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Semi -~ Markov Analysis of a Bulk Queue

Abstract

Customers arrive at a single counter according to a Poisson process
- of parameter A. Initially and immediately after each departure the size
of the next batch of customers to be served is drawn. The successive

batch sizes Bl s B are independent identically distributed random

2;".
variables, which take on values between one and X. If after the n - th
departure there are less than Bn+l customers present, then all customers
are served at the same time. If there are Bn+l or more customers present,

then Bn+ of them enter service and the other wait. The service time of

1
the batches are independent random variables, which may depend on the
batch size. The order of service is immaterial.in this paper.

We point out that the gqueuve lenghths after departure points together
with the times between departures form a semi-Markov process. The.distri-
bution of the busy period, the queue length after departﬁres and the gueue

length at time t may be studied using properties of the imbedded semi-

Markov process.

A. Description of the Model

We assume that customers arrive at a counter according to a Poisson
process of parameter A. Initially and after each departure the sizes
of the successive batches to be served are drawn. Iet Bl’ B2,... denote
the successive_batch sizes. We assume that they are independent

identically distributed random variables with:

(1) P{B =%k} =b
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If after the n - th departure, there are less than Bn+l’ customers
present, then all customers are served together. If there are Bn+l or

more customers present, than Bn+ customers enter service and the

1
remaining ones have to waif.

We assume that the successive service times are independent random
variables and that a batch of size v has service time distribution
B (*), v=1,...,K

Let §o denote the queue.. length at t = O + and let gn, n >l
denote the queue length immediately after the n -~ th departure from
the queue.

Let XO =0 a.s., and let Xn’ n=1, 2,,,. denote the time between
the (n-1)th departure and the n-- th departure. The random varisbles
{ §n, n > dj form a Markov chain on the non - negative integers and,
because of the Poisson arrivals, the random varidbles Xn are con-
ditionally independent, given the gn’ The bivariate sequence
£( > Xn)’ n=0, 1,... } is therefore a semi-Markov sequence as
defined by Pyke [L].

In general t = 0 is not a point of departure, so the initial pair
(gl, xl) will have a probability distribution which is different from
thoge of later transitions. Without loss of generality and in order
to simplify the derivations, we will assume that t = O is a point of
departure, so that {(gn, Xn)} is an ordinary semi-Markov process.

We denote the transition probability distributions by Qij(X),i.e.

(2) P{e, =axzx|e, ;= '}=Qij(X), 1,9 = 1yuas



and we obtain:
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for i>K, j =0, 1,...

We make the convention that in the a@bove formulae on integral is zero,
of a negative factorial appears in the integrand. The first k+1 rows
of Q(x) are non - zero, while the rows below the (K+1) th form an
infinite upper triangular matrix,

If, instead of considering the time~intervals Xn between
departures, we consider the time-intervals Yn during which the
server is busy between successive departures, then the bivariate
sequence {gn, Yh} is again a semi~Markov sequence. Its matrix
R(x) = {Rijﬁx)} is the same as the one given above, except that

the factor 1 - éh(x«y) does not appear in the first integral.



B. The Distribution of the busy Period

The busy period is equal to the time it takes for the semi-Markov
process with matrix R(x) to reach state O for the first time, starting
in state one. The successive busy periods fopm a renewal process. The
initial busy period will in general have a different distribution from -
the following cues. Ve will calculate the distribution of the busy
period only for those after the first. The initial busy period may be
studied in a completely analogous fashion, but we will.omit the details.

Let G(k,n,x} denote the probability that the busy period (after
the first) consists of n service periods at least, that the first
n service periods last for x or less and that at the end of the n = thi
service k customers are waiting. We then have the following recurrence
relations:
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with the same convention as above.
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Iet I'(x,n,s) and ha(s), o=ls...,K denote the Laplace-Stieltjes trans-

forms of G{k,n,x) and Ha'(x) respectively, then we obtain:

! o)
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ZI"(K+c,n-l,s) z b, f g(sly (k;y)k-w“K"(I dHa(Y),
g=0 o=1 ° (k+a-KFU):

We now introduce the generating functions:

(6) Z z'k I'(K+k,n,s) = CK (z4n,s)
k=0 '
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n
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j W r'(rn,s) = EI‘(W 58), for m=0,...,K1.

n=1



and obtain successively:

(1)), 7 Tl1,8) = By (sih-ha)
k=0

and for n> 1:
K-1
\/: X I'(k,n,s) + o CK(z,n,s) =

k=0
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For Re s >0, jw| <1 or Re s> o, |wi<1 we have

