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1. Intrcdéuction and Sumnary. The paper {irst presents a brief

review of some aspects of the Jdistripution problems under null hypofheses,
of multivariate tests criteria belonging to a general class defined later
in the section. Some new results are then given (Starting section 3)
which extend the earlier work of the central case to the non-central

(Linear) case.

In multivariate analysis, we generally wish to test three hypotheses,
namely,

(I) that of equality of the dispersion matrices of two p~variate
normal populations;

(II) that of equality of the p-dimensional mean vectors for g
p-variate normal populations (which is mathematically identical with the
general problem of multivariate analysis of variance of means); and

(III) that of independence between a p-set and a g-set of variates

in a (p + @)-variate normal population, with p < q.

. .
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All tests proposed so far for these hypotheses have been shown to
depend, when the hypotheses to be tested are true, only on the characteristic
roots of matrices basad on sample observakions. For example, in case (I),
all the tests proposed so far are bassd on the characteristic roots of the
matrix Sl(Sl + Sg)_l, vhere S, and S, denote the usual sum of product
(3.P.) matrices and where both are ailmost everywhere positive definite
(a.e.p.d.). Thus Sl(sl + Sg)"l_ is #.%.0.4., whence it follows that all -
the p characteristic roots are greater than zero and less than unity.

In case (II), the matrix is S*(S* + S)-15 where § denotes the “between”
S.P, matrix of means weighted by the sample sizes and S denotes the
"within" 8.P, matrix (pocled from the S.P, matrices of % samples). Then
S is a.e.p.d., and S* is a least positive semi-definite of rank s = min
(p, £4-1). Thus, a.e., s of the characteristic roots are greater than

zero and less than unity and the p - s remaining roots are zero. In case

(II1), the matrix is )] S ; 8,, vhere S, is the S.P, matrix
of the sample of obaervatiicns on the p-set of variates, 822 that on the

g~set, and S the 5.P, malrix between ths observations on the p-set and

12?

those on the g-set. If p < g and p + 4 < k, vhere k is the sample size,

<

then a.e. the p characteririic rocts of this matrix are greater than zero

and less than unity.
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In each case, if the hypotheses to be tested is true, the 8 < »p

non zero roots §, (1 = 1,2,...,8) have the well known Fisher -

Girshick - Hsu - Mood - Roy distribution of the form;

S
(1.1) (e, 855-.058 ) =cC(s,mn) T 071 -0.)" 1 (o, - 5,)
1’ 72 8 ; jop 1 i i>j i 3

1

<o, <. < <
— 62 5 vee N 62 l

0<ge

where

(1.2) c(s,m,n) = ns/2 ; IM(em + 2n + s + 1 4+ 2)/21/

i=1

r (——2—5‘4;*——?-—*—-&) r(i/2)1 ,
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and m and n are defined differently for various situations described
in (121, [14], Now, if A, = ei/(l - ei) (i = 1,2,...,8), the joint
distribution of the A's is obtained from (1.1) as

) S
1l . BN
(1.3)  £7005000,) = C(s,m,n) [_“L_,_r_l_l ISVACEUD VO bt ] igj(zi - 2y)

< <
O<>\.ls '.'-—AS +m.

A class of test criteria may now be defined as:

(i) Symmetric functions of 8's, and similarly
(ii) Symmetric functions of A's.
Although this class has not been studied in its generality, various

special cases of this class have been considered by many authors.

Some of these special cases come under a subclass of this wider class,
namglj,

(ia) elementary symmetric functions (esi's) in the 0's studied
by Pillai [11, 13, 1k, 15, 161, Pillai and Mijares [18] and Mijares
£9,10], and

a

(iia) esf's in the \'s studied by Pillai [11, 13, 1k, 15, 16, 19].
An important special cese which comes under (ia) is Pillai's V(S)
critérion which is tad sim of the 6's. Under (iia) comes Lawley-
Hotelling criterion wiiich is a constant times U(S), where U(S) is
defined by Pillai [11L, 22, 13] as the sum of the A's. Wilks' likeli~-
hood ratio criterion which is the sth esf in (1 - 6)'5 is a special
case of the wider class (i) and is also a function of the esf's in the

O's. Similarly, the harmonic mean criteria for the 6's as well as

the A's proposed by Pillai [12] are special cases of (i) and (ii)
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respectively and are also functions of the esf's. Therefore, a lemma
ugseful for obtaining the moments of the esf's in the 6's or A's is

stated in the following section [15].

