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A Mendelian Markov Process with Multinomial

Transition Probabilities™ I. The Binomial Case

by

R.G. Khazanie and H.E. McKean

1., Introduction

In any finite genetic population, the effect of chance involved in the
sampling by which one generation replaces another causes gene frequency
change as long as fixation or extinction is not achieved. In genetic ter=-
minology this fluctuation in gene frequency due to the finiteness Bf & popu~-
lation is called ''random genetic drift''.

Fisher (1922), using an equation of the diffusion type, was the first
to meke an effort to quantitatively describe the phenomenm of random genetic
drift. In the corrected version of this work (1930 b), he found the general
result that the rate of decrease of the genetic variance in the population
due to drift was 1/2N per generation, where N = number of individuals
of mating potential. This result was confirmed by various authors using
different methods (e.g., Wright (1931), Malecot (194k), Feller (1950)).

The particular form of the diffusion mbdel which has had the widest use
was introduced into genetical literature by Wright (1945). This equation
which plays a fundamental role in the theory of gene frequencies is the Kol-
mogorov forward equation or =-=-- as is commonly known among physicists -
the Fokker=-Planck equation. ZEarlier Kolmogorov (1935) had introduced the
steady state form of the forward equation in genetics. The complete solu—.

tions to the problem however, were obtained much later and are due to



Kinura (1955).

The problem of random genetic drift as a problem in finite Markov chains
was flrst considered by MaléEot (l9hh). Based on the largest non-unit char-
acteristic root of the t;;nsition probabllity matrix Malébot obtained the
asymptotic rate of decreaée of heterozygosity. This is essentially the same
as the previously known resulis due to Fisher and Wright for steady decay.
VFeller (1951) succeeded in finding a general expression for all the char-
acteristic roots of the transition probability matrix.

In using diffusion approximations to explain what happens in a finite
population the authors started with a somewhat inconsistent premise of an

-infinite population. Their treatment has a serious drawback in that though
in actuality fhe state space is made up of discrete values it is treated as
though it were continucus. The tacit assumption in such an approach is that
for large population size thé gpproximation of the discrete time, discrete
space process by the continuous diffusion process does not result in ser-
ious error. It was only recently that-a rigo;ous juStificétion of the dif-
fusion approach was given by Watterson (1962) with respéct to the processes
considered by Wright (1945) and Kimura (1954, 1955).

The validity of the diffusion approximation as providing adequate nu-
merical-solution to the problem concerning the probability that a particu-
lar gene is lost or fixed by a certain time was considered by Ewens (1963).
Since exact expressions wére not availlable his method of getting exact re-
sults consisted in simply powering the transition matrix using a high speed
computer and collecting the apﬁropriate terms.

In spite of the exhaustive literature on the subject it must be poiﬁted
out that work to date has failed to provide exact answers to problems under

rendon genetic drift from the true perépectiVe of the finiteness of the



pobulation size. It is the objective of this paper to fill this void.

2.v Population Structure

Let us consider a random mating population of N diploid monoecious
individuals which is kept constant in size by maintaining N individuals
in every generation. Such a population could also be regarded as composed
of 2N hsploids. In order to simplify the discussion, we assume an ldeal-
ized situation where selection, migra?ion and mutation are absent and gener-
ations do not overlap. The discussion in this paper will be restricted to
the case where there is only oné segregating locus with two allelomofphs

A and a. ‘ ®

As far as the malting system.is concerned we are demanding a somewhat
stronger version of random mating in that a) each individual is capable
of at least N offspring per generation b) the fact that a parent is
used once in no way affects the probability of his beiﬁg used again. Thus
the 2N gametes which are picked to form the next generation are.obtained
in 9N independent and identical Bernoulli trials.

Iet us suppose that the frequencies of A and a in some generation
are respectively i and 2N-i. Our basic chance quantities are Bernoulli

rendom veriasbles X, (@ = 1,2,...,2)) where,

{1 if oth gene in the next generation is A
xa=(
0 if obth gene i1 the next generation is a.

and

() P(x, = 1) = i/2N.
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Denoting by _5(: the total frequency of the A gene in the next generation,

2N
we have the relation :}_{—_ = z X where clearly,
a=1
> I\ . S 2N-J
(2) | P(E = 3) = (5) @ewd (@ - 1/20)=0 .

Now letting zn represent’ the frequency of A in generation n, it is

2N+l states (the possible frequencies for A), and the transition probabili-

clear that the sequence. Zl, X,se++ represents a Markov Chain with

tieé Py 4= P(Zn = jlzn-f i) are given by (2) above. (In the sequel we will
denote 2N by M and trensition matrix Hpin by P).

In— defining the transition probabilities in the above manner we adopt
the mathematical convention that 00= 1. This makes sense from the genetic
point of view since with this convention Poo= 1 end pp=1 which merely
says that once the population 'bécomes homozygous for any gene it remains in

that condition forever.

= T . n
5= P&y 31K = 1) py;
that, starting in the kth generation with i A-alleles, the population will

n

We now define p is thus the probability
. 1

consist of j A-alleies and 2N-j a~alleles n generations later.

3. Exact Expressions for the n-stage Transition Probabilities.
In this section we will express the n-stage transition probabilities in

terms of the moments of zn- Iet if0 or M; then, by the Chspman-Kolmo-

-

l.
gorov equation we have
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The above relation suggests a procedure for calculating p;_l 3 alterna=-
tive to the calculation of the nth power of the transition matrix P=| Ipi .j] |

Thus, if the moments of order 1,2....M of the random variable X are

“n-1
known for each i, the above relation could be used: The procedure for ob-
taining these moments is outlined in the appendix.

