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Moments of Randomly Stopped Sums

1. Introduction. ILet (Q,aézj P) be a probability space, let

xl,xe,.. be a sequence of random variables on Q, and let(éﬁg be the‘

o-algebra generated by X, ..., X, with<g25 = (¢,9). A stopping
variable (of the sequence xl,xg,...) 1s a random variable t on Q with

positive integer values such that the event [t=n] € OZ;'for every n > 1.
n
Let Sn = f xi; then

ct

St = St(d)) ((D) = X Xi

—

is a randomly stopped sum. We shall always assume that

(1) Elx | < o, E(x, 1| =) = 0, (n> 1) .

The moments of St have been investigated since the advent of gequential
Analysis, beginning with Wald [9], whose theorem states that for inde-
pendent, ldentically distributed (i.i.d.) Xy with Exi = 0, Et { = im-

plies that ESt = 0. FPor higher moments of St’ the known results
[1,3,4;5,101 are not entirely satisfactory. We shall obtain theorems

for Esg (r = 2,3,4); the case r = 2 is of specilal interest in applica-

tions. In the case of i.i.d. x; with Ex, = 0 and ExZ = o° { w, we shall

show that Et { « implies ES- = oZEt.

i

2. The second moment. It follows from assumption (1) that

(8,5 o%,. n > 1) is a martingale; i.e., that
. 2
(2) BlS,| <=, E(S ,laf) =8, (n)1),



The following well-known fact [3, p. 302] will be stated as

Lemma 1. Let (S, <>Z” n > 1) be a martingale and let t be any
stopping variable such that

(3) Els ] { =,  liminf [ 5| = 0;
[t > n]
then
(+) E(Sylody) =8, if t2n (a 1)
and hence ES, = ES;.

Lemma 2. If E = |xi| { «, then (3) holds.
- 1

t
Proof. [S.|< i |x;1, so that E|s | < », and

t
lim [ |s, | < lim [ z |x | =0
[t > n] t> n] t

In this section we shall suppose, in additien to (1) that

(5) Ex> { o (nY 1)

and we define for n > 1

n
(6) 7. =8 -5 x
1

The sequence (Zn:°€Z;5 n» 1) is also a martingale, with EZ, = O.

1
For any stopping variable t, let t(n) = min (n,t); then Lemma 1

applies to Z_  and t(n), so that Ezt(n) = 0, and hence
t(n)
o 2
(7) ESf(n) = E ? x5



Hence, by Fatou's lemma and (7), )
t(n) t
2 . 2 . o 2
(8) ES{ < lim Est(n) = 1lim E § x{ = E i xJ

The question now arises under what circumstances equality holds in (8).
(By Lemma 1 this will be the case if (3) holds with S replaced by Z,
but, as we shall see, this requirement is unnecessarily stringent.)

According to (8), we need only consider the case in which ES% { =, and

it will suffice to prove that

(9) ES® > Es? (n> 1)

(10) lim inf [ Is

5 t
then ES, = E © x
t 1

Proof. We may suppose that ESS { « whence, by (10) and Lemma 1, (%)

holds. Hence

2 2 2
ES® = S S s, - 8
> 82 4+ s2 1 2f S,E(S,-8, | o) = Esf(n)

[t<nl° Tt>nl® T[t>n]
Lemma 4. If
(11) lim inf 32 ¢ w,
{t > nl B

then (10) holds.
Proof. Suppose (10) does not hold; then

lim inf S | =¢> 0.
im in {t S n]l nl =€



Hence for any constant 0 < a { «,

lim inf [ S°% a lim inf | 5] = ac
[t > n) (6> n,[s | > al
which contradicts (11), since a may be arbitrarily large.
t
Lemma 5. If E % xf { o, then (11) holds.
1
Proof. Setting SO = 0 we have
‘n
S =2 ([ S 53.1)
[t > n] i=1 [t > 1] [t > i-1]
n oo t
{ = (Sf—sf_l)gz xf_E2x§<oo
i=1 [t > 1] 1 [t > 1] 1

