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Suppose a team of n members has the following problem. The
team observes an n dimensional Bernoulli random variable

X = (Xl’ X.g eees Xn). For example, X could indicate the availa-

2’
bility of an item in each market location, where outcome xi =1
implies the item is available at market i and Xi = O implies the
item is not available. The team is to define a real, non negative
decision vector a = (al, 855 ees an). This could be the quantity

of the item to be purchased at each market. This decision vector

is to be chosen prior to observing the market.

From the observed value of the random event and the predetermined
decision vector we shall assume that the team experiences a team out-
come defined by the inner product

n
(1) r = p(x,a) = z a;%; = (a,x).

i=l
Various values of r have different effects on the team, some of
which are preferred over others. A numerical function that describes

the preference ordering of the possible values of r is called a



utility funection. Given a utility function v and an outcome

function p, the team experiences a loss as defined by

(2)  wlxa) =v(r) = v [p(x,a)]

Let us assume v is a'piecewise linear, convex function in
ry, with a minimum at r = o and the objective is to minimize v.
In the context of the marketing example given above this would
imply that the most desirable total quantity to be purchased by the
team is Ty and furthermore, as the total quantity purchased varies
from s the team suffers increasingly severe losses. The objective
of the team, of course, is to determine the decision vector, a, such

that this loss is ninimized.

This objective is impossible to obtain as long as the value of
X is unknown., However, if the joint probability funetion, o X(x),
is known, then the team can determine a decision rule, a, which

minimizes the expected loss

(3) W)= Elu(xa)] = ) v [o(x,a)] o 4(x)

In this case the decision rule is a Bayes decision rule., The problem
is to ind values of the decision variable, a, that minimize W,
the expected value of v. It is not evident that a minimum exists,

and if so, how this can be found.

It is evident that W is a piecewise linear, convex function
of r, since, W, is a linear combination (with all coefficients

non negative) of convex piecewise linear functions,
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In addition, the set of all possible decision yeetors is a convex set
bounded from below., In fact, it is the non negative orthant. Thus
the minimum of W exists, and furthermore, any local minimum is a
global minimum.

If the wvector Q is the optimal decision rule, then gi < ry o

This is easily seen through a contradiction argument; that is,

assume Q& > ry Then define another (non-optimal decision rule

agr, such that

o
=
e
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From this we see that

(2,%) > (a x)

and as a result, V(Q, ) v(a,x), which in turn implies that

i

oy Vv

Wwia) < Ww(&). Thus, if is minimal, then so is a, and we can

conclude that a, <r_ .,
i="o
Suppose that P(Xi =1) = @ for i =1, 2, ,.., n, where 93

is the appropriate marginal value of the n dimensional probability
] ] { . "J i . = . ) -= > 3
function Dy We can say that if o ¢J, then a, aJ s  Also,
i < < .
if 95 < @50 then a, < aj
Since W is a convex, piecewise linear function, it is continuous,
and has a derivative at all but a finite number of points. Let us

denote each point where the derivative does not exist as a corner point.

Then, we can say that Min W(a) occurs at a corner point of W, &lthough



such a corner point is not necessarily a unique minimum, The fact
that the minimum occurs at a corner point implies that the problem

is a finite one.

Le£ us now turn our attention to the specific problem of finding
a decision rule, a, which minimizes W. The summation in (3) is over
all the 2" possible outcome locations of X in the n dimensional
space. These 2" points can be denoted as (0,05..4,0), (1,0,05...,0),
(0,1,05.4450) 045 (0,050..50,1) (1,1,05...50),.00, (1,15...,1), and

the corresponding probabilities can be denoted Poo., .o,vplo...o’

P010...0%"°** Poo,..1? P110...07* %20 P11,,.1 + It is evident that

the inner products are then, respectively, as follows: O,al,a2,...,

n ch s .
an,al+a2,...,al+a2%...+an. If we let 2" = N, it is convenient to
denote the inner products by, respectively, o’al’az""’am’an+l""’aﬂ;1

