Let x' = (xl,xz,..-,xk) be an observation of
X' = (XJ_’XQ’“"XI:) whose components are independent random variables;
f (x ) being the density of X » Based on the observation vector x' we
are in’cerested in selecting a subset such thet the probability is et least
P¥ that the best {.e. population with largest "'[k]’ is included in the
subset. Let b (x), b ¢ [0,=) Ve a class of functions such that for every
Xy

(1) h.b(x) > x,

(11) n (x) = x

1im
(moqu%m

(iv) (x) 4s continuous and mononotone increasing in b.

Then the class “ﬁgf procedures th is defined as follbxvé:

th: '1Select g iff



(3.2) h(F) 28 .

The above procedure selects a non-eupty set of random size in view of (1).
The justification for conditions (ii), (iii) and (iv) will be provided later.
t 1s clear that the probability of correct selection (correct selection

<===> selection of any subset which includes the best) for this procedure

is
(3.3) P{CSIRilb} = P{ty (§11)) 2555 3=1,250005ke1]
N I ECT.
T lamr Mg - MK |
Assume now that FX(X) is stochastically increasing. in A, then,
. -1 . ;
(3.4) b P{CSIth} - tur [ ) £, $agt

vhere  is the space of )A' = (kl,...,)\k).

Now we discuss the infimum over ) of

[ 5, () £, (Pap

=

First we prove a lemma.

Lemma: X 1is a random variable with density fk(x) and the cumulative dis-
tribution function Fx(x) whith-i6_stoechastiveldy _increasingda~x Let
h.b(x), b € [0,o) be a class of functions and suppose there exists a density

f(x) with c.d.f. F(x) such that



(3.5) hb(gx(x)) > gh(hb(x)), for all A and all x,
where gh(x) is defined by

(3.6) Fx(gx(x)) = F(x), for all x.

Then for any t > 0,

[ [Fh(hb(x?)]t £, (x)ax 2 [[ro, N T 2 (x)a,

vhere the integral extends over the whole range of values of X.

Proof: ILet
4
(3.7) p(B0) = [ Fo(n (x)) 1, (x)ax

- f F: (hb(gx(z)) fl(gh(z))gi(z)dz.

From (3.6), it follows that

(3.7) - (g (2)) g (x) = £(x).
Thus
(3.8) §(&b) = [ 7, (e, (2)) £(z)az.

Now using (3.5) and (3.6),
A
(3.9) #(&,b) > f Ft(h.b(x) £(x)ax.

Application of the lemma in (3.4) allows us to write



(3.10) igf P{CS]th} __>_[' Fk'l(hb(y)) £(y)dy.

From (3.10) we see that in order for the procedure th to guarantee the
probability of a correct selection to be at least equal to P¥ Ffor all

points in Q, hb(y) may be chosen so as to make

(3.11) [ 7, (v) £(y)ay = 2+

It should be noted that conditions (ii) and (iii) and (iv) ensure that the

brobability of a correct selection will always be E:%- and that this proba=~
bility —> 1l as b —p o,
Remark: (3.5) is a sufficient condition and gives an actual infimum if

egquality holds.

Exemples of h.b(x) satisfying the lerma

A. If A 1is a location (translation) or a scale parameter in :E‘x(x)

then
8>V(X) g)v(x) g (x-1)
@ [ neaes [ (e - [ o(oae- fi(g)dg
or, g)v(x-)\.) = x
g, (x) 8 (%)
(i1) %L f(}%)dg = _fo £(t)at = JJ: £(g)ae
or, gl(%) = X.
Hence

(1) if h.b(x) = x+b, then h.b(gh(x)) = h.b(x+x) = xP\+b = g'h(hb(x)) for

all A and all x.
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(i1) ir h.b(x) = xb, h.b(gk(x)) = hb(xh) = X\b = gh(hb(x)), for all
A and all x.

Thus, from the lemma, it follows +hat )
(3.12) inf Pfes|r, 1 = [ #u (x)) £(x)ax.
. o Pl 1= [,

Note here f£(x) is the density corresponding to A = O (central) for
the location parsmeter case and it is the density corresponding to A = 1

for the scale parameter case.