Iet LE = (, p u2 veey i M)' vhere the prime indicates the

n’ i n"' vy gHpreeees ML v

transpose, and iun = E(}_(nlg_{o= 1). It is shown as a result of Theorem 1
of the appendix that the following recursive relation existsamong the vectors
of conditional moments:

1Pnay = C4Eps



C= -aliM(l)/M 6  0everiOeeeriewo ]
aalM(]f)/M ' aeeM(g)/Mz 0vevveOiruasno
arlM(l)/M arEM('e)/Me e arrM(r)/Mr .0
RS Y @) , amﬁ(r)/rf. + oy i !
- ) d
with
e = Sil (“Jé:fisl,)i:l for & € {1,2,.e.7}
1=0
and

M(s) = M(M-1) sqeee (M-sHl).
By successive iteration we get
(&) E Ll g
- . - T <My !
where, since the initial number of A-alleles is i, iEO= (150 ) 0eesiguneyi) o
In order to obtain the conditional moments of '}_f_n given ZO= i we are thus
led to find the (n-1)th power of C. This is accomplished by means of a sim-
ilarity/transformation which diagonalizes C, C has M distinct eigenvalues,

R’s: M(S)/MS, s = 1,2... M and hence Cn-l can be written as



Zx" Uy

where ﬁ;, ﬁg are respectively the post-and pre-eigenvectors of C corres-

ponding to the eigenvalué Ls. GSee'appendix section A.2.1 and A.2.) Hence

1¥n-1 * X’*n hl 5 iPo*

Since A,= M(l)/M = 1, we may also write

M

= | n-l =
ORI\ R Pt L
s=2

Expression (5) glves us the vector of the conditional moments of order
ry T = 1,2.4..M, in the (n-1)th generation. We have the following two cases

to consider for finding the n-stage transition probabilities by (3).
. ARCTE -
1) Jj=t=0. In such a case E(gﬂ_llgo_ i) = 1.

2) j#0. Ir +50, B(ET|T = 1) 1s the (j+t)th component of the

colum vector JE .. That is,

M M
=jtbw _ .y L ) n- l B
(6) B(X ;IX=1) = Z‘*ﬁt 1 161 + y (M /B) Ui szal
p=1 s=2 B=1

-

where U is the oth elament of the post-eigenvector correspondihg to 'xk,
and Viep is the rth element of the pre-elgenvector corresponding to Xk' |
Now it is indicated in appendix sectlon A.2.2 that v o= {o if B>s

1 if B =

—
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Therefore, Vyg = io if B>1 Also it can be shown (see appendix A.2.1)

1 if B =
that u,. = WL g4t = 1,2,....M. Hence from (6)
t4j=-1 (s) n-1
(7) Plx=1) =1 u z Z(M /i) ,J-FtssB .
s=2 p=1

Let us now consider (3) in which we have expressed pgj in terms of the
moments of zn-l' There are two distinct cases that need to be considered:

Case 1: J > 0. COnsequently j+t > 0, E(XJ+t|X i) dis given by

(7). Hence
M-j 3
poym ) (DI ( i Z X(M(S)/MS T g g

t=0 ' 5=2 B=1

In the above consider only the term

M-J
Z (-0 (a9 I
t=0 B
M~J .
= (i) ) 0,
t=0
which on account of the relation
M=j . 0 if j+M
Y (-0t - ,

£=0 1 if j=XM



y.:felds

M-3 0 if j ¢ M
Y0 )t L I

t=0 it J = M.

e Loy

We thus get, for J &M,

M=J M s .
8 ¥ = MY (D Py Yol et v aP
t=0 s5=2 P=1

end for J=M

(9) | Diy = ;LTI £ Z X (M(S)/M?’n-l Y VsB .

P s e 7T _ o5y - =
Case 2: j=0. If j=0 E(X—n-l Xy = i) =1 when t = O. Therefore,
from (3) we get
. M
n b My et et e
Pio - l + Z ( l) (-t)M E(.)_(_n_l Z(.O - i)'
t=l

Since t >0 in the sumation, E(._}E;_ 'ZO = i) can be obtained from (7)
with J

0. Consequently,

M
n t M, ,~t ., t-1
Pio 1+ z ('l) (t) M iM
=1

M M s ‘
N G I NN Dl WIS
=L s=2 p=1 -
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M . M

Since Z (-?l)t(f) = -1, the term Z (-l)t(l_f)M-t 1 M1 in the above ex~
t=1 t=1 |

(.

pression reduces to ~ %1- « Vhence

_ M M s
. -t )] -1
0o gy-a ke Yt 9t T TG v,
t=1 8=2 pB=1

The three expressions (8), (9) and (10) together give us the n-stage
transition probabilities of the system. It may be seen that in order to ob-
-te.:-’,n “hese probebilities the quantities that need to be found are u,o.s and
VS-B. thege quantities which depend only on M (not on n) are easily obtain-
able since they are the elements of the post and pre-eigenvectors of the tri-
'a.ngular matrix C.