= a_ + sns =8_+8, e B rthermore, we
vhere, of course, a1 1+a,s sy =8y pFeeed Further s

can denote the corresponding respective probabilities as po,pl,pz,...,

Pn’pn+l""’pNL1'wa the problem can be stated as follows: Find values
of the decision variables, 8y 855000 ay.1 which minimize

=
(W) W) =v(0) g+ ) vla,) p,

i=l

subject to the N-n-1 conditions

al+a2--an+l = Q0

(5) ’

-

a +a +o.-+ - O
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Thus the problem has been transformed o a problen of stochastic

programming.

If v(r) has a derivative everywhere, then the minimm of w(a)
can be found by classical methods. However, a more interesting problem
occurs when v(a) is a piécewise linear, convex function. They W
is also a piecewise linear, convex function, and thus the above results

still hola,

Suppose v(r) is a piecewise linear function. Then this problem
can be easily solved by a rather well known procedure, First of all,
it can be noted that each of the components of the sum in (4) is
determined by different values of the same piecewise linear function.
Suppose for each i that v(ai) has m~1 corner points. ILet the

corner points occur at a, Also let us denote

a- L LN a'. -
12 %1222 Yiom-l

by ¢; an upper bound to the set of possible values of a; . Of course,

zero is a lower bound for this set of a, . Now, any as in the inter-

val [aik’ ai,k+l] can be written as

(6) a, =

+ = so e =
i VP e faker K00 L ees el

where yik+y.

1,k+l = l’ yik’yi,k,*l'l 2 O, aio =0 and a, = ai .

in

Likewise the corresponding value of v is
(7) v(ag) = vyl ) + Vi, %41 v(ai,k+l)’ k=0, Lreeey mel,

where again yik -+ yi,k+l =1, Vspes yi,k+l.2 0, a9 = 0 and = o .

Indeed, for any a; ero,ai], i=1,2, ..., n 4, we can write



m
a; = 2 VixPik * 330 = 8y, =y
k=0
n

vie;) = Z Vipviag,)
(8) k=

m
2 yik =1

=0

yik?—o’ k=0’ l,-o.,m
provided that at most two yik.z O for each i; furthermore, if for any

i two Yy ave positive and if s > 0, then either Yy

1{ s k-l

o¥ Vs el is also positive. That is, positive values must be
3

adjacent.,
Substituting from (8) the expressions for a; and v(ai) into
(4) and (5) we have the following problem: Find the values of the

m (%1} varisbles

Y112Y1p0 0 T ayoTppa e e s Vopa e e oWy g ryoeees Yy g -

Nel m
() W) = ) ) vlay) v, +v(0) B,
i=l k=0

Subject to the N-n-l1 conditions

m. m m
% .

e T L fadox T 2 fmr1,k Ymtl,k
k= k= k=0



(10) n m m n
< < S < -
Lodndie t L oo teeet ) e 7 ) fpdg = O
k=0 1e=0 k=0 =1

and also the N-1 conditions

m
(11) Zyik=1 i=1, 2,.0., N-1

=0
Thus the stochastic programming problem is now one of linear program-
ming with the non linear restriction that for each i, at most two
Vi 8re positive and then only if they adjacent. Such a restriction
to adjacent positive values can bé made readily in most simplex
computer codes. In fact, many such codes are already available.
Actually, in almost =1l cases in a séries of trial problems the usual
simplex method yielded a minimum which satisfied this condition of

adjacent positive values.

After the y,, are determined, from (10) and (11) then a; can

be found by substituting the y,, values into (8).

