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1. Introduction. The moments of stopping rules {or
stopping times) have been discussed in (1,353,411, and the fol-
lowing results have been proved. ILet T be independent

— v2._. ._ UR
random variables with Ex;= o, Ex ~ =1, and 8p= Kqte o ER -
For ¢ >0 and m=1,2,,.., define tm to be the first
1/2

. If e =x 1, then Et1= ® .

If P{ixn}s KlJ=1 for some K< and n=1;2,...; then

n=m such that lSn]> ¢ n

Etm'< » for every m if ¢ < 1, Etm2 < o for every m if
¢ < Eﬁjg s and Etm2 = o for some lavge m 1if ¢ > 3~jg

In this note, we are interesited In the following one-
sided stopping rules, instead of the abows stated two-sided

stopping rules. For ¢ >0 and 1 >p > o, define

s = first n > 1 such that 5, > ¢ nf .

One of the results states that, it x, ave independent;
Ex =1 >0, and Ex - p? = 02 ¢ ©, then Es® < = and

1+p> =1

(1) 1im uQ Esgf(cg EsEp) = 1lim uEsQ/(c Es

G



When p = 0, Es°< = implies that P[8;< ¢,...,S <cl=P[s>n]
=o(n"2) as n - o , whlch completes a result of Morimura [8].
Also (1) extends the elementary renewal theorem from first
moments to second moments and generslizes some results due

0 Chow and Robbins [2] and Hatori [6].

2. 'The first moment.

Let {0, %, P) De a probability space and x  be a
sequence of integrable random variables. let . he the Borel

fleld generated BY Xjs...,%, and ¥ = {0, a1. Put Sn= Xytoo ot Koo

n
congtant o > u > o and for some null get N,

n
= = q = » .
S,= 0, m E(xnixnzl) and T, % m,. Assume that for some

{2} 1im Tn/n = p, uniformly on Q-N.

Niree
For ¢ >0 and 1 >p > o0, define
s = first n > 1 such that S, >c¢ n® .
Theorem 1. (1) If for some o < § < k'3, P[anZHn +nd] =1

for all large n, then Es < o . (i1} 1If EC[(xnnmn}+]a§$nﬁ£>g_K<m

for some <« > 1; then Es << e and

(3) 1im u Es/{c Bs®) = 1 = 1im ESS/(G E=P).

Q- [e]-
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Proof. (1) Set t = min (s8,k) for k=1,2,... . T
Then by the Wald identity for martingales [see 5, p. 302; or 3],

ET, = ES, = E(S,_,+ x.) = < ¢ E" + E(mg+ 5t).

t t t)

et 0< €< B. As k= o, by (2)

ET, > {u-€) Et +0(1), Em, =0(1) + o(Et).

Hence
(w-€) Bt < ¢ EtP + 5 Et + 0{1) + o(Es),

sdP + k Pls > k} = Bt = 0o{1) ,
[s<k]

a8 k -» » ., Therefore Pls < o]l =1 and Es < o .

(11} Por any o < B < w/3, define x; = min (xng m, nbd),
T ] . . ' 1 _ 1 L] .
m! = E(x |3, 1), and T, =m +...4m,. Let I{A) be the

indicator function of the set A. Then

ogm-m' = E{(x -m -n6)I[x,>m, + n6Ji7, ;)

A

(%) E((xnvmn) Ilx, >m, +_n5]]3n_1)

in

B/ (e m ) s, ) PM® (x m > molz, g) (o= aa')

K(nﬁ)"a/aQ

N



Therefore 1l1lim Té/n =y uniformly on Q-N. Define

N~

oot x! > e n®

t="first n > 1 such that x; n

Then s < t. By (i), Et < » . Therefore Es < = and 1t
follows by the Wald identity sgain [5, ». 302; or 3] that

’

b . - P
(5) E{c 8° + x,) > BS, = ET_ > ¢ Es" .