B. For the problem of selection and ranking of the non-central x2 para-
X : . 2 2
mebers, the function h (x) = or 0<c. Iet X, end X%
'2 2
v on Xa
(3.13) f £ (x)dx = 1-q = [ £{x)ax
e} A “o

where f}\’(x) and f(x) are, respectively, the densities of the non-central
and central chi-square r.v. with P degrees of freedom, A being the non-

central parameter, It is known that for large p

(3.14) gk(x) = x(;ez %i—;“-‘-,\ X2 = Pg—i-% Xy all A and all x
(3.15) hc(gx(x))z%f%%= g (b (x)), all A eand all x.

Thus the lemma mey be applied to show that if the approximation is suffi-
ciently good then the infimum of the probability of a correct selection in

using the above rule occurs when ) =0 in (3.4).



10a,

Monotonicity Property of the Procedure th
We will now show that the procedure R satisfies the following

property. If Ai > Aj , then

(3.16) P { Selecting the population with parameter Ay } > |

,
P 1 Selecting the population with parameter lj } s

provided the function hb(x) is a non-decreasing function of x.

Without loss of generality we may assume XA, > hz . Then,

1

1 |
(3.17) P{Select nl} = J[_&3Fx.(hb(Y))] er(hb(y)) fhl(y)dy
3=3 "3

N k 3
> [ 1w ] B e 000} £ (ay,
- 3=3 7] 2 1l

for any hé > Az, since F is a stochastically increasing.

Since the function within the braces on the right hand side of the
inequality is a2 non-decreasing function of hb(x) and hence a non-decreasing
function of x by our assumption, it follows from a result in Lehmann (1959)

{Lemma 2, p.74] that the integral is non-decreasing in kl. Hence
- K
(3-18)  Pfselect m}> J{[jgstj(hb(y))] Fhé(hb(y))} f,, (1)ey

I h]
> PySelect 1,1, by choosing A} =A, .
= 2 2 1



4. Procedure R and the Probability of Correct Selection.

11

Let Yi be a non~central Xe random variable with p degrees of free-

dom and non-centrality parameter )\.i.

Iet /ﬁ': independent observations yl, yg yecesy ,  On Yi be given
and let -371 be the arithmetric niean of the yi's. Then the selection pro-
cedure for parameters A‘i is as follows.

Procedure R: Select the population n if

(h.l) —y-i c

v

ymax

where ymax = ms.x{ir_j, J =1,2,...,k} and vhere c¢ = c(k,p,n,P¥} is a pre-
determined number between O and 1 which is such that the procedure R
satisfies the basic P¥ probability requirement.

Such & number c¢ clearly exists since by taking c¢ = 0, we select all

the populations and guarantee the probability P¥* condition 1o be unity.

Expression for the Probability of & Correct Selection.

Let -:)7(3) (unknown) be the observed value of Sr'i which is associated

with X ] = 1,25400,k} where 2\ <A pm L oeee <A are the ordered
rgy (9= 1:2see i) (23 S*rz3 S0 Shig

values of the vector \' = (1:1,>»2,...,>‘,k). Then

. S|IRY =Py, \ >c ¥y
(4.2) P{CS|R] {J(k) 2 c Jmax}
= Piy<1§.) ;c Y(j), j = l,2,--o,k"'l}
o Kk«

[0 F, (5, &) a
fo 5=1 M7 My



where Fx,(-) and fh,(-) refer to the cumulative distribution function
and the density of the non-cemtral X° distribution with parameter \'=n)

and degrees of freedom p'= np.

Infimun of P{CS|R}

The number ¢ in our procedure R is defined such that

inf P{CS|R} =
Q

vhere @ is the space of all possible configurstions of all s

o k-l
(k.2a) inf P{CS|R} = J.nfj r o M NN Mg (x) ax.
o J=1 [J

I\Tow. it is known that distribution of a non-central X2 random variable has
the property 'I'P2, 1l.e. total positivity of order 2 which is equivelent to

the property of monotone likelihood ratio. From the TP. or MIR property,

2
it follows that the dlstribution of Y is stochastically increasing, i.e.