To illustrate, let us consider the following three memberteam
example: that is, n = 3. Suppose that the x, are independent with
= .k,

parameters = ,5 and = .6, and suppose that

o 0g 03
v(r) = Ir - lOOO/; i.e., r_ =1,000. Since a; < r_  for all i
and n =3, let us take c, = 2,000, We first define the following

decision variables:

i
2ol
+
0
+
1]

8158,52558) = 8 P ag = 8y + B35 3g = 8, - 235 & 1 o 3
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Furthermore, it is easy to see that because of independence,

Py = -120, Py = .080, p, = .120, Py = .180, Py, = .080, P = .120,

Pg .180, and Py = .120. The problem then is to find the minimum of

W(a) = .12v(0) + .08v(al) + .12v(a2) + .18v(a3) + .OSv(ah) +
.lav(as) + .18v(a6) - .12v(a7)
where v(r) =/r - 1,000/, subject to the conditions
&y *a, - g, = 0
ay + a3 - as =0

a. + a =0

27837 &

al+a2+33+a7 =0

Using the suggested transformation to linearity we can take

8, =0, 8,, =1,000 and a,, =, = 3,000. There is only one
i0 il i2 i

corner point and this occurs when a, = 1,000 for each i. The
corresponding values of v are v(aio) = v(0) = 1,000, v(ail) =
v(1000) = 0 and v(aiz) = v(3,000 = 2,000. Thus we can now

restate the problem as follows: Find Vig 2 O, i=1, 25000y 7T

k=0, 1, 2 which minimizes

W(y) = 120 + 80ylO + 120y20 + 180y3o + 80(yuo+2yu2) + 120(y5o+2y52) +

180(y6O + 2y62) + 2h0y72



subject to the conditions
- -0 -
Via ¥ Vo1 " Vi 7 WMy = O
yll + Y3l - y51 - 3y5l =0
Yoo * V3 7 gy - gy = O

Vi ¥ ¥y * Vg3

and the conditions

Vip* V3 =1
Voo ¥ Vpy =1
V30 * ¥qp = 1

Mo * Ny FNyp =1
Y50 + Y51
Yo * Vo1 T Vg2 = 1
Yt Vg2
and such that for each i, any paiz of solutions must be adjacent.

Note that it is assumed that yiS = 0 since ai45 1,000 for

i=1, 2, 3, and also that Voo = O since a7 =a; + a, + a3. The
solution to this problem as found, by computer* calculations is as

follows:

ylo = '5’ yll = _05} yzo = '5’ y2l = '5, y3o = '5’ Y3l = '5!

M = L Yoy = 1, ¥g =1s ¥y = -T5, Yoo = .25, and the rest

*Siemens 2002, Astronomisches Necheninstitut Heidelberg.
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of the variables are zero. This gives a value of W(y) = 370.

Substituting these values for V5% into expressions for a, we have:

= 500, a, = 500, a, =500 as the optimal decision rule. That

ay 3
is, each team member is to purchase an amount egual to 500 and the

expected loss is 370 when using this rule.

A modification of this problem occurs when each a; is
restricted to the range [b;, ¢;] where O<b, <e, <1 forall
i. In the marketing example, the lower limit could be interpreted
as requiring the team member i +to0 always purchase at least the
amount bi if the product is available at his market. The upper
limit, ci, can be interpreted as the known amount of the product
that would be available at the market if, perchance, any is available.
Such restrictions as these do not create any additional difficulties

outside of adding a few additional restraint ineqgualities.

In addition, the relativé advantages that result from the
various forms of communication are immediately available., To
illustrate, suppose in numerical example there exists a one way
commnication, such as a telegram, from team member 2 to each of
the other two team members. ILet us suppose further that the message
of this communication is his observation. In this case, the optimal
rule is as follows: if x., = 1, then a

2
= 0; on the other hand, if x

=0, a. = 1,000, and

1
= 0, then a

2

a3 o 1 =0 a3 = l?OOO and

a, can be anything. The expected loss is now W(a) = 200, which

is a reduction of 170 from the no communication case.
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Thus, if telegrams cost less than 170, then it is to the advantage of
the team to use this method of communication. In addition, the cost

can be reduced to as low as 120 by complete two way communication among

the team members.