« Let us next consider the limiting behavior of these transition probabi-

lities as the number of generations becomes indefinitely large. For

8 = 2535++43M we note that

uls) pf

1 2 s=1
(l - 1\1)(1- I'I)ou.'o(l“ "I'JI"")< l-

Therefore lim (M(S)/Ms)n-l =0 for s = 2,3,0-.,M0

1, > QO
Consequently, since W o ,vs'3 do not depend on n, we get
1) m pt =1-%
n —>00 10 M
. n i
2) Um o Bay <
n >

and 3) if 340 or M, lim p,. = 0.
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The extinction or fixation of A i1s thus bound to occur if the popula-

tion is allowed to mate at random for a large number of generastions. These
observations are in accord with the findings of earlier investigators.

Because of symmet;} it can be easily seen that p?o = p?l-i,M’ The set
of probabilities of fixafion of a gene, fng: 1= 1,2...M-l} » is thus suf-
- ficient to specify the probabilities of its loss. A formal proof of the
symmetry argument is found in Khazanie (1965), but is not included here.

It is.clear that for each n and i, the set of ordered pairs

n R v . : :
fj‘, P ,j} is a conditional probability function. (See Khazanie (1965)). |

Temma,: Xp'i‘j = 1, where the pf.’j_ are given ty (8), (9), and (10),

J=0
' 4, Distribution of Time to Homozygosity

Jt was pointed out near the end of the previous section that extinction
or fixation of the A gene is bound to occur. This conclusion suggests the
€
Interesting problem of determining the time required for the population to

reach one of the homozygous condivions. We may define the problem formally

as follows:
Let Ty denote the time taken to reach either 0 or M for the first
time glven that initially there were i (0 <1 <M) A-alleles. ('ro= T ©

identically,and therefore these cases are excluded), Clearly,

The population will become homozygous in the very first generation if
it becomes aa (i.e. A is lost) or AA (i.e. A is fixed) in just one
" transition from 1. Thus in order that A be lost in one generation s one-~

step transition i —> 0 has to take place and the probability of such a
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transition is p,.. In a similar manner the probability that the gene is
i0

fixed in one generation is p Y Consequently

-

PN

(1) _Je(-r_,L =1) = Pio * Piy

If n > 1, the gene A will be lost exactly in the nth generation if it

exists in the population in the (n-1)th generation but is lost in the nth.
n-1

Pio °

to the fixation of that gene and the probability is P?M - p?{al. Clearly,

The probability of such an event is p:_.lo - A similar argument applies

then,

S < n-1 n-1
(12) P(ry = n) =Dy =Py + Pio ~ Pio *

Now by symmetry p;._lo = pﬁ_i’M end as a result,

o _.n n-1 n-1
(13) P(ry =n) =pg =Py * pM-i M PM-i,M

Substituting in (13) the values of P?M and Plr/ll-i y 8 given by (9)
’

we get after simplification, fror n>2,

M s
(1t) P(-r =n) =M™ z z @) 18 y22 (8 ) pBany 1 +(M-1)‘3]uMs

s=2 B=1

Letting C(i,s,B) = (hi(S)/Lls-l)[iB+(M-i)ﬁ]uMsv it follows that

P(Ti= n) = M\IZ ZC(:’-:S:B) (M(S)/Ms)n-Q
g=2 p=l
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(We note sbove that C(1,s,B) does not depend on n). (11) and (14) to-

gg’cher give us the probability function of Ty
- Moments of -ri: In order to find the moments of

i we will first de-

rive the probatility generating function of Ty Then

E(zTi)

Gi(z)

: M M ‘(2 M = N |
[(l' ﬁ‘) + (%) ] g M-M Z Z Z C(i,S,{S)(M(s )/Ms)n_2 o0
' n=2 =2 B=1

it

. M v
iMoo M M : 2 T, (s) p5yne2
[(2- M) + (M) ]lz+M z ZC(i,s,B)z Z(ZM YR,
8=2 ﬁ:l ) n=2 | . .

It is seen from the sbove that G-i(z) is defined at least for values of z

[ 4

oo} ' .
. -2
such that |z <SZD:4'1' . Therefore Z(zm(s)/l\f )n = 1/(.1-zM(s )if) ana

n=2
consequently,
uogm o Mos
i i ~ 2
(15) Gi(z) = [(1- ﬁ) + (ﬁ) ] z+M s{:e BélC(i,s’ﬁ) (l-zM(s )/Ms)

Differentisting Gi(z) once with respect to z and gsetting z=1 we

get E('ri). Thus



1k

E(Ti)' 3o i(z) -

j 2 .(s) s

- )M )M M o(1,s,p 2z-7" M /M

( " ’ 22 62 (oes0) (l-ZM(S)/MS)g
z=1l -

which yields‘

| TR -M v % ol s) e
(16_) B(ry) = (- &) + _.) ™Y Y e(1,s,8) Oy

8=2 p=1

Differentiating Gi(Z) twice with respect to gz and setting 2=1 we
get E(-ri('ri-i)) from which we can obtain the variance of Ty by means of

. \ 2
the relation V(r;) = E(r,(r;~ 1)) + E(r,) - [E('ri)] . We have

sy (s)
Mo 2(3- ( -+ 2(2z- & is )M(ss)
B(ry(r;-1)) = ™)) o(1,8,p) ——2E L X
8=2 P=1 (1_ ZM(S))S
s
M z=)
which gives , -
, M s
(17) E(T, (1,3~ 1)) = M1 Y c(i,s,B) 2 .
e sgz p=1 (1))

By the ahove-mentioned relation the variance of T; Can now be obtained.
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5« Discussion

Tgbles* 1 to 6 give the distribution of time to reach homozygosity for
various population sizes and for all possible corresponding initial gene fre-
quencies of A. On e.ccouﬁt of distribution s&nnnetry the values corresponding
to i and M-l are identical. .It will be seen that for small populations
Tirxetion or extinction usuelly occurs early=-in the first few generations.