(9) wZ pde'o’ h, (sth-Az) | < |z] K 4



on the unit - circle lz! = 1. It follows by Rouché's theorem, that
the denominator in (8) has exactly K roots inside the unit - circle
!zl_ < 1. The funection Dy (z,w,s) is analytic in z,w,s in the region
[2] 21, Re s > o, lmif 1 so the X roots yl(w,s),...;yK(w,s) must
also be zeros of the numerator.
This leads to the following system of K equations in K wunknownsfor

the functions Eo(w,s),..., EK_l(w,s):

(10) wh, [s+k-hy (w,s)] =

K-1
E_(,s) +kzl Be(55) [ypn,8) = wlo e vty) B (srhody (,5))

-1
v e

-x..,z bosz (w,s) h, (s+)\-7\yp (w,s))j!
a=l

for p = l,l'.’K

The Laplace - Stieltjes transform of the distribution of the busy
period is gliven by Eo(l,s) and it is easy to obtain this as the

ratio of two determinant from formula (10) i.e.

(11) Eo(w,s) = g wh, (s+%3-)\yp) A;‘(w,s) — A‘ID{'-'i(I.;,S) “

1 -1,
\1 1 Ap(w,s) - Ag Vw,s). “



where

k k .
Ap (w,s) = Y, (w,s) ~ W(b\)+"'+bK) h (s+h-)\yp)

- v-1
-wz o, Y:'a(w,s) ho: (s+)\-)\yp)
o=l
If we 8et w=l and let s~ O + then Eo(l’ 0+) gives us the probability
that the busy period is of finite duration. We note that as s —> 0 +
and w=1 one of the roots, say yl(w,s) will tend to the real root of the

equation.
K
= -et -
(12) x° ) baxK b (A-AX)
o=l
in the unit ~ eircle,

This equation clearly has two roots in ‘_Q,l:‘l. One root is X=1
and the other root is X = 'yl(l,0+). This follows by continuity

and by a consideration of the graphs.

By the usual argument, we find:

K
= il i - <
v;(1,0+) = 1 if and only if 2 b, (\m, - )< ©
a=1
and
K
-yl(l,O—l-) < 1 if and only if Zbu (Ama-oz) >0
o=l

where m_ is the first moment of the distribution HO[(~)

It is clear from formula (11) that yl(1,0+) = 1 implies Eo(l,0+) = 1.
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Under mild:additional conditions it also follows that Eo(l,0+) <1l1lgf

the contrary inequality holdss

An important particular case

If‘bl Sea = bK—l = 0 and by= 1 then we obtain a queueing model
which has been studjed previously by Bloemena [l], Le Gall [2],
Runnenbupg [6] . The distribution of the busy period, given by formula

s s r
(11), reduces to that pPreviously found by Neuts | 3]

In order to avoid messy calculations we will now limit ouxselves to
this special case in our derivation of the queue length distributions.

The same arguments apply in the general case.

C. The Queue length in Discrete Time

In the particular case at hand s the transition probability distributions

become:

(13) g t) = [ [18CV] M 4y @), 50, 1.,
o 3!

Qij(x) = 0, i>K, j< ik

.
=\ j . .

Qij(X) = I "V (ay)? aH, (v), 0<i<K, j®.0,.1,...
o] ,j: .
X

9yt = | oIt w () isxk, 5> 1ok

4 O .

(5+K~-i)!

We first calculate the iterates of the matrix Q(x), given by

@

Q(m%—n)(x) ) 2 'ng) % Q\()gl) (x)

v
v=0



10.
(0) -
(x) = 8;, I, (x)
where I_ (x) is the distribution, degenerate at zero. Qé?) (x) is the
Joint distribution of the n - th departure time, togzether with En,

conditional upon the fact that there are i customers in line at t = O+

We have the following recurrence relation:

X u
(14) Qi(?+l)(x) - | Q_j(g) () [ A oy () au e

o

J.
-1 x
z: I Qi( n) (x=u) ék?ikgli de(u) +
v=1 J!
K+J x )
N j o) (xu) 8 ) an (),
v=K (3=v+K)!

for all i and j;

Taking Laplace - Stisltjes transforms we obtain:

(15) q(ﬁl)(s) =2 (n) (s) J (Sﬂ)y_(_L at, (y) +

A+s
K-1
L e j '(S*”Vg ) any(o)
v=1
X+j
Z (n) (s) J' (S+7\)Y (}\ 23+K VoaH (y)
v=K (j+g-v)!
Let us set
) ) a0 2= vl (o)

v=0



then we obtain:

K-1
< (n+1) J . K (n+l) _
(17) Z‘ qij (S) “~ - z U'i (Z,S) =
Jj=0 '
X-1
<
A qgg)(s) ht (s+r-Az) + /) qgﬁ) (s) hv(s+h-lz)
Ats v=1
+u®) (55) b (sth-az)
i »5) Iy z
Now set:
(18) }i q§?) (s) W = Wij(w,s), for j =0, 1,..., K-1
n=0
-
and ZJ Uén) (z,8) v = Vi(z,s,w)
n=0

n+L

Multiplying by w in (17) and summing up, we obtain

(19) Y, (z8,m) =

- -1
[ZK - W by (s+h-hz)] {zi - Wio(w,s) [l -w _A_ hl(s+h—lz)]