2., Moments of esf's. In this section we state a lemma concerning

esf's and show how the moments of the esf's in 9's or A's can be

obtained by applications of this lemma.

Terma 1. Let D(gs, g, 15 e gl) (gj ; 0, § = 152, v..s8)

denote the determinant

D(gs: 812 gl) =

Ir ar(r < ) denotes the P esf in s x's, then

1)

‘ 1 1 J
a D(g s B 95 v+ 5 &) =2 Dlggs 635 «o0 5 &)

where g5 = & + 8y J = 152y eeuyS, b

1
0,1 and ¥ denotes the sum over
t

the (i) combinations of s 8 taken r at a time for which r indices
t 1

gj = gj + 1 such that 8§ = 1 while for other indices gj = gj_ such

that & = O.

. k LA

2) (ar) (ab} D(gs, Bg12 cv> gl) (k, £ ;ao)can be expressed as
s\k (8.4 . s .

a sum of (r) (h) determinants obtained by performing on

D(gs, B 12 +0 gl) in any order 1) k times and 1) £ times with

r = h.



The proof of this lemma is given in [15].

Now let
(2.1) V(im + s - 1 + Qs eee 5 M+ Q) n)
Jl em.+s-1+q (1 )n 46 Xl em.+ql (1-6 >n a6
s 8 = 8 g *°° s T Vs s
o) o) :
IGQ em,+s..l+qs (l o )n ae JGE em.+ql (l 6 )n ae
1 - Y1 1 1 Y1 1
Yo o)
and let

Um+s -1+ Qs +ve > M+ Q) 7)

o m+s-‘l+q © . mtq
(2.2) I L .. A, 1 ar
o r o T
) (1 + hs) (1 + hs)
'y m+s-14+q A m+q.
2 Ay Soany ... I 2h 7 ar,
(o] r (o] . r
(1 +2;) (L+1)
qj > 0 J=1,2, voy 8, andr=m+n+s+1

Now, from lemma 1 and (1.1), it is easy to see that the k°® moment

! (s) {s) .th
My {Vi;m’n} of Vi;m,n , the i

esf in s 2's, can be expressed as
a linear compound of determinants of the V type in (2.1) where
Qgs Qg7 ++-> 9y may take different sets of values in different terms.

Further, the coefficients of the linear compound would involve as a common

factor C(s,m,n) but otherwise would be independent of m and n.



Similarly, {Uﬁs% 1, the k™ moment of the esf in the 1's
can be shown to be a linear compound of the determinants of the U~type
in (2.2). Now we state a second lemma [15].
Lemma 2. { (s) } is derivable for u'{v(s) Ybymaking the following
Hy i,m,n k* i,m,n yma

changes in the expression for the latter (obtained by evaluating the
linear compound of V-type determinants): (a) Multiply by -1 all terms
except the term in n in each linear factor involving n and (b) change
n tom+ n+ s+ 1 after performing (a).

A proof of the lemma is given in [15]. We may illustrate lemmas

o : (s) (s)

1l and 2 by considering the first moments of Vi,m,n and Ui,m,n .
Using lemma 1 we get [15]

C(S,m,n)V(m'l' S, m+S-l, s ey

(2.3) uy 1)

m+s-1+4+1,m+8s-41i-1,,..,m+ 1, m;n),

() n [(em+s-3+2)/(cm+2n+ 25 -j+3)].
J=1

From (2.3) using lemma 2

o8 e nl[<an+s-a+e>/<en+a-1n
=

(2.4)

For further results see [15].