Tor M=h 1t is almost certain that the population will be hbmozygous much_
'before the LOth generation is reached. On an average, _'bhe number of genera=-
tiors is less than five whateover the initial gene frequency. Even for a popu-
lation of size elght, by the 4Oth generation there ls less than one. per cent
chance that the population will remain heterozygous, irrespective of the ini-
tlal gene freguency. As the population size increases the expected number of
generations to homozygosity also increases, and as would be anticipated, the
closer 1 1s to M/2 the larger is the expected number of generations to
homozygosity. It may be observed further thet larger variance tends to be
associabed with larger expected number of generations.

Ewens (1963) investigated the accuracy of the diffusion approximations
by comparing them with the exact results that he obtained by nmnericai methods
with the aid of a high speed computer. By the method of inversion Ewens obe~
tained the exact values for the mean times'for a population of size 12. His
results are in agreement with ours given at the bottom of Table 5. Ewens
alos found numerically the probability of fixation of the A-gene by the nth
generation by powering the transition matrix P. It was pointed out by Ewens
that the diffusion approximation underestimates the true absorption proba-
bility for all initial gene frequencies and all the generations that he |

considered (8, 16, 32 and €4). From Teble 7 it appears that the values in

%
Other tables may be found in Khazanie (1965).

—
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our rows Ts 15 and 31 come closer to the values from the diffusion approxi-
mation for generations 8, 16, end 32, although the reason for this is not

apparent to the authors.
6. Summary

For the case of a finite random mating population with one segregating
locuz and two alleles, whose gene frequency is subjected only to the force
of genetic sampling, exact exrressions are obtainzd for the n-stage transie
't:i.bﬁ »wobabllities and for the time to homozrgo:ity with regard to any ini-
tial gone frequency. Tables of the. camulative distribution function of time-
to~homzygosity are provided for several small posulations, as well as table
of the probability of fixatlon for ore population size [M%l2].

I.ﬁ a subsequeni paper the above anvroach has been extended to the general
case of several indcpendunily segregating loci each with an arbitrary number

of slleles. .
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"~ Table 1. Cumulative Distribution of 74> Time to Homozygosity (M=h)

Initial _ 1=02
Frequency B
- (1 =3) -
..LGeneration
b} . 0.32031 0.12500
6 ' 0.84109 0.78812
11 0.96229 0.94972
16 0.99105 0.98807
21 0.99788 0.99717
26 - 0.99950 0.99933
31 0.99988 G- 99984
36 0.99997 0.,99996
PR 0.99999 0.99999
45 1.00000 1..00000
Expected ~ L=
Value of 7, 3.68566 = 55172
Verience J1.52013  12.36147

i



18

" Dable 2. Cumulative Distribution of T4s Time to Homozygosity‘(M#6)

Initial
Frequency . 1=1 i=2 i=3
(1 =5) (1 =14)
Generation . : _ .
1 ‘ 0.33492 0.08916 0.03125
6 0.76458 0.62358 0.57662
11 0.90544 0.8487), 0.82980
16 0.96200 0.93920 0.93160
21 0.98473 0.97557 0.97251
26 0.99386 0.99018 0.98895
31 0.99753 0.99605 . 0.99556
36 0.99901 0.99841 0.99822
41 0.99960 0.99936 0,99928
46 0.9998 0.9997h4 0.99971
51 0.99994 0.99990 0.99988
56 0.99997 0.99996 0.99995
61 - 0.99999 0.99998 0,99998
66 1.00000 0.99999 0.99999
T 1.00000 1.00000 1. 00000
Expected _ : :
Velue of 7, h.623po- 6.5848L ~ 7.20503
Varience 25,70988 30,57276 30.842kY

of Ty



' Table 3. Cumilative Distribution of T;» Time to Homozygosity (M=8)

Initial

Frequency i=1 i1=2 1=3 i=14
. (1=17) (1 = 6) (1 =5)
Generation .
1 0.34361 0410013 0.02367 0.00781
6 0, 74159 0.55946 0.45115 0.141521
1n 0.86834 0. 77433 0.71793 0.69914
16 0.93248 0.88425 0.85532 0.8L567
21 0.96537 0.94063 0.92579 0.9208k
26 0.98224 0.96955 0.96194 - 0.95940
31 0.99089 0.98438 0.98048 0.97918
36 0.99533 0.99199 0.98999 0.98932
L1 0,99760 0.99589 0.99486 0.99452
46 0.99877 0.99789 . 0.99737 0.99719
51 10.99937 0.99892 0.99865 0.99856
56 0.99968 0.99945 0.99931 0.99926
61 0,99983 0.99972 0.9996L 0.99962
66 0,99991 0.99985 0.99982 0.99981
L 0499996 0.99993 0.99991 1099990
76 0.99998 0.99996 0.99995 0.99995
81 0.99999 0.99998 0.99998 0.99997
€6 3.99999 0.99999 - 0.99999 0.99999
91 - L.C0000 0.99999 - 0.99999 0.99999
96 1.00000 1.00000 1.00000 1..00000
Expected Pa
Value of ™ 5, 2648k 7.93824 9.41533 9.88868
Variance 4247679 514, 98743 5746264 57.60497

of 'ri



~ Tgble 4y Cumulative Distribution of 7;s Time to Homozygosity (M=10)