Fl,(y),the cdf, is a nonimreasing function of A' for all y. It follows .

that
(4.3) ['m [k'-l £, B, (xax fm 7l ® e, (0
. il 2 1 Py 1 X k]
lo T3m1 Myre ] Mis] HEZ YO ]S M v
and thus

(b.4) inf P{CS|R} = inf fo ot ( ) £, (x) ax.
0 A>0"70
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It will be shown later that for the case k=2, the infimum takes place
at A' = O. In this case the exact values of c are obtained by

(=

(4.5) I e &) gy () ax =

e

where qm,(-) and gm,(-) refer to the c.d.f. and the density of a standard
gemma chance variable with gm,(x) =e X xm'-l/r(mﬁ) and m' = p'/2. It has
been shown elsewhere (Gupta (1963)) that for the problem of ranking and se-
lection of the scale parameters of gamma populations (k.5) provides the so-
lution in c. The values of the constants ¢ for this case have been tabu-

lated in the above paper and also in a paper by Armitage and Krishnaiah (1964).

Normal Approximation.

In the sequel we will write p for p' and A for A'. Define
a = pH, b = A/(p+\), then it is known that (5)1/3 is approximately norm-

ally distributed with mean d = 1- 2050) 214 verfence 2(L)
Oa a.

Using this fact (k.4) can be approximated by

(4.6) inf P{CS|R) = ine | & L(eM3 « __(g.;c‘___l) o x)ax

A0 A >0 7= ey

where &(*) and o(*) are the cumilative distribution function and the

density of a standard normal variable.

Since 0<d<1i, l-c-l/3 < 0, the integral on the right hand side of
(4.6) is & mononote increasing function of d. Since the derivative of 4d
with respect to A is positive, it follows that the integral on the right
hand side has its minimum value at )\ = O. Hence the approximate ¢ is

determined by



1k

CO

| - -1/3 '
(be7) Jr @kml(cml/‘:S x + (e 2 ;_‘;%1913"2)) o(x)dx = P*,

The above integral equation hag been solved forcforselected values of
P, k and P¥ and these approximate values have been tabulated at the end
of this paper. A comparison with the exact values for k = 2, indicates
good accuracy for this approximation.

The approximetion based on the Wilson-Hilferty cube root transformation
used above has been discussed along with other approximations by Abdel-Aty
(1954). 1In this paper the tabulated values indicate that the approximation
is good. Other approximations for the distribution of non-central X2 have

been discussed by Patnaik (1949), Johnson (1959) and Roy and Mohamad (1964).

Procedure for Selecting the Subset to Contain the Multivariate Population

with the lergest Value of the Mshalanobis Distance from the Origin.

Iet n: N(Ei’ ), 1 = 1,2,...,k, be p-variate normal populations with
mean vectors o respectively, and with a common known positive definite
matrix T. Let xi= Ei z-l Ky denote the Mahalanobis distance function
Tor the populsztion Ty from the origin.

Ve take a sample of n independent observations from each of the k
populations. Iet zij denote the jth observation of the p~-dimensional ran-

dom vector on the ith population; then for each j = 1,2,.44,n, we compute

-1 . .
(408) yij = Ej',j Z :iij, l=l,2,o.|,k; J=l,2,...,n-

Since yij(j=l,2,...,n) correspond to the n. independent observations on a

n
. non~-central X2 for each 1 and since Yi: E:Yﬁj is distributed as a
J=1



non=~central X? with non-centrality parameter xi = nhi= n gi z'l By and
degrees of freedom p' = np, it follows that the selection rule for the
population with the largest value of the Mahalanobis distance function is:

Rule R: GSelect the population Ty if

n

n
(%.9) Eyij >ec m.?.x{Zyij: is= 1,2,...,k}
= 1

5=1

where values of c¢ are tabulated at the end of the paper. It should be

pointed out that the appropriate value of c¢ for the above procedure are

obtained by using p' = np as the number for the d.f. p in the tables.