Ats
K~-1

- E: Wiv(w,s) [zv-whv (S+K-KZ)}l}
v=1

The unknown functions Wio(w,s),..., Wi,K—l(W’s) may be determined by
the standard argument. The demoninator has K roots inside the unit-
circle z =1 forRes>0, w<1 or Res>0, w <1, ILet us
denote them by Y (wys)s P= 1,...5 K then the functions Wiv(w,s),

v=0, l,..., K-1 are the solutions of the K equations:
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(20). Wio(w,s) [1 -w A b (S+7»-7\'yp )]

A+s
K:l
+ .ZJ (w s) rypfw s) - wvh (s+\- hy (v, s))] = Yp (w,s)
v=l

We also calculate the actual generating function of the q(a)(s) and

obtain:

@) ) P el 6

-1
[ZK-th(sH\-}\z)] ‘[zK+i + [ZK A

2 hl(s+7\-kz) -hK(s+h-xz):l W H%g(fw,’g)

K-1

) Wiv(w,s) [szvhv(s+A-hz) - hK(s+k-hz)] z¥ }
v=1

For s=0+ we find the generating function of the transition probabilities

) = e -J‘g =1}

for the imbedded Markov chain:
(22) z z 29 P(n)
1J
n=0 Jj=0

-1
[zK - th()\-)\z)J {zK"i - il _(w,6) [thl()\-hz), - h.K()\-}\z)]

K-1

) o) 2 [F7ny 0nka) - by Gena)]

v=1
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The imbedded Markov chain is irreducible and aperiodic, In order
to find the stationary transition probabilities, we multiply equation

(22) vy (1~w) and let w tend to one. We obtain:

(23) z 2 s o=
j:

K-1
M [hK(l-kz) - ZF hl(k—hz)J + 2; nvzv [hK(K-Az) -z hv(k-hz)]

v=1
K _ h (A-2z)
where
7 = lim  (l-w) W, (w,0), for v =0, 1,..., K-1
Wl 1v»
now, in determinant notation
(&) w, (Giy0) =
v
\ v K-1 . |
\l l—whl( -kyp) - yp(w,o) -y, (w,0) -th_l(k—Ayp)

Loty b, ) o= 3 (0,0) v by, ) == 4K 0)vt (hedy) I

|

If yl(l,0+) < 1 then m, = 0 for v=20,1,..., K-1 and therefore

all ﬂj are zero.

If yl(l,0+ = 1 we leave the numerator in (24) as it is and divide’

the first row in the determinant by l-w.

Taking limits the numerator tends to (-1)Y times the minor of the

element yi (w,0) evaluated at wel. This minor does not depend on i.



The first row of the determinant in the denominator tends to a row

of constants Ao, Al”"’ AK_l which are given by:

-1
(25) A = [1+ml~,l’(1, m]
| -1
A = [l - (v-hav) y{ (1, 0+)]

From the equation:

X 1
(26) Y (0 = i [Aeiy, o, 0)]’
we obtain after differentiation that:

@) v (L 08)= 1
K-Adr

If X = aKA then again all "j = 0 and the chain is null - recurrent

If K> aKA then we obtain:

]
=

(28) Al - oy ,
K - AaK + hal
= L3 h .
AV K O!K . s fOI‘ v = l’.-g’ K-lo
K - laK + la& -y

1.

The minors of these-elements in the determinant go to well - defined

limits as w —- 1,
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If we let =z tend to one in (23) and assume K> o

thén we obtain:

K-l
(29) m, [" o=ty "‘1] Z [" Q‘K XKy - K-v:]
K =i K

as the limit.

If we substitute the expressions found for Toseess T then

K-1
we see that the resulting sum is unity, which verifies again that in

this case the nj form a bona .-.fTide probability distribution.

D. The Queue length in Continuous Time

Let Mﬁj(t) denote the expected numbers of visits to state j in
the interval (o,t], starting in state i, in the semi-Markov process

with matrix Q(x).