- Frequency
(1=09) (1=8 (1=17) (1 =6)

Generation ) ,
1 0.34868 0.10737  0.02825 0,00615 0.00195
6 0.73797 0.54131 0.40467 0.32421 0.29764
1 0.8L4894 0.73168 0.64805 = 0.59792 0.58122
16 0.91092 0.84164  0.79217 0476248 0.75258
21 0.947h0 0.90650 0.87728 0.85974 0.85390
26 0.9689L 0.94479 0.92753 0.91718 0.91373
31 0.98166 0.96740 0.95721 0.95110 0.94906
36 0.98917 0.98075 0.97473 0.97112 0.96992
by 0-99361. 0.98863 0.98508 0.98295 0.98224
46 0.99622 0.99329 0.99119 0.98993  0.98951
51 099777 0.9960k  0.99480 0.99405 0.99381
55 0.99868 0.99766 0.99693 0,99649 0.99634
B 099922 0.99862 0.99819 0.99793 0.99784
66 0.99554 0.99918 0.99893 0.99878 0.99872
(2" C.99973 0.99952 0.99937 0.99928 0.99925
76 0.¢2984 0.99972  0.99963 0.99957 0.99956
8z C.29991. 0.999€3 0.99978 0.99975 0.99974
86 0.2999" 0.99990 0.99987 0.99985 0.9998L
91 C.99997 0.99994 0.99992 0.99991 0.99991
96 0.99998 0.99997  0.99995 0.99995 0.99995
fgfagczngi ~ 5.75328 8.95376 1.03112 12,20835  12.59052
Vﬁgl:n°e 60.86641  83.69559 91.0080k  92,55735  92.6547T3

i



 “Table 5. Cumilative Distribution of 75+ Time to Homozygosity (M=12)

Initial

Freguency i=1 i=2 1i=3 i=4 i=5 i=6
(t=11) (1=20) (i=9) (1=8) (1=71)
Generation o ' '
k] 0435200 0.11216 0.03168 0.00771 0.00158 0.00049
6 0.73584 053990 0.39238 0.29128 0.23232 0.21295

11 0.84007 0. 71002 0.60935 0.53772 0.40484  0.48057
16 0.89701 0.81280 0.74733 0.70058 0.67254  0.66319
21 093337 0.87887 0.836h7 0.80619 0.78802 0.78197
26 0,953 0.92150 0.89416 0.87k56 0.86280 0.85888
31 CeP709 0.94926 - 0.93150 0,91881L 0.91120 0.90866
36 0,0819k 0.,96716 0.95566  0.94745 0,94253  0.94088
b1 0.96531 0.9787h 0.97130 0.96599 0.96280 0.9617k
R 0.99243 0.9862%L 0.98143  0.97799 0.97592  0.97524
5L 0, 20710 0.99110  0.98798 0.98575 0.984k2  0.98397
55 0,90533 - 0,99h2L 0.99222 0.99078  0.98991 0.98963
61 op,j,f) 0.99627 0.99496  0.99403 0.99347 0.99329
€5 0.95¢ 0.99759 ©  0.99674%  0.9961k  0.99578 , 0,99565
TL 0,992 0,998k 0.99789  0.99750 0.99727 0.99719
76 , 0.9 0.99899 0.99863  0.99838 0.99823 0.99818
8L 0.y c 0.99935 0.99912 0.99895 0.99885 0.99882
&6 G-95, 0.99953 0.99943  0.99932 0.99926  0.9992%
9l 0,945 0.99973 0.99963  0.99956 0.99952 0.99951
96 O uquo 0.99982 0.99976 0.99972 0.99969 0.99968

Expented

Velie of 7, 6.1L721 9.76618  12.30623 14.00436 14,98402 15.30467

Variance

of +i 80.37k32  115.50017 129.92218 134.8334k 135.9126h 135.98308
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-~ .Table 7. Exact Values of P:II.IM’ Probability of Fixation by Generation n (M=12)