From Lemmas 1-5 we have

Theorem 1. Let (S,,o%,3 n > 1) be a martingale with ESE < w and

n
let t be any §topping variable. Set Xy = Sl’ Xpp1 = Sn+1 ~ Sn’ Then
2 L 2
(12) ES{ { E ? X7
If any one of the four conditions
(13) [ EN [ =< x| < o B2
13 lim inf S = 0, lim inf S o, B Zix, e, BEXS o0
[t>n] 7 [t > n] " 11 it

holds, then

-t .
(14) ESC = E & x°
1 i
t oo
If E L x{ { «, then (3) and (4) hold.
1

Theorem 1 generalizes (a) and (b) of Theorem II of [1]. In order to
apply it, we first verify

Lemma 6. For any stopping variable t and any r > O,

t
r _ r
B 2lx |7 = B 2 B(]x] lofi_1) -



t r > J r iy T
Proof. E zlxi] = 3z | 2 lxg |t = 2 | %, |
1 J=1 [t=j] i=1 i=1 Tt > 1]
o0 P t
" ey PPl = B T R 17 )
i=1 [t > 1] 1
For independent Xn’ we have from Theorem 1 and Lemma 6
Theorem 2. Let Xy5X5s ... be independent with Ex = O, Elxnl = a_,
n
Ex = < w (n > 1) and let S, = £ %X;. Then either of the two relations
2 1 _
t t o
(15) Ex a, { o, EZ o<
T %1 n
1 1 :
implies
« t t
(16) ESC=Ezx2=E % o2 .
i n
1 1
2 2 . .
If o = { w, then Et { « implies
2 b o o
(17) ES. = E & x5 = 0 Et.
t 1 1
Some stronger sufficient conditions for (16) have been given in
[10,1,5,3 (p. 351), 41.
Corollary 1. Let X:X5s ... be independent with Exn = 0, Exﬁ =1,

and define :
t*(resp. t,) = 15t g > 1 such that |S | > n /E(resp. {)(= = otherwise).

Then Et* = Et, = o,

Proof. If Et* { «, then t* is a genuine stopping variable (i.e.,

P(t*( ») = 1 and by the definition of t* and (17),

2
Et* = ES, > Et* ,

a contradiction; similarly for t,

We note that t* is a genuine stopping variable if the law of the

iterated logarithm holds for XqsXgs e )

The example Plx =1] = Plx = -1] = 1/2 shows that the > ({) cannot



6.
be replaced by » (), since Ex =0, Ex] =1, and t* = t, = 1. On the
other hand, if t* is redefined as the first n > 1 for which |s_| » al/2,
Et* is again infinite; similarly for t,.

Corollary 1 is a generalization of Theorem 1 of [2]. The following

corollary generalizes Theorem 2 of [2].

Corollary 2. Let X15%g5s be independent with Exn = 0, Exﬁ = 1,
P[]xnl Cadwl=1. For 0 c<1landm=1,2, ..., define
t = first n 3 m such that |S | > ¢ nl/2,
Then Et < «.
Proof. For k = m, m+l, ..., pubt t' = min(t,k). Then t' is a stop-

ping variable and by Theorem 2,

t + kP[t > k] = Et' = ESZ, ¢ s2 4 (ct}/2 4 g)2
{ték] L I {t{k]
£ cPkPlt > k] + 02f t + 2ac(/ tl/g) + a° .
- [t < kIl [t < kI
Hence
(1-02)(kP[t > k]l + [ t) < 2ac(f tl/z) + a® .
[t < k]~ [t < k]
Therefore as k — «, [ t = 0(1) and P[t > k] = O(k—l) =o0(1l), so that
: [t < k]

t is-a genuine stopping variable and Et < .

2

Corollary 3. If xl,x are i.l.d. with Exn = 0, Exﬁ = 0,

23 o o a 3
P[lxn[  af »] =1, and if ESE { «» for a stopping variable t, then

Et { » if and only if
(18) . lim inf nP[t > n] = 0.

Proof. The !''only if'' part is obvious. Now suppose (18) holds.
Then since

S | < anP[%t > nl ,
{t > n]l nl -
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the first condition of (13) holds and hence 02Et ='Esg { », so that

Bt @ if 0°> 0. (If o° = 0, then P[x_= 0] = 1 and hence t is equal

a.e. to a fixed positive integer, so Et { » in this case too.)

Applied to the case P[xi = 1] = P[xi = -1] = 1/2, with t = first

n > 1 such that S_ = 1, we have by Wald's theorem Et = =, but by Corollary

t
3 the stronger result lim inf nP{t > n] > O.