3. Non-Central multivariate beta distribution. ILet A, and A

~d ~2
be two positive definite matrices of order p, Jﬁl having a Wishart
distribution [2,20] with f, degrees of freedom and (pseudo) non=

central (linear) Wishart distribution [, 3, 4, 20, 21] with f_ degrees

2
of freedom. Now transform



where G is a lower triangular matrix such that

1

At =00

and the density funetion of Y : p X f,, is given by

A~ 2 1

—(fl -p - 1)

J .

(3.1) x z (2 yy,) r[2(f L, a)] | Lo ,W) /3

j .
wvhere I is an identity matrix of order p
~D J
1

P 1 i ‘épr-p .
Ky =122 r[E(fl + Ly =i 1)/ o izl r[(fl - i+ 1)/,

A 1is the only non-centrality parameter in the linear case and Y1
is the element in the top left corner of the ¥ matrix.
Now V(S) criterion suggested by Pillai and U(S) (a constant times
‘Hotelling's TS), are the sums of the non~-zero characteristic roots of
. ! '\l . . o
the matrlx‘zz_ and gzpl-;gg ) :Ep respectively. Here s is mnminimum
T H
(f.,p). Also we may note that V(S) = trace Y¥ = trace Y Y and
2 Pt A
(s) _ '=1 LS R .
[V AREAE tr(I -YY ) -p=tr(1f “Y ¥) "-f,. It can be shown that the density
~ - ~, 2 [24
fanction of Y'Y for f < p can be obtalned from the density functlon of Yy

for >p if in the latter case the following changes are made F5 ?o]

..*:

> (fl-f2+p,p,f2).

Hence, for the eriterion V(S), {end similarly for U(S)), we shall only

consider the density function of L =Y Y for f, > p which is given by [8]

SN Ay e
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..)\2 1 1 5 (fg-p-l)/Q
. f =k AT+ s 5f5s
(3.3) 60 e FlBET,)s 5855 47 £y, 1) (flicp-l)/2
I-L

r-p A
where

k = n'P(P'l)/ L‘_ﬁl I‘[-]gi(fl+f2+l-i)]/{I‘[%(ffl—i)] I‘[-]2-'(f2+l-i)]} ,
is

J is the element in the top left corner of the matrix I and .F
11 ~ 11

denotes the confluent hypergeometric function. We shall call the
distribution of L: pXp the non-central (linear) multivariate beta
distribution with f2 and fl degrees of freedom, It may‘be noted that
m and n of the previous sections are given by m = (f2—p~l)/2 and
n = (:E‘l-—p-l)/2.

Pillai [17] had noted that the elements of the matrix L can be
transformed into incevondsnt beta variables which he showed for P = 2,3,
4 and 5. 1In £he following sechion a tﬁeorem is given [6] which proves

the general caose.

4. Independent bota vaviables:  Teb

11
I =
2
1
and we note that
RIS ES



and

l;p } 9»' = (L-0g) JLog - Ly - 28 / (23, (2 = 2990

Then it is easy to show that

2 and (L v =z/'\/zll(1-z

11 ~p2? ll) )

are independently distributed and their respective distributions are

1 1

1. 1 2, 2ot 'éfl l
1l 2
5002 4,]
and
1 1
3 5L (f2-l)- (p~1)-1] .‘ §(fl-P'l)
(h2) £5(Lpp0y) =%, Zpp p-17koo™l Y
where
k, =k n(q 5 Efn),
For further independence, we can use two types of transformations
given by
-1
) -
(%.3) u“(I Aty v w=T 7Y
! Fé . .
where r{p-l L, =TT and T :(p~1) x fp+l) is a lower triangular

matrix, It is easy to show that 1’1._(01*-1) and ;._22 are independently



distributed and their respective distributions are

1 1 1

——-(-l)l“—f v S(f,-p-1
(L. 4) f (u) P F(;i_pﬁi) -1, u)g( P ) lor f3(w)}
and

%[fg-l)- (p-1)-1) . %[fl- (p-1)-1]