It is known that

o]
_ (v)
(30) mye) = ) alV)
v=0
Let by 5 (s) denote the Laplace - Stisltjes transform of Mﬁj(t)’ then

it follows from formula (30) that ,
@ K-1 o

(31) Z (S) J = Z By g (s) 29+ K z by wix(s) 2
J; =0 v=0

K-1
— .
J K
Z‘ Wij (1,s) 2¢ + 2 v, (z,s,1)



The functions Wij(l,s),-z,j =0, L.uuy K-1 and ¥, (z,5,1) may be
calculated using formulae (19) and (20) '
If we know the renewal functions Mij (t)s iy, 3, = 0, 1,... then

the distribution of the queue length at times t is obtained easily
Let

e

(32) B, (e) = P {5(t) = 5

It then follows that:

t
(3) 2 (0) =] 3T g (),

and for j > O,

(34) 2, (8) =
% .
j 5 dMiO(t) JZ-T hahe [1—Hl(t-fr—u)] M (t-T-u) [A(t-rr-u)]J : du
(3-1):
! ¢ c -k (t-7) g-v
0T aute] 2O ] g o
o=

v=1

in which

1- ) q (t=1)
=0

l - Hv(t“’r), fOI‘ Vv = l,-oa, K"l

1~ H.K(‘b-v'r), for » > K.
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Taking Laplace ~ transforms of the Pij(t) and denoting them by

pij (s) we ob’galn:

(35) by, () = (s:M)h s, o(s)

pis(s) = 2w (s) j 3 (sr)e [l ql(g)] 0 a

M (3=1):

J
s ) my (g)] e v (0] 009 a

v=1 (3-v)!

fOI‘ j=l,"0, K"l

piy(s) = A hy(e) j a(sh)e [1 4,0) A T
K-1 ®

c L@ [ @] pol
J ©

+ . =(s+\)g T, . j=v
\Z:K ulv(s} J.0 ) [l HK(Q)] T(%\))l— ‘

for § > K.

The generating function of the P, 5 (s) is given vy:

e~}

(36) ), 20 by (s) =

J=0



Ay (s) [ % Yy P [l - hl(s+h-xz)]] +

S+A S+AtAZ
K-1
1 Ei p. (s) zY fl - B (s+h-kz)] +
S+)\.")\Z RRAY; i hYJ
v=1
ZK [ ; \p
g+A-Az i hK(SH\-hZ)] L l"'i,K_,_.«g{;E;--Z i
p¢=O
A

: a
— W, (1,s) [ 1 Z [l - h (s+h-hz)%1 +
s+A is Ty W 1 _id

K-1
' v
% z; L (1,8) = [1 - hv(s+x-xz)] +
StAwdz  y=1

L [1 - hK(s+x-xz)] v, (z,8,1)
s+h=\z

These functions W, (1,8), v=20, 1,0.., K1 and Vi(z,s,l) were

determined above.

We proceed by studying the asymptatic behavior of the probabilities

Pﬁcw.
* * *
Let By o Byseees ue,..‘. denote the mean recurrence times of
the states O, l,... in the semi~Markov process with matrix Q(x).
Applying the Key renewal theorem to the integrals in formulae (33)
*
and (34) we obtain that the limits Pj of the probabilities Pij(t)

exist and are given by:

18.
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¥
37) B =_L
Au;
Pj =1 f [1 - Hl(v)] M )t av
o ® (3-1):
rj-‘ ©
-+ \ZJ _l_ J‘ [l - H (V)] é?\v S)\ )J-V av,
¥
v=l py  ° (3-v):

*
bo (§=1)!
K;l @©
), L j l1-1 (v)] o) av +
v=1 BYTO (5-v)!
j oS
1 [l - H ('v)—1 v ghv)j-v av
% m‘ JO K _l ?
v=K (i=Y):
for j > K.
in which 1_
b ¥

It follows that all P;- = Q0 if K< oth since the semi-Markov
process is then either transient or null - recurrent.

If X > oh  then all u’;, g = 0, 1,,.. are finite and the P; are
well definad.

*
The formulae (37) relate the probabilities Pj in an interesting way
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to the stationary probabilities of the semi-Markov process with mstrix

Q(x). Let nj, J =0, 1,... denote the first moments of the distribution

@

- L

function E; de(x) then it 48 known that the stationary probabilities
a=0
for the semi-Markov process are given by: Pyke (5].

* =1
(38) Ty o= njdg

*
The nj are different from the "j found above,

As an example the last of the formulae (37) may be written as:

* ¥ -V j-1
(39) Pﬁ = Io 1- Hl(v) e () av +

it (3-1)!
K-1 o
¥* - ™
E: ™ j 1-H(v) ghv W)™V av +
1 V ody R
V= o, (3=v)!
J - . _
Ez ™, J 1- HK(V) EAV(XV)J-V av
v=K ° ( 3 )1
oy Jmu)!

for j > K.

If the initial conditions of the semi-Markov process are chosen so
that it is stationary - Pyke [5] - then formula (39) expresses the total

probability that £(t) = j by saying that at time t +the semi-Markov



process is in some state v = 0, l,...,J and that during the busy

part of the bhackwards recurrence time the required number of customers

have arrived.

: *
There appears to be no single way to relate the Pj to the

stationary probabition nj for the imbadded Markov chain.
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