Corollary 4. TLet (xn,n-} 1) satisfy E(xn+l|cgﬁg) = 0 and let

o - - -
E(xn+l|cé?;) =0, { « be constant for n > 1. Then for ¢ > 0,
m
P[ max |S | > €1¢ ™2 1 o°
n' % N n
n<m 1
If moreover sup |x | = z with Ez { «, then
n>1 "
2 /T 2
(19) P{ max |Snl > el > 1 - [E(e+z) ///z cn]
n<m 1

Proof. Define t = first n > 1 such that [S | > e. Then t' = min(t,m)

is a bounded stopping variable. Hence, by (14) and Lemma 6,

t! m
¢®P[ max }Sn[ > el = e®Plt < ml< ES?, =E I G§ { = ci
n<m 1 1
If Ez { «, then
t! m k m
E(e+z)2 > ESE, =E % og >z T o5 = % ooP[t D jl
1 k=1Tt=k] j=1 9  j=1 9
mo2
> (= 0o%) PIt > m]
J=1"

and (19) holds.

The first part of Corollary 4 is a special case of submartingale
inequalities [6, p. 3911, and the second part generalizes slightly one
of the Kolmogorov inequalities [6, p. 235] which requires that z be

constant.



3. The Fourth Moment.

The analysis in the case of the fourth moment of St is somewhat
eagsier than that of the third moment and consequently is presented first.
In this section Exi will be supposed finite. Define for r = 1,2,3,4,

and n = 1,2,

n
— r —_—
ur,n - (ancégg—l) ? Ur,n N ? ur,g ?
n
(20) Veon = lx 17 =F_ Von = ? Vi g s
n r
Ton = ?lXJI g Ti,n = Ta

In these terms, Lemma & asserts that ET,, £ = EV_,
3
Lemma 7. If ES. < = and lim inf { |s_ | = 0, then
L n
t > nl
2, - 2 |
S{l=#7) % s, and E(|S_|=f,) > |, | for t > n.

 Proof. For any A ecézg, by Lemma 1

2= f (82 + 28 _(8,-8 ) + (8,-8)°1% [ s2

At > n] At > n] t t n = At S ny B

Hence the first inequality of the lemma holds, and the second inequality
follows immediately from Lemma 1 and the fact that
(]S, | oip) > |E(S,|%) -
Theorem 3. If t is a stopping variable such that
t
Elt © E(x |Og§“ )] { », then ES { » and
1

t
L
(21) ES; = EUy  + 4ES Us ¢ + 6EStU2 ¢ - GE i uy U, s
Proofl Set Y = S4 - 682U - 48 U - U + 6 2 u U
Proot. n n n-2,n n-3,n 4,n j=1 2,5 2,3
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and t' = min(t,k). Since (Y, o4, s n> 1} is a martingale with EY, = 0,

by Lemma 1,

L

ES,

tr
_ 2
= 6ESt,U2,t, + 4ES, Ug gr + EUy 0 - 6E(J§lu2 Vs, J)

< 6(E1/2S4 )(E]./2U2 ) + 4(E1/4SL' )(ES/M- 4/3

S £ 2,t! V3ig) + EUy gy

whence, if Esi, > 0,

4,)—1/25

(22) B2 4 6P e 3 yest ) L (EU, ., )(ES]

2 t! 3 t! t!
Now if p > 1, » > 0,
p-1

D 1
Vy p = ngE[Iy "l g7 3 <nP 3 Py, 7] odfy_ )Y/P

(23) 2 -
Cn® (2 mly, [Pl ogy  )YP = 0 P vE

™M
‘_l

pr,n
and thus setting p = 2, r = 2 and then p = 4/3, r = 3,

2 h/3 1/3
(24) BUZ = BV, o BtV o o, BVt < Et Vy, g <= s
t

2
Moreover, EUy ¢ { E tU4 £) < = and E(leug ; Ugjj) < EU, { =». Thus,
the R.H.S. of (22) is a bounded function of k, implying via Fatou's lemma

that Esi { o,
Since
n
+ 48, | Vi * Uy g+ 6 i uy 5 Uy 5 = YI (say),

4 2
lYn[ < s, + 65] Us

it follows from the preceding that

1/2St)(E1/2 o )+ 4(El/48t)(E3/4 4/3)

it
ElY | < By} < ES, + 6(E Us ¢ V't

+ EUy, . + 6EU§ ‘ { o .