(.5) 1, (Lpp) = By Ly, Log|
1
-é-(p-l) £ -p+l £y
where ky =1 {F( 5 )//FC—E)} k, . We may note that the

distribution of ;§22:(p-l)x(p-l) 1s central multivariate beta
distribution with (fg-l) and f, degrees of freedom, and the

similar reduction from 1522 can be carried successively. We may

also note that the transformation

2 2 2 .
(4.6) x; = ui/(l-ul—...~pi_l), i=1,2y0005p~l ,u =0

in (b,4) gives us the independent beta-variates and their density

functions are given by

e

1 .
-1 E(fl—l)-l

(k. 7) g, (x;) = {603, (e, - m x;  (1-xp)

MU

From the foregone, we have the following theorem:

f J2
Theorem I: If the distribution of L = o~ is given by (3.3),
4 Iy

i

then  fyys Lop =hyy - LA/ fyy wnd m= (Do) © g gy (etyy)
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‘ . 3 .
for w = T .-—N f&ll(l_.-zll) where T T = ’I‘p_ L, and T is a lower
triangular matrix] are independently distributed and their respective

distributions are defined in (4.1), (4.5) and (L4.4).

It can be verified for p=3 that from the variates gll’ ﬂvand_gee,

L3

we can obtain the independent beta~variates exactly the same as given by
Pillai [17] but the use of Ly9s & and -222 will give independent
beta variables different from those of Pillai [17] in spite of the

identical beta distributions.

5. The moments of V(p) in the linear case. It is easy to see that

{

(p) _ ; -
(5.1) v 291+ (1 - zll) 3 (Ep-l -522)113 tr L,

It

1 '
=(1 - £9)(Q-uw+ w Lsu) + tr L, + 1.

Now let 6, (i=1,...,p~1) be the characteristic roots of Lo-

Then, fmem (5.1)

. p-1 p-1
(5.2) v®li. Z 9, -(1-q9) T(1-nw) +z 0; ufj.
i=1 i=1

Again, let zll 0 be a variate whose distribution is the same as that
3
of zll when A = O and independently distributed of 1 and ’g22.

Let Vép) be the V<p) statistic when A = O. %$hen we may note that

(5.3) =y = B(1-0y) o) -E(l-gy,) = £, 6(»)

(5.4) x

2 2
5 = E(l-,ell.o) - E(l-,cll) = fl(fl+2) Al/2
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(5.5)  xy=E(l-gyy o) - B(1-g )3 = £ (£42) (2,34) 2,/8
and
(5.6)  xy = Bty o) - B(L-ay))" = £ (5,42) (2,44) (£,46) 4,/48

where ¢ = fl + f2

axn(-2%) ) 0O rar Gy 1+ 1)y,
1=0
By = 8(v) - 8(5r2) 5 4, = 6(v) - 28(w+2) + 6(wl)

(5.7)  &(v)

6(3) - 38(2) + 35(wl) - s(w6) .

and

Ay

The results (5.3) =- (5.6) are obtained by using partial fractions

for 1/n(w+2)(vih) ... .
Now using (5.2) -- (5.6)

(s.8) mvi® . 1] = E[Vép) - 1] + x E(8)

(5.9) | E[V(p) -131° = EFVép) - 1]2 - X, EQg?) + 2xg E{aB)
(5.10) =v®) o133 . E[Vgp) - 177 +xB(07)-3x,Blep] W3, E(eB)

and

(5.11) mv®) o1t E[Vép) -t 2, 5( 8) uxBE(aB3) -6x,E(0"p7)

+ )-&XlE (0138 ) s

where



t 1

oz=tr£.22 and _B=-~l-'3!.1‘_‘us

Y
Using (4.4) and the fact that 6 S are the characteristic roots of

’322, after some lengthy computations [7] we can show that

612 265 = 3 tomggp)teegomn, )

1 1 .
= ?1 ri( ); for i =01,2,3 ;

l -

fl(fl+2)

(5.13) B{o'p?) =

E(trgge)i[f(2)+2f(l)(tr;22)+3(trL22)2

h(trQLez)] 5 b r§2) for i = Q,1,2 ;
fl(fl+2)