Izt Zn =

HMS

[{x ,)T1® . Then by Lemms 6 of [3],
J 3

B e i
(6) E*x,om) <EZ =E z E(i(xj-mjje* ]""isj_l);«t_li Es .

Since (2) implies that as c-e, Em, = 0(1) + o(Es) and
ET, = 0{1) + {u + 0{(1}) Es, we have

1/a

(7) Bx_ = O(EY/% 8) + o (Es) + O(1)

from (6), and

1im p. Es/{c EaP) = 1im ET. /{e EsP) = 1im ES_/(c EsP) = 1

c-Nn.

from (5) and (7), since 1lim Es = » . The proof is completed.

[« 1.1

When p = 0, part (11) of Theorem 1 reduces to an elemen-
tary renewal theorem, which was proved in {2], in a slightly

resgtricted form by reguiring that m

n = E(xn) for each n.



3. 'The second moment.

‘ 2 _n 2
Assume that EX “ < = for each n, let V.= § E((xj—mj) lgj_l)
for n=1,2,..., and define 8 as before. ¥or a random

variable y, put |l3y]] = (Eg9)Y/2 |

Theorem 2. If {2} holds and E({xnnmn)zlgnml) <K< o

then Es® < w, E8,° <o, andas ¢ - o

2 2
(8) ES,” + BI,® = EV, + 2 ES_ T  ,
(9) 1mEsZErZ-1 ,

{10)  1im p2 Es®/(c? Es?P) = 1,

(11)  1im B8 %/(c® B®P) = 1,
(12)  1im p Es?/{c B 'P) = 1,
Proof. (1) PFirst, assume that for some o < & < u/8

and o0 < MK o, P[xn_g m + nd + M} = 1. Set % = min {(&,k)
for k= 1,2,... . Then by Theorem 1 and Iemma 6 of [3],

2
E(S.-T )" = EV, < K Et

Hence by Schwarz inequallty

2

(13)  Es,

+ BR,? < K Bt + 2} |7 11 ]18,]]
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Assume, on the contrary, that Esa = o , Then lim Etg = o and

e
{(2) implies that

Emte = 0(1) + o(Et?) = o(Et?) ,

ag k -» o . Hence

(1) 118,11 < 1] ot® + my + 5t + MlIg el [eP [+]]tl] + o(I]t]])
= {6 + o(1)[1t]] 5

and from (2),

{(15) Mé=0@)+@2+%M)m2=@2+%ﬂ)&2

t

By (13), (14) and {15}, we have

1+ w8, 2/mr,2 < ofl1s]17) + 2115yl 1/1iml!

< oflisl ™) + (28 + o{1)/u = 26/u+ of1)

Sinee B8 < p/8; we have a contradiction when k 1is large.
Therefore Es® < o . From (14), (13) and Fatou's lemma

2 2 '
ESS < o apd ETS L e,

{11} For the general case, let x = min (xﬂj mn+n5+m)

1
el
for an arbltrary constant «=>MDo and o<B8< /8. Define mn', Tn“

and t as in the proof of part (i1} of Theorem 1. Then by (%)
{for a=2), ngn«mn"g K(n&)"l Hence



1lim Té/h = U uniformly on q-N

It is not too difficult to see that

E( (e -m ) 2)m, ) -B((x)-n0) 3l 10> B{[(x -m ~n5-1)"1P]m . )-

%‘2 - - - +
-2°((x-m_-nb M) ign“l)z 0.

Therefore E((xénmﬁ)zlgn_l)g K. Since % > s and from part (i)
Et2 < o, we have that E32 < ®» . By Theorem 1 and Lemma 6 of

[3] again,

2 _
(16) E(SS-TS) = EV, { K Es .

For € > o, (2) implies that there exists a constant « > Lo
such that

ETS < L+ (1% + e) B® .

2

g <o . Thus {(8) follows.