Initial

Frequency 1=1 i=2 1=3 1= i=5
Generation .
1 0.00000 0.00000 0.00000 0.00003 0.00024
2 0.00020 0.00001 0.00007 0.00040 0.00175
3 0.00001 - 0.00017 0.00089 0.00320 0.00919
4 0.00015 0.00100 0.00365 0.01001 0.02309
5 0.00063 0.00304 0.00893 0.02071 0.04171
6 0.00168 0. 00655 0401660 0.03438 0.06306
7 0.003k1 0.011k45 0.02617 0.04995 0.08559
8 0.00580 0.01753 0.03707 0.06654 0.10829
e 0.00376 0.02448 0.04879 0.08348 0.13049
10 0.01226 0.03200 0.06090 0.10031 0.15181
Al 0.01536 0.03084 0.07306 0411672 0.17203
12 0.01872 0.04777 0.08505 0.13249 0.19105
3 0.023%56 0.05564 0.09668 0.14749 0.20884
A 002757 0.06332 0,10783 0.16166 0.2254 .
15 0.03i39 0.07072 0.11843 0. 17497 0.24077
i 0.03529 0.07779 0.12845 0.18740 0.25500
37 0.03352 0.08448 0.13785 0.19898 0.26815
18 0.04)07 0.09078 0.14664 0.20973 0.28028
19 0.04513 0.09669 0.15483 0,21970 0.29146
- 20 0«0L8: 0 0.10220 016243 0.22891 0.30175
21 0. 05557 0.10733 0.16948 0e237h1 0.31122
20 0005344 0.11209 0.17600 0.24526 0.31992
23 : 0.055534 0.11649 0.18202 0.25248 0.32792
2L 0.05525 0.12056 0.18758 0.25913 0433527
25 0.06010 0.12432 0.19269 0.26525 0.34201
26 0.067.99 0.12779 0.197h0 0.27087 0.34821
o7 '0.06574 0.13098 0.2017k- 0.27604 0.35389
28 0.06335 0.13391 020572 0.28078 0.35911
29 0.,06682 0.13662 0.20938 0.28514 0.36389
30 0.06819 0.13910 0.21275 0.28914 0.36828
31 0.0654k 0.14138 0.21583 0.,29281 0.37230
32 0.07059 0. 14347 0.21867 0.29617 0.,37600
33 0.,07164 0.14540 0.22127 0+,29926 0.37938
34 0.07261 0.14716 0.22366 - 030210 0.38248
35 0.07350 0.14878 0.22585 0.30469 0.38533
36 0.07432 0.15027 0.22785 0.30708 0.38794
37 0.07507 0.15163 0.22970 0.30926 0.39033
38 0.07575 0.15288 0.23139 0.31127 0,39253
39 0.07638 0.15403 0.23293 0.31310 0.39454
40 0.07696 0.15508 0.23436 0431479 0.39638
41 0.07749 0.1560k 0.23566 0.31633 0.39807
46 0.07955 0.15979 0.24072 0.32233 0.40U463
51 0.08088 0.16221, 0.24399 0.32621 0.40888
56 0.08175 0.16379 0.24611 0+32872 0.11162
61 0.08231 0.16480 0.24748 0433035 0.41340
66 0.08267 0.16546 0.24837 0.33140 0.41455
vl 0.08290 .  0.16589 0.24895 0.33208 0.41530
76 0.08306 0.16616 0.24932 0.33252 0.41578
81 0.08315 0.16634 0.24956 0.33281 0.41609
86 0,08322 0.16645 - 0.24971 . 0433299 0.41630
91 0.08326 0.16653 0.24981 0.33311 O.41643

96 0.08328 = 0.16658 0.24988 0.33319 0.41651



Indtial
Frequency
Generation

FEREBvovoumrwn e

0.0002k4
0.00608
0.02268
0.0h7h1
0.07628
0.102}8
0.13633
0.16495
0.19190
0.,21702
0.24028
0.26175
0.28150
0.2995h
0.31631
0.33159
0.34562
0.35848
0.37027
0.38108
0.39058
0. 40007
0.40840
0.41603
0.42303
O.Lh2oLL
0.43532
0. 44071
0. 44565
0.45018
0.45433
0.4581L
0.46163
0.16482
046776
Ou 70Uk

. 047201

047516
0.47723
0.47913
0148087
0.48762
0.49199
0.49481
019661
0.49783
0.49859
0.49909
0.49941
0.49962
0449975

04998

Teble 7. (Continued)

0.00155
0.01799
0.05015
0.08942
0.13007
0416927
0. 20584
023940
0.26996
0.29769
0.32281
0.3k558
0.36624
0.38499
0.40203
0.41753
0.43166
Q441453
0.45628
0.L46701
0.47681
0.48577
0.49396
0.50146
0.50831
0.51459
0.52034
0.52561
0.53043
0.53485
0.53890
0.54261
0.54600
0.54912
0.55197
055459
0.55698
0.55918
0.56119
0456304
056473
057129
0.5755h
0.57629
0458007
0.58122
0.58197
0.582L5
0.59276
0.58296
0458309
0.58318

0.00771
0.04712
0.10195
0.15804
0.21016
0.25690
0.29829
0.33481
0.36707
0.39563
0,42100
0.44363
0.146387
0. 48204
0.49841
0.51318
0.52654

- 0.53866

0, 54966
0055967

0.56878

0.57709
0.58467
0.59159
0.59791
0.60369
0.60898
0.61382
0.61824
0.62230
0.62601
0.62940
0.63252
0.63537
0.63798

0.64038
0.64257
0.6L458
0.6L46h2
0.64811
0.64966
0.65566
0.65954
0.66206
0.66368
0.6647
0.66542
0.66586
0.66614
0.66633
0.66645

 0.66652

0.03168
0.11217
0.19397
026506
0.32533
0.37578
0. 41838
0. 145465
0.48580
0.51276
0453629
0455696

0.57522 .

0.591k)%
0.60591
0.61888
0.53054
0.64106
0.65056
0.65917
0.66699
. 0.67410
0.68057
0.68647
0.69185
0.,69676
070124
0.70534
0.70909
0.71253
0. 71566
0.71854
0.72117
0.72358
0.72579
0.72781
0.72966
0.73136
0.73292
0.73434
0.73565
0.TLHOTL
0.74399
0. Th611
0. 74748
0. 74837
0.74895
0.74932
0. 74956
- 0sTHOTL
0. 74981,