(5.14) E(o 8 ) L E(trL ) rf(J)+3f(2)(trL2 )
£, (£,+2) (£,+4) 2

+3f(l)f3(trL ) ~L(tr L )1+{15(tr;22)3

2"22

=36(trL,, ) (tr L, . )+24 tr L. ] = L r§3)
522 2% 22 ) 22 fl(fl"'z) (fl"'"l') 1

for i = 0,1,
5.15 EB) = £\
( ) (87) (tr2) (£.eh) ( ) E[ T (trL22)

+6f(2)¥3(trL22) -h(trggzg)}+4f(l){l5(tr922)3

J+elh(tr. L, )1+105 (trL

-36(trD,, ) (tr L 22)

2~22 322
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-360(trL ) (trngﬁ)+288(trL22)(tr3§22)-l92(trh§22)

w1k (tr 5 = L )
Py e T B

where

(5.16) f(i) =j£1 (fl-p-l+%}) .

Hence, we have

(5.17)  B(Pl1) = 5rP)) 4 (o) 2D

H

(5.18) mw{® 1)° = w(v(p) 1) +6(v)[2r<l) ir(2)1+(1 (2))6(v+2)

DI VAV EEE AAE RN ORROREN Y
+6(”*E)Egrl(g)'%ro(3)]+6(v+4)[%ro(3)] )

and

(5.20)  m®1)* w m( Pla)hus (o)pae Mege Pt (50, %fgr()(h)]

ss(wadiors 2 (3), 1 1My
16



1k,

1o(3) 1 .G 1k
vo (veb) [y 3)- Lr Mo Loty

Now, using the lemma 1 of [15] and results of V +type determinants

in [18] the moments of V(p) can be obtained [6].

Hence s We get

p=l}(f,~1
(5.21) E(V(p)) =1+ --*-—-—--—---——(U'“‘ )(:2 ) + fl'{--P-";]-' -1} &,
v-1 v-1
and
- P - 1 _ )
(5.22) E(V(p))2 =14 (p-1)( Qi) (24 f2+ . (p 2)(f2 2)
v-1 vl V42
f ~c - -
+ .&}_(_Ii_.?_)_:._ - 2Vfl{l---ﬂ“-:'-" . (p 1)(f2 1)
viL) (v=2) ve1 o1 -

(L)1) f1ope Tl (F-2)(p-2)

§o———C 2 .
v-1 vil v=2
£ (p-2) 2(p-1) . _ 3(p-1)
+ =11 a, + fl(fl+2)[l- + D
(v#l) (ve2) v-1 (v=1)(v+1)

(-1)(@=2) __ e _q, 3(f2'l)}l}._a ,
(W1)(w-2)(£42)  * v P

+
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where

(5.23) e, =1) 03 Jlir(wai)t} exp (43)
i=0

and

P

(5.24) 8, = {z ()\2)1/[5.!(v+2i)(v+2i+2)]} exp (-xz) .
i=0

E(V(p))3 and E(V(P)))+ are given in [7].

6. Moments of U(p) in the linear case. t may be noted that

6.1) ul®) - er(r -1

Va ™
Simce, as pointed out in section 1, Ay = ei/(l-ei)(i=l,...,p)

Now consider the follewing. Auxua.

Lemma 3, If L: D% p is a symmetric and positive definite matrix

and U(p) = tr(l - Aﬁml -=p, then

’”P -

(6.2) 1+ U(P) = {(L - ’0‘11)(1 - u’u)}-l
-1
+ (1-u 2) (u Mu) + tr M

where '

4/ 4 1 1

[ 3 3

L= 2 4 t(p-1)xd = {09 (=00)Y (T, 55D55) 1w,
4 By
! -1



Proof: We may note that

P
(1-2..)° 0 1
11 r~—~
-1
(T -7 = .
312 o
2 (I, 1-Dpp) BESTES
_ 1
5
0
,\-’
and
}" * _l 1 1
t Vi B \ Bby 2 w/(ny

Hence

-1 fa~1
(6.3) tr(lp-&) =l-(l-2‘2) +{(l—£ll

fH,(

From this, the lemma follows.

-1 ..22) ]ll/(l'u ).

t -1
1-u u)l "+t (I
) (o g1 et (r

16.