It will be noticed that for a fixed p as n  increases, the tabulated

values of c¢ (for fixed k and P¥) increase which would be expected.
Another procedure for this problem is as follows: Compute

= %! <
(h.lO? 2, = X1 %K

-—

vhere X! = (X, X, X, is the sample 1 vector based on n ob-
x; (;ll, 12 ees Ip) is the sample mean e

servations., Then the procedure is: Select 0 iff

(k.21) z, >z =ad

where d = d(k,p,n,P*) is given by

(h.12) inf [ Fli',.l(x-%d) £, ,(x) ax =
A'>0 0

15



16

where F and f refer to the non-central X2 with p d.f. and non-central
parameter A' = nh. Properties and relative performance of this procedure

are belng developed at this time and will be published later.

SimultaneousA(;pprox1mate) Confidence Bounds on the (L-l) Ratios

(o, )/(P*h Ys 3 % i for a fixed i.

We have shown earlier in this Section that for any i = 1,2,...,k, we

have
© -1/3
(4.13) p* = | 3 o 4 {e723-1)(9p-2), o(x)ax
- e 3/
1/3 1/3
"'i?i 0 P{max(p+% é p+k }
1/3 ¥, 1/3
- —e 1
= duf P{mg‘x(pﬂj? :<:°(p+>»i) }
heRp Y y
- —d > 2
s P{Pﬂi ZF G 2k 4 i}
Thus,
208 y |
(4a1) P{P—,L,;iz -1—:,,;;:11 3= 1,2,000000 k1) of B
- C

provides simltaneous (approximate) lower 100 P¥ confidence bounds on the

desired ratios.
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Selection of the Subset with respect to the Minimum Value of the Parameter.

If we are interested in selecting a subset to contain the population with

the smallest value of xi, the procedure R' 1s as follows:

*t: Select ﬂi iff

b

1A

where b = b(k,p,n,P¥) is a number greater than one which is such that R!
satisfies the basic probability requirement. As before it can be shown that

the values of the constants b are obtained from

@ 1
14.16 1-F, (& : = P% .
(4.16) ing . U_ F, ,b)]k £ (x)ax = p*

In the special case k=2, it follows from the derivations (in particular

{£.10)) of Section 6, that the function
i x

(.17) ORI NCIENCL LS

is a monotone increasing function of A (A > 0), its minimum being at zero.

Again from arguments similar to those given earlier it follows that the ap-

proximate value'of b in (4.16) are obtained by setting A = O, and solving

¥

- -1/3 1
(4.18) [1-a(xo72/3, (2210 (9p-2), o(x)dx
| J - 3 /2p -,k ’



5. Distribution of an Associated Statistic

Consider the statistic

(5.1) 7 = mex (¥,

j=1 % Jm " Yoe/
— ,I.l’ .

where Yl;fg,...;Yt and Y are independent non-central X2 random variables
each with p degrees of freedom and non-centrality parameter A\.

Now,

#

(5.2) Pz <) = | 7y (vy) 2, (v)ay
—— 'Jo

Ix(b,t)

whére Fh and fx refer to the cumulative distribution Punction and the
density function of the non=-central x2 random variable with p degrees of

freedom and non-centrality parameter = A(A_> 0).

Bounds on Ix(b,t)

If we keep A fixed, then

1

(5.3) o §Ih(b,t) <1

(5.2) 1, (b,%-1) élk(b,t)
%

(5.3) I, (b,t) > 1, (b,1)

[(5.3) follows from Jensen's inequality since F;(b x) is convex for t > 1.]
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(5.4) I, (b,t) 2 I (b,1) + 1
(5.5) e sa At < I(b,1) et 3 a, A%+ R(n)
o ~ - - 0

where n is any positive integer and p = even integer = 2m, say and R{n)

and zau'e are defined as follows,

m}n-l

R(n) = e 7\./2 ZMLJ_ [l z ¥ I otm+d)

o (140) T+ T(wt))

O o=0
1 z mtg-r-1 & Fatore)
2(11) Z > Z Ty o 4 S
(5:6) a,=
L i NN T b? (ctmir)
()] - Z 1 4 >n-1 .