10.
From (24), ET, = EU2 ‘ { . Thus, (8) of section 2 and Lemmas 4 and 5
3 3
are valid, whence by Lemma 7, E{Sglquk} > si for t > k, k = 1,2,

Consequently,
4 y 2,2 o2 2 2,2 )y
S, = [S] + 285(85-85) + (Sg-85)°1 > S
{t S n] ¢ {t >nl " ntt m tn - {t > nl®
2 42 4
+ 2 s E[S -3 Qgr} s
' {t > n ] - [L > nl
implying f SLL = o(1) and concomitantly -
t> nl "
2 y.1/2 2 1/2
scu, < ([ S7) RuaEZacl] us L) = o0(1)
foy nitn2n S Yoy 4o TN tey m'2t
by1/4 h/3\3/4
S_{V <A S’) ( vy 72) = o(1)
{t > n]l n‘ 3,n 2 {t > nl B {t S nl 30t
(25)
= 0(1)
[t> nl 27> {65 n]
: ¢ 2 ¢ 2 )
L Un U~ U U = ol
{t > nl] j=1 2,d7°2,3 = {t > n] 20 {t > nl .t
Thus, [ ly | < J Y! = o(1) and by Lemma 1 EY, = EY, = O.
(t>nl T[> nrn t !
Alternative expressions for Est are possible as indicated in
t
Theorem 4. If E(t I E{x [céﬁJ ) { », then setting Sy = 05
J:
TP N
ESt = Ejilsj_l u2j3 + Ejzlsj_l u3,j + EU4’t .

The proof of Theorem 4 is similar to that of Theorem 3 and will be

omitted.
Corollary. If E(t Uy .) { w, then

t t

: t
E(6 & S° +hzs, ) = 6ES2U. ., + U4ES,U, , - 6E( =

U
2 J -1 3 t 3, t .
j=2 j-1 ) J _o Jj- J £t 2, t

172,572, 3¢
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It is intuitively clear that terms with like coefficients are equal,

and indeed we have

t
Lemma 8. If E(t Uq,t) { =, then ES, 3.4 = E(jigsj‘lu3:j) and
5 b 5 t
E(StUEJt) E(jigsj_lug’J) + E(j£1u233U2:J)

Proof. It suffices to verify the first of the two relationships
since the second will then follow from the corocllary to Theorem 4.

Suppose first that

£
(26) E(nillle ijj) {
Then
oo Kk o0 o) »
1 Too) g1 900 1 te > SRRl B > J]E(XJ'DZEJ)UT’J= >
whence
t e k k 0
2 51,0 N LA B O A IS RS M
(27)
= EStUr,t

Thus, if t' = min{t,N), (27) holds with t replaced by t!' irrespective of
(26). However,
N

ES, U 5
€730 o1 7 [e=k]

i

e RN R
(28)

= § U

SrU I—f S +f S, U 2
B30 ey ny N3N gy B30

and analogously

t t! N
E(j§233—1u3,j) = E(jiz S5.193,35) - {t S N goe 3-1%3.3
(29) '
, t
+ [ T S.

u .
[t > N] j=o 971 354



12.

Now E|8,U, .| < EY! < «, and employing Lemma 7,
t 3,t - t

t o0 k 00
E =|S, quy ;| = = 28, qusy 4| = = s, usy .|
2855 T 2 21951 3! j=lf[t > g1 373
4 ; S,u, | < ElS, |V  EY! £ o .
2 f[t N J,]l i3, 51 S BISLIVs ¢ < EYY