~ 0.74988

0.11216
0.24710
0.34965
0.42683
0.48632
8-53332
« 5T,
o.gbe 8
0.62889
0.65111.
0.67018
0.68669
0701311
0.71380
0.72502
0.73501
0.74393
0.75194
0.75915
0.76565
0e 77154
0.77688
0.78172
0.78613
0.79015
079381
0.79716
0.80021
0.80300
0.80555
0.80788
0.81001,
0.81197
0.81375
0.81539
0.81689
0.81826
0.81952
0.82068
0482173
0.82270
0.826l5
0.82888
0.830h5
0483147
0.83213
0.83255
0.83283
0.83301
0.83312
0.83320
0.83324

0.35200
0.51063
0.6026L
0.66313
0.T0606
0.73816
0."76308
0.78299
0479926
0.81279
0.82421
0.83398
0.8L2L2
0.84977
0.85622
0.86192
0.86699
0+87152
0487557
0.87922
0.88251
0.88549
0.88818
0.89063
0.89286
0.89489
0.8967h
0.89842
0.89996
0.90137
0.90266
0.90383
0.90491
0.90589
0.90679
0.90762
0,90838
0.90907
0.90970
0.91028
0.91082
0.91288
0.91h22
0.91508
0.91564
0.91600
0.,91624
0.91639
0.91649
0.,91655
0.91659
0.91662



25

References

Ewens, W.J. 1963. Numerical results and diffusion spproximations in a genetic
process. Biometrika 50: 241-249.

Feller, W. 1950. An introduction to probability theory and its applications.
John Wiley and Sons, New York.

Feller, W. 1951. Diffusion processes in genetics. Second Berkeley Symposium
on Mathemntical Statistics and Probability: 227-2L6.

Fisher, R.A. 1922. On the dominance ratio. Proc. Roy. Soc. Edinb. 42: 321~
341,

Fisher, R.A. 1233z. The genetical theory of natural selection. Clarendon
Press, Oxiowr. '

Fisher, R.A. 193G, The distribution of gene ratios for rare mutations.
¥roc. Roy. ige. Bdinb. 50:205-220.

Goldnerg, S. 1337 . A sirgular diffusion equation (abstract).. Bull. Am. Math.
Soc. 58: 13,

Khazonie, R.G. \l?éffy On a mandslian markov process with multinomlal tran-
sition puorstiiitica. Ph.D. thesis, Puirdue University Iibraries.

Kimura, M. 1954. Stochastic processes and distribution of gene frequencies
under natural selection. Cold Spring Harbor Symposium on Quantitative
Biology 20: 33-55.

Kimwa, M. 1955. Sclution of a process of random genetic drift with a con-
tinuous model. Proc. Nat. Acad. Sc. L41: 1hL-150.

Kirara, M. 1957. Some pfoblems of stochastic processes in genetics.  Ann.
Math. Stat. 28: 882-901. .

Kimura, M. 1961. On the probability of fixation of mutant genes in a popu-
lation. Mathematics Research Center, United States Army, Technical Sum-
mary Report No. 275.

Malécot, G. 194k, Sur une probleme de probebilite en chailne que pose la
genetique. C.R. Acad. Se t 219: 279-281.

Maldcot, G. 1948. les mathématique de 1'hérédité. Mason et Cie, Paris..

Moran, P.A.P. 1958a. Rcndom processes in genetics. Proc. Camb. Phil. Soc.
5’-!' H 60"71 .

Moran, P.A.P. 1958b. The rate of approach to homozygosity. Ann. Hum. Gen.
23: 1'5. .



Mbran, P.A.P. 1962. The statistical processes of evolutionary theory.
Clarendon Press, Oxford.

Robertson, A. 1G52. The effect of inbreeding on the variation due to reces-
sive genes. Genetics 37: 189-207.

Watterson, G. 1961. Markov cheins with absorbing states (a genetic example).
Ann. Math. Stat. 32: 716-729.

Watterson, G. 1962. Some theoretical aspects of diffusion theory in popula-
tion genetics. Anmn. Math. Stat. 33: 939-957.

Wright, S. 1931. Evolution in mendelian populations. Genetics 15: 97-159.

Wright, S. 1937. The distribution of gene frequencies in populations. Proc.
Nat. Acad. Sc. 23: 307-320. -

Wright, S. 1942, sStatistical genetics and evolution. Bull. Am. Math. Soc.

Wright, S. 1945. The differential equation of the distribution of gene fre-
quencies. Proc. Nat. Acad. Sc. 31: 382-389.



27

Appendix. The Moment Recurrence Relation

A.l. A useful property of the binomial distribution. The properties

~of the binomial distribution (the parameters being specified by the genetic
situation) to be develo_pe_d in this eppendix form the cornerstone of the en-
tire development of the v}ork in this paper. The particular property in the
binomial case was utilized by A. Robertson (1952) for obtaining expressions
for the variances (within and between lines) as inbreeding progresses in a
population of limited size.

We will state the following well~known résul‘r. » without proof, in the
form of a lemma. | _b

Lemma 1: If {Zn, n>1} 1is & sequence of random variables with the
Markov property, then '

Bl = ) = B, x)IE, = 1.