-1

A

I
/\-p-

-L

-1 ~22

11

1~ (=2y7 )

)-l
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Now the distribution of M is given by

p=l - fo4f i £oeitl  £-i ~{p-L)(p-2)
6 1 [reAE e ] o

2

ng%{fg-l-(p-l)-l}

1
S(f,+f,~1)
2412

It

Further

\=1 -1 .2 . \=2 -2
(6.5) E(l—ﬁll) -E(l—ﬁll’o) =2\ /(fl-2),E(l-yll) -E(l-zll,o)

=1/ (£-2) (£,-)10 (22242 (v-2) (223)]

-3 -3
B(1-2,) - B(1-0, ()

22730m-2) (@2%)%3 (v-2) (v=h) (22%),
(£,-23 (£, -1) (£,-6)

and

=L -4
E(l—ﬁll) -E(l-ﬂll’o)

2220 1 (9-2) (21%) 346 (0-2) (0o ) (21214 (0=2) (=) (9-6) (212)
(fl-z)(fl-h)(fl-6)(fl-8)

Let 8, = 1/i-u u) and o = tryﬁ(u'gu)/(l-u(u)

5

1.
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(6.6) E(s) = [(£,-2)(£,4) ... (£,-24)1/0(8,-p-1)(2,-p-3) ...
(fl-p-2i+l)] for i =1,2,3,4 ;

= {0 (e-2)(8-4) .. (2,-21)

(fl-z)(fl-h) ‘e (f1-2i)(f1-p-2i)

(6.7) E(czlﬁg) = E(trM)

(fl-p-l)(fl-p-3) eor (£y-p-2i-1)
=(fl-2)(fl-h) cen (fl—Zi) ﬂ§l) for i = 1,2,3.

(6.8) E(a20l)

| i (£-2)(£,-4). .. (£,-21) Er(fl-p-zi)(fl-p-zi-z) 5

{trM)

—~

(£,-p-1)(£,=p=3). .. (£;-p-2i+1 —(fl-p-2i-l)(fl-p-21-3)

b (tr )

(£,-p-2i-1) (£, -p-2i-3)

= (£1-2)(£4-1).. . (£ -21) ngg) for i = 1,2 .
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6.9)  E(og8,)

(£,-2)

(8,2 1) (2,-5-3) (£,-0-5) (157

B (£, -p-2) (£, ~p-4) (£, -p-6) (txp)>

-12(2-p-k) (trM) (br M)+2 (tr )]

= 4’1-2) n{3).

Hence, we got

(6.10) E(1+U(p)J= E(1+U(()p))+ (27\2) 'n_](_O)

6.21) 2a+0(P)? = 510{P))2 (2220222 (v-2)n {1

(6.12) E(l+'U_(p))3=E(l+Uép))3+(2)\2)3ﬂ?()o)+3(2)\2)2[(v-2)1’1§o)+‘n§l)]

+3(2A%)v-2) (w1 {Ps2(v-2)1{Hen (21

(6.13) m(1+0 ) ren ()M @2 Ok (023 (we2)r{n )

+6(2A%)7 (v-2) ()i w2 (u2)n{Hun ()3

(@) (v-2) () (o-6) 443 vm2) (vt D (o-23n P3Ny
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Now by .using lemmas 1 and 2 and the values of the determinants

in [18] the moments of U(p) are obtained as follows:
r1(P) , 2y 1¢n
(6.14) EIlU‘F’) = (pf2+2x Y -\.Llﬂ-pml)-)

and for fl >p+ 3,

633)  vannl®) 2002, )+ (8 Papt, ) (8,1 (2,47, -pe1)]

6.15 Var{U'¥") = = - : = .
(£,-p)(£,-p~1)2(£;-p~3)

The third and fourth moments are given in [7] .

Some comparative pover function studies of Wilks' criterion
?

s 8 . . . .
V( ) and U( ) in the linear case have been carried out and are

: {
; - s . N A8
presented in [17]. Aporowimations to the distributions of V' )

-
!

- s : ,
and U( ) also have been atiempted [17]
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