These facts plus (25) imply that all unwanted terms of (28) and (29) are
o(1l) and the result follows.
Identities and inequalities analogous to (27) abound and several of

these will be catalogued as

t
Lemma 9. E( Z Si) £ Etsg under the conditions of Lemma 7.
n=1 -
. _
E( § sn) = EtS, if BT, { w
n=1
t
E( = Tn) < EtT, if BT, { o
n=1
Proof.
t o k - ) o0
2 2 2 2
E 285 = ¢ | 85 =3 f s=< = J E(SC] &F)
po1 M kel (b=k) n=1 P on=1 (&> nl ® T n=1 [t al OO0
[o0] [o.« I v o] 0
= 5 S| s2= sk s2 = BtST
n=1 [t > n] n=l k=n [t=k] k=1  [t=k]
employing Lemma 7. Similarly,
t 0 0
E(sT )= 2 [ - T < = T, = EtT, .
n=1 o nﬂ.[t}xﬂll'nﬂ [t>_r1]t t
Finally,
t) co o Igg" o
E(zS )= % [ S =z E(S Yy = = S
n=1 " n=1 [t > n] o p=1 7 > n] t n n=1 [t > n] E
= EtS



(31)

(32)

13.

in view of Lemmas 1 and 2 and the validity of interchanging the order

of summation and integration.

4, The Third Moment

In this section E(|an3) will be supposed finite. Define

2

_ ad -
Yn - Sn 3SnU2,n U35n’
3 n
W, = Sp - jilsj—lu&j - U3,n’
3 n
7 = - > -
n S n 33 183 2,3 UB;n

It is readily checked that (Y, ofips n 2 1), (W, o5 n > 1),

(Z,,afiys n > 1) are all martlngales and that EY, = EW; = EZ, = O.

Theorem 5. If EV3 ¢ { « and EV% + { ®, or equivalently if ET% oo,
t J

then E|S, |3 ¢ = and ES] = 3E( % S, + EU

iZy55m1 2,0) 3,6
Proof. Suppose that EV3 ¢ { o, EV1 ‘ { » {(Their equivalence with

ETE { » will be deferred to Lemma 10). Then

k co k
3 : 3 3 3
E|s, |° = y f S Y < = = (x|
15 k=1 = [t=k] n=1 8n 7182 17) < k=1 n=1 [t=k] =
2 2 k 3 2
+ 318, 1% + 38, 4 1x,1) < 6 kzl Zl f[t k](lxnl + 8. 1 1x, D)
= Nn= =
t t
- 3 2
= 6[E(nillxnl ) + E(nilsn_llxnl)]
By Lemma 6,
& 3
E(nillxnl ) = B3¢ Coos

on the other hand, ESE < ETE <1+ ETE ¢ » and



3
S T T (L + 7)) = o(1
“t>k”kléfﬁ>k]K€fW>k]t€fW>k] T =l

in view of the asserted equivalence. Thus, Lemma 7 holds, whence

s x|) - 5 oz 2 x|
E( £ S X = £ 5z S x | =
n=1 n-1"mn k=1 n=1 [t=k] n-1"mn n

00

2 2
E(S )V = % Scv
1 f[t > n]j t|5%r£_l Lo g f[t > n) o ben

Lo
w
(VN
™8

n

0 k

e 2 2/3 3y, o1/3.3
= Sgvy = BSEVy o K (BT SIS PNEV V] L)
k=1 n=1 f[t:k] t1,t = | tl 1,t

i

Replace t by t' = min (t,k) in (31). Then from (32) and (33),
2 1
Elsy, 13 < 68v, ., + 6(8% 3]s, 1P (@33 L) = 0(1) + 0(1)8? 3]sy, |3
whence, by Fatou's lemma,

(34) Els |7 < = .

Next, (3%4) implies that the expectation in the L.H.S. of (33) is finite

whence,
E( g |s 1[u2 ) ; f IS l|x2 =E( = |S l[x2)
n=1 o1t n=1 [t > n} " n =] B n
(35) . )
2
< E[nil(IXHIB s 1Plx DI< =

Combining (33), (34) and (35), E[wt| { w. Since, paralleling (31),

3 3 2
f s 3¢ 67 5 (xg 13+ 82 1x, 1) = o(1),
6> Kkl K [t > k] n=1 D n-1"n
J lwkl = 0(1) and the theorem follows from Lemma 1.
[t > k]
t
Corollary. Under the same hypothesis, E( & Xy Up j) =0 .
n=1 ?