<

Theorem 1. If the distribution of _)_C_n +1 given Zn is binomial with
probability of success Zn/M, then
v o
' T -5y o s) 7 .
(a-2) B(Xoy % = 1) = ) o (65)1) B(EIZ = 1)
: s=1

where 89 s=1,2....r, are Stirling's numbers of the second kind defined by,

s=-1

1, 4yl
- ars = z ‘(_(g'?-i-{?.'ig_.' 32 S € {l,e-onrz 3
1=0



Proof: By definition

M T J T M-J
B, %) = ) M D -,
J=0

Now for every non-negative integer r +the term ,jr can be expressed
es a linear combination of the factorial powers of j not higher than the

rth. That is, letting

(51 (3sL), if s >0
RONeh - |
i F) if s=0

r

- r .(s
there are numbers 81q28pp et 028, such that. J = Zars .J( ) . Hence

8=
x M
B(xC,, [% ) = Z Z s, 308 (M)( (1- 3
J=0 s=1
r ' J 55 M-J
= Zars YJ( 31 M— (-n) (l':ﬁ-
s=1 Jj=s
r s M | J-s M-J
-s)! P X
- Y ol G Z G G (e
8=l
r 7 8
= Z a,rs M(S) (%) .
s=1

Applying lemma 1, it now follows that



B(Gal% = 1) = 5[] o WG 15, = 4],

thus giving

We see that (A.l) establishes a relation between the rth order moment
in the (ﬁ+1)th generation and all the moments up to order r in the nth gen-

v =X R S r
eration. Let E(§n+ll§0 =1) = 1, -

Then
ifn41 T iMn

2
ifns1

3y 2
L (1- M/ it*n

3 i, 2 Iyq. 2y 3
ip’n+l = il-'-n + 3(1" M) i“n + (l" M) (l" M) i“n'

and sO On.

Putting these relations into metrix notation, noting that a = 1 and

I 1 for every r, we get -
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o ;,' - - .L
- ! 1
fpey | = |1 o o 0 0 iy
2)
2 M( . . : 2
1 l —— Qevede 0 susreven o) ‘ B
.L.n+l i M2 i.n
ur | 1 a MSE—Z- M(r) 0 0 p.r |
.; - eSS sa0 e LI BN N .
m.n+l i r2. M? Mr imn
. 1 o .
. ! - »
W 1 u(2) o H
iTa+l L S M? Mr M? .MM i“n

That is, E ,,=C 4B, vhere ;B4 18 the vector of moments in the (n+l)th

generation and C is the matrix of coefficients. By successive iteration

we then get I .= Tl ;Eg» where since the initial number of A-alleles
is i, B = (i,ie,...,ir,...,iM)'. As can be seen, in order to find the

moments conditional on i1 in the nth generation we are led to find the nth
power of C which, being triangular, is relatively easy to handle. The
method will be outlined below.

A.2. The eigenvectors of C. Our objective in this section is to ob~

, M
tain the spectral resolution of C, C = EjthéVg, where. US and V; are
' s=1

respectively thepost~and pre-eigenvectors of _C corresponding to the eigen~
value Ls. Since C is a triangular matrix its eigenvalues are its diagonal
elements. Hence the general eigenvalue is_ M(s)/Ms. Since g8ll the eigen-~
values are dist:i.nczj(M(‘j)/M'j 4 M(i)/M;, 1 +'j) we know that there exists

a matrix =« such that

atCx = diag (l,M(g)/M?,...; M(M)/MM) = A, say.



A.2.1, The Post-eigenvectors of C. Let M= M("s)/Ms and let

o t 1 - > L y
Us’ (u:LS ,ues ,-...UMS) be the corresponding post-eigenvector. Then Us

egatisfies C U_S = ?"s qs. In order to obtain uls""ui\fs’ the system of

eqiations to be solved is

aji )-i uis = Xsujs, j = 1,20 O'Q‘Mo

'i;.[\/_]u.

1

It immediatoly follows -then that for 1 = 1,2...s-I, ;= O« The sys-

ten then reduces %o
J
}jaji >\,i uis = X.s uds Y j = :Sl;co.c,M-

i=s

From the above we see that u, may be chosen arbitra’rily.v Iet us

use v, = 1. After ‘ransposing and simplifying, we have to solve

J
(a.2) E: 2y MUyt (xj~ xs)ujs = -8y des  J=sHl,...,M
i=s+],
Since ()»,i- xs) $0 for 1> s+l we can successively find
U, 1,8 u 12,5 sy in that order and thus obtain the vector
U = (0,0.. .,l,us_l_l,s,,...,um)'. In particular, U= (l,M,Mz,,. ..,'}_/11\4_1), as

can be shown explicitly (Xhazanie, 1965).

' - LI | ' : -
A.2.2, The Pre-eigenvectors of C. If LA (Vél,vgz,..-,VéM) repre
sents the pre-eigenvector corresponding to .a,s then V_; satisfies

V; C= A.sVé. The system of equations to be solved is
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M _
zaij Xj ‘Vsi = )\.S vﬁj, J =.l’2,’ono,M -
i=]

From equations J = s+l,...,M imnediately follows vsj= 0 for J >s.

As a result the system reduces to

aij Xj Vsi= xs Vsj J': 1,2’100,30

s

e
NNl

Also, it can be seen from equation s that Vo -can be chosen arbitrarily.

Setting Ves™ l and transposing as in the earlier case we get

s-1 ,
(A'3) (kj- )\-S)vsj + Z aij)\-jvsi ="‘asj;\.j, .j=l,2,-oo,8"l .
1=3+1 |

.

Now (xj- xs) $0 dir j#'s. Therefofe, we can Tirst obtain v

S,S"l
85 ,5-1"s-1
by means of the relation v = ——2=——=  and then working backwards
el - S!S-l ;”Ls-lﬁ A'g':-, e e e e

s LA i -~ . aw e sea -
successively get V! as -(‘@l’vse’ ’vs,s-l’l’o 0)