2Xat) o o (140) LT p(gar)

o=0

It should be pointed out that for p = a positive even integer = 2m, say,

(5.7) I, (b,1) = et za A

o
where a  is given by the first (top) part of (5.6) for all g.

6. The infimum of the probability of correct selection for the case k=2.

We have already seen that the probability of correct selection is mini-

nized on the hyperplane hl= A e hk = A. Now we would like to find

2"
out for what value of A2 O, the infimum of the probability of correct
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 selection takes place. ILet us define, for any positive numbers ny and n

2
and any ¢ (0 <c <1),
(6.1) I(n,,0,5c) = r°° G (i°-) g (t) dat
* 1’7’ J_ mote’ Pn
o 1 2
4 _ =X n=1 . .
where gn(x) = 3= Gn(x) =e > x ~/T(n). First we give two lemmss.
Lemma 1.
n
2 P(n +n, =j=1) .
- - - c 2 J
(6'2) I(n'l)nz)c) = I(nl xr l’nE)c) nl+n2 =1 Z F(n "J) (l+C) i
J=0

I‘(nz)(l+c)

The proof of the lemms follows by observing that

(6-3) Gy (6) = Gy (6) - Zgn )z <y
J=0
and that
n
® 2 (n, +n, ~j-1)
t o) 12

(6.4) fo g, (t) 8, 5(Ghas (l+c)n1+n2'3'l R a3
Lemma 2.

n. -1 J

2 F(n +n,+j-1)(1+c)
(0.5) I(nl, ,e) = I(nl,n2-r-l,c) + < T Z 1.2 - .

(nl)(1+c) 172 §=0 F(ng-,j) Y
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Now for any p = 2u {(m is not necessarily an integer) , and any x > 0, the
c.d.f. and the density of the random variable X which is non-central Xe

with parameter A and degrees of freedom op,

-x/ 2 7»

(6.52) Fx(f—) = = <2xc) c>0
. J 2
3=0
-A/2 29 x
(6:6) 56 = M2 ) e G-
§=0 9

From (6.5) and (6.6), we obtain, after term by term integration

(6.7) {‘ F ( ) < ( =™ Zk o o Z(a) Jﬁ m+cz-r(*) m+r(
. "2 r=0
a2
= e g 8, el

where aoz is defined by

o
(6.8) ot 2% a, = Z (3)' I(mte~r, mir,c).
=0 '

Using Ieuma 1 and the fact that (Q'ﬂ') = (0’) + ( ) , we obtain, after some
simplification,

™ r{omi)

—_— a’ -
=0 27 a T Omty X(r m+cz-r Mate~r) Imir)

artl o

(6.9) (otl)! 2% g
: (1+c)

o
Z(g) I(m+emr, mir+l,c) .
=0



a2

Using lemma 2 on the last term in (6.9), we obtain, after some algebraic sim-

plification,

(%5
o -2 -2
T ( 2rmtor) z (r I"(mg-iﬂ_:; ) I"((:m+a- oy ( 1-c? r )

(6.10) (ct1) = ol B = 'f*l(lJ,c)

>0 since o¢~2r >0, 0 <c <1l.

Thus, a

1= 8g2 2a.,~ 8, > 0. Now,

1
(6.11) X o (o) a -2 ]«
. > ol B

From {6.10) and (6.11), it follows that the derivative is positive for all
values of .)‘, except at A = O, where it equals zero. Thus we have the
theoremn.

Iheorem. For k = 2, the infimum of the probability of a correct selection

occurs at A =0 and

g.)nf P{CS|R} = in; . fo Fk(z-:-)fh(x)dx = _['o G, (-’ci)gm(x)dx .

Remark 1: In the derivation of the above theorem it is seen that for any
c, 0<ec <1, the fﬁ_.nc‘bion IA. (%—, t) 1is a monotone increasing function

of A, its minimum being at A = O.
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T.1. Moments of the statistic 2

Since the random variables Yhax and Y are independent,

(7.1) B(z") = B(¥ /Y)

E(Y™) B(Y,, ), Dprovided EY~ exists.