Henoce ETSE < » and from {16), ES
Now by (16},

i

|es 2-er Pl Els 2 Bl s m -1 s + 2 |1 <(& Bs)Y/2 |[s_+ |

2_2 e? E32p9 from (3)

Since ESs
|1-Er /88 21<(x ms/m8 2)1/2(1 + |z | 1/11s,11) = o(2) + ofliz |1/11s,]])

as c-oo. Hence {(9) follows.
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Since {2) implies that ET.® = 0(1) + (1% o(1)) Es®

as ec-wo, rrom {(9)

(17)  1im p® Ese/EESQ =1 = lim p°

C-e

Es®/ ES_° .
8
a 2
Let Z, =T (xj—mé) . Applying Lemma 6 of [3], we have
1

. 8
E(xs-ms)2 < EZ, =E % E((zj—mj)elgj_l)‘g KEs

Prom (2), Em 2 - 0(1) + o (E8°) = 0 (Bs®) as ¢ - = . Hence

S
(18)  Ex.® = Elx;-mm)® = o (ms7), [lx,ll= ofllsll) .

Now from {18), as ¢ = e

{19) ellePll < Hs Il < 1 es® + = 11 < ellsPislixgll=clls"]]
+ o (11s]1).

Therefore {10) follows from (17) and (19), snd {11) follows
from {17) and (10).

Now ET 8, = O(Esg) + {p + o{1)) Bs S, as cwe. By the
definition of s and (18), as c~e
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{(20) ¢ Es TP <EsS_ <c Es1tP 4+ Es x < ¢ Bl Py Ilsll.ilxsli

<e Es'tP 4 o(Es?) .

Since EV, < KEs, from (8), (9), (10), and (11), lim ES T /(uPEs?)= 1 .

Hence

lim Es S /(n Es®) = 1

and then {20) implies (12).

4, Corollaries and commentis.

In this sectlion we assume that > is a seguence of

random variables and p=0. Define Sn’ mn, Tn’ ﬁn and 8 as

in Sectlon 2.
Corollary 1. If (2) holds and if

(21) E((x,-m )%l7, 1) <K< o,
then rEs2 < w énd

(22) 1im Es%/c® = ™%

[o 1.2

for oL a2

Proof. Since (21) implies E(xn-mn)elg K, from {2)
and {21) it follows [7] that 1lim Sn/n =y a.e. Hence



10w

1< 1im inf S /c < lim sup u s/c = 1lim sup u{s-1)/c

Cese0

= 1im sup Ss_l/b <1 .

Therefore 1lim s/c = u'l a.e. Theorem 2 implies that
E(s/b)g <M< o for all c>o. Hence [see 5, p. 629] for every
o< ac< 2 (s/c¢)® 1s uniformly integrable and

(23) 1im Elp~t-s/el® = o, 1im Es%/c® = ™%

G0

Thus (22) follows from (23) and (10).

Corollary 2. Let X be a sequence of independent,
identically distributed random variables such that E xq >0

and E(xl-Exl)2.> w. Then for every ¢ > O, a8 N = o ;

{24) P[Sl< Cseees 3. e] = o (n"g) .

Proof. Since [s >nl] = [S1 < Csuoes 55 < el, E32< @
implles {24) and thus Corollary 2 followe from Corollary 1.

(22) has been proved by Hatori [6] for every a > O,
by requiring, in addition to the assumptions of Corollary 1,
that x, be independent; P[xn42 o] =1 and m, > L >o for

each n.
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Under the conditions of Corollary 2, Morimura [8] proves
that P[S;< ¢,..., S, < el =0 (n?) for o< 6 < (1+,/5)/2
and that there exists an example such that for some D > o and
-2-€

for each € > o, P[Sl< Cs...o B < c] >Dn when n is

large enough. Thus (24) is the bvest possible. Clearly, Corollary
2 completes Morimura's work.

The counter example in [8] satisfles the condition

Es®t€ = & for every € > o, since Pz > an]l £ o (n'2"e).

Therefore (22} can not be extended to the cases where a > =

without some conditions as -P[xn > 0] =1 imposed in [6].
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