Thus the evaluation of the moments of Z depends upon the negative moments

of Y as in (7.2) and the moments of the largest of + dindependent non-

central Xg.
] a2 T .
(7.2) . E(YT) = e M2 %T'2;;r F§?;ij§) , provided r<m = % .
J=0
_ P r tel
(7-3) B(Y,,) =t ‘[o YR () £ (v) ay

Special Cases. Now we discuss the evaluation of (5.10) for some cases. For

t =1, (7.3) reduces to the moment p! of the non-central X2, which can be
r

obtained in terms of 3@; the cumilants of the non-central X2, which are
(7.1) K, =25 (1)1 (p + ).
Case t = 2. Following the methods used in Section 5, we obtain

(7.5) BT, =2e™ )a¥a

o=0



2k

where
% o 21‘-& (mti+r G
(7.6) A= LG5 ety Io Crirmg(B) By (8100

Now using the notation of Section 6, we can write

o :
= "
0 o+ . .
(7.7) Ay = Z(J) Q—CJ‘-';—;&:;—_'_%TI‘)- I(mia~j , mtj+r,1)
J=0

in which the result of lemma )l in Section 6 can be used to express

I(mio-3, m+j+r,1) explicitly as

1 1
2m+3+r 22111-lroz+r-l I‘(m +34r)

(7.8) I(mtc-j, m+j+r,1) = 1-

miQ=j =2 h
r Z 2" r{omtotr-1-h)
L T(wth=3-n) J*

=0
if m is a positive integer.

For t > 2, the computation of the moments of Y —_ will follow from an
extension of the lemma 1 of Section 6. However, the computations' become

very tedious.
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Table of values of ¢ based on an approximation

P¥ = .75
k 2 3 I 5 6 7 8 9 10
5 1.529 (.529) .397 . .345 .316 .296 .282 270 .262 254
6 {.562 (.561) .433 .38 .35%0 .330 .316 304 .295 .287
7 1.589 (.588) 462 .10 .380 .359 .34k 332 .323 315
8 |.610 (.610) .486 .435 k05 .38Lh  .369 2357 W347 .339
9 |.629 (.629) .508 .h57 k27 406 L3901 379 .369 .361

10 |.645 (W645)  .526 A6 Lhh6 425 410 .398 ,388 .380
15 | .701 (.699) .59k  .5MG6 .517 L9748 L7100 Jh61 153
20 |.737 (.736) .637 .592 .565 .546  .531  .520 .510  .502
25 | 761 B68 626 600 581 .56T7 556 54T .539
30 |.780 (.780) .692 .652 .627 .609 .596 585  .576 .569
35 | .795 711 673 649 .632  .619 608  .600  .592
ko | .807 (.807) 727 .690 667 .650 .638 628  .619 612
45 | .817 JTHL 705 682 666 .654 bhh 636 629
50 | .825 (.825) .752 L7177 .696  .680  .668 659 651 N

1.

2e

For given k, p and P¥, the above table gives values of c¢ which satisfy
the equation

. -1/3
Jr éx-l(c-l/3x+ (Y '1)(99“2))Qp(x)dx=P*,

3J/%2p

where &(*) and ¢(*) refer to the c.d.f. and the density function of the
standard normal distribution, respectively.

The values inside the parentheses in the column for k=2 are the exact
velues.



Table of values of c¢ based on an approximation

289 (.290) .22h .,198 (182 .172  .168 158 153 <149
327 (.327) .260 232 .215 .203 .195 .188  .183 .178
.359 (.360) 290 .261 .243  .231 .222  .215 .209 .20k
.386 (.386) .317 .286 268 .255 246 .239 .233 .228

O O N O

410 (W410) .30 .309  .290  .277 268 260  .254 .248
10 |.430 (.430) .361 .330 .310 .297 .287  .280 .273  .268
15 | .507 (.508) 439 JLo7 .388 .37k .36L .355  ,348 343
20 | .558 (.558) Jho92 L6l Wkl Jh28 417 - 09 Jho2 .396
a5 {59k 531 .501  WhB2 L4688 458 J4k9 43 (437
30 | .623 (.622) .561 .532  .514  .500  .49O L82  uts 169
35 | .645 586  .558 540 .27 .517 509 .502 196
Lo | 664k (.66Lk) 60T .579  .562  .549 539 531 .B25 +519
k5 | .680 625 0 .598 581 .568 .59 551 J5hk «539
50 | 694 (.694) L6LO 61k ,597  .585  L576 568  .562 556

l. JYor given k, p and P*, the above table gives values of ¢ vwhich satisfy
the equatlon

rw @k-l(c'l/3 x4+ Lo 3 :;)(99 2)) ofx)dx = P*,
S 3

vhere &(*) amd (‘) refer to the c.d.f. and the density function of the
standard normal distribution, respectively.

2. The values inside the parentheses in the column for k=2 are the exact
values.



Table of values of

¢ based on an approximstion

P¥ = .95
o S 2 3 L 5 6 7 8 9 10
5 {.195 (.198) .15%  ,136  .125 118  .113 J109  .105  .102
6 .232 (.233) .186 .167 .155 .147 .1kl .136 .132 .129
7 263 (.26L) .215 ,19%  .182 .173 .166 161 - .157 .153
8 1.290 (.291) .24l .219 .205 .196 .189 183 .179 175
9 f.31h (.31h) .263 .24l .227  .217 .210 .20 .199  .195
10 335 (.336) .284 261 246 236 .229 .223 ,218 .213
15 416 (.417)  .363 .339  .323  .312 30k 297 .292 287
20 L71 (Lh71) 0 Wk190 L39h .378 .367  .358 .352  .346 341
25 511 61 JB36 0 k20 409 LhO1 .394  .388 .383
30 583 (.543)  WBOh LhTO JBSh W43 L3k A27 ko2 A7
35 569 521 LW9T JA482 W71 Jh62 A56 0 L4550 Jis
40 ] .501 (.591) .3hhk .520  .506 495 LLEG A80 L7k 1469
45 609 563  .540 .526 .515 .507 500  .h95 490
50 625 (.625) .580 .558 .5hh 533,525 518  .513 .508'

1. For given k, p and P¥, the above table gives values of ¢ vwhich satisfy
the equation

J ék-l(c-1/3 < +

c—l’/fi:-l.-i(ze:z%l

3v2p

) (_O(X)dx = P¥,

where &(+) and o(*) refer to the c,d.f. and the density function of the
standard normal distribution, respectively.

2. The values inside the parentheses in the column for k=2 are the exact
values.



Table of values of ¢ Dbased on sn approximation

P* = .99
k
D 2 3 L 5 6 7 8 9 10

5 .085 (.091) .067 .059 .05% .051 .OL8 LOh7 L0455 Ol
6 2113 (.128) .092 .08 .077 .072 .069 067 065 .063
7 .139 (.143) .115 .10k ,098 .093  .089 .087  .08% .082
8 162 (.166) .137  .125  .118  .112 108 105  .103 101
9 184 (.187)  .157  J1bh L1360 130 L1926 .123  .120 JA17

10 20k (.206) 175 162 .153  .1h7 L343 139 .136 .133
15 282 (.284) .251 .235 .225 .218 .213 .208  .204 .202

20 .34%0 (.340) | .306  .290 .279 .272 266 261 .257 254

25 383 .350 .333 .322 .31% .308  .303 .299  .295
30 419 (.419)  .385  .368  .357  .3h9  .313 .338  .33%  .330
35 448 415 2398 0387 .379 .372 367 4363 .359
40 L73 (W473)  Wbk0 o Wh23 k12 Jhohk W398 .393 .388 .385
L5 Lok J62  Jhhs W3k Jh26 420 L1415 W10 Lo7

50 513 (4513) W48 W6k LSk 446 Jhho A3k L430 RIT=1S

l. FPor given k, p and P*, the above table gives values of c¢ which satisfy
the equation

[7 833 5 4 {8 /3'})199 2l o(x)ax = P,

where @(’) and @(') refer to the c.d.f. and the density function of the
standard normael distribution, respectively.

2. The values inside the parentheses in the column for k=2 are the exact
values.
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