Proof. Analogously, EZ_ = 0, whence E(Wt-zt) = 0.
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Lemma 10. EV, . { » and EV% " { » if and only if ETE { oo,
2 3

3
Proof. Suppose EV3 £ { » and EV% ‘ { ». The argument of (31)

with T, replacing St yields

t

o0 k
3 3 2
ET? < 6 = % ({x + T x |).
E 2 k=1 n=1 f[t=x] 1%, n-1 Pl

The inequality of (33) also obtains with T replacing S in view of the

fact that T, > T, _, on the set [t > n]. Thus, analogously,

1

ETE, < o(1) + o(1) 52/3 03, implying ETY < .

£’
. 3 _ 3

Conversely, if ET? { «, clearly EV = ET { ET? { ». Moreover,
t 3,t 3,t > 7%

k

)<6 5 = 3+ v
B k=1 n=1 f[t:k] l’n 1,H-1 1,n

oy k

3 3 3
l,t k=l [t:k] n=1 1Jn 1,n-—l

2

* 3Vl;n—lvl,n)

1) Kk 00
2 2

o1y +6 = = v v = 0(L) + 6 = |x_|v

i} k=1 n=1 f[t=k] L,n-171,n n=1 f[t > ny Bn'ol.n-l

Co(l) +6¢ = |x_|v2 . < o(1) + 6ET, V2
- n=1 k=n f[t=k] n'l,t t Lt

2/3 3
€ o{1) + 0o(1) E_/ Vit

which implies, as earlier, that EV% £ { « and completes the proof.
5

Theorem 6. If ETE { » and E tl/2

{ .

Proof. As in Theorem 3, after setting p = 3/2, r = 2 in (23) of

3 _
V3,4 < oo BSp = 3ES U, oo+ BUg ¢

section 3 to obtain

S U < (El/BSE)(E2/3U2{§) g (El/BSz)(E2/3tl/2V

t "2,t = 3,t)
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Corollary. Under the conditions of Theorem 6, ESt ot

= E( = S,
j=1 Y7

The single requirement ETE { =, although equivalent to the two

1u2,3)°

conditions of Theorem 5, i1s difficult to check. The following single
condition is easily seen to imply all those of Theorems 5 and 6:

2
(36) E(t V3,t) < X,

and in addition yields

- t
3 _ 2 P _
BTy = 3ETtV1,t + 3ETt(Vé,t 2~331V1:JV133) + EVSJt 3E(J§1vl,jv2’j)
t t j
- 3E( = . X 6E( = ., = Vo,
3 (j:lvé,gvl,J) + (jzlvl,g izlvllvll)

5. Sums of Independent Random Variables

In this section, the random variables Xl,x will be supposed

23
independent. If Exrl = 0, all prior theorems are, of course, applicable
but may be reformulated in especially simple terms with conditions that
are susceptible of immediate verification. TFor example, from Theorems

3 and 6, we obtain:

Theorem 7. If Xl’XQ’ are independent with EXn = 0, EX§ = 02,
Exi = v, Exﬁ = B< wand t is a stopping rule with Et° { «, then Est { o
and
ul 2 2 4
ES, =6 0 E ¢t S + 4 v E¢t Sy + BEt - 30" Et(t+l).

Theorem 8. If x.,Xx are independent with Ex, = O, Exﬁ = 62,

1°°2?
Exg = v, E}xn|3 { ¢< =, and if t is a stopping variable with EtJ { «,

then ESJ = v E t + 30° E ¢ 5, < .
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Proof. According to Theorem 6 and Lemma 10, it suffices to verify

that

EV

EV3

< (el %y

5.1 < 1t) CCE £3/2 ¢ o,

S < Bl (14¢) 12 o .

In the final theorem, the requirement of Theorem 8 that EtO { o

will be relaxed at the

X

n’ .
Theorem 9 It x4
EX2= <C< w,
3 _
ESt = v Et + 36 EtSt,

Proof. Here, the

expense of increasing the moment assumptions on

,xg, are independent with Exn = 0, Ex2 = 02,

n
5 . . . . 2
and 1T © 1o a stopping variablc with Et© < «, then

g3

martingale Y _ of (30) simplifies to Y =S

- 302nSn - ny. The theorem will follow from Lemmas 1 and 2 once it is

established that

't
B ? IYn+l-Yn| =B
Now
3
lSn+l'Sn||Cg§J
(|(n+1)s_, ,-n8_|
whence

B, - | | o7

E(]Y

n+l- l' éFh

=DMt

<6 B(xy, 110 + 82l 11.F0) = 0(1)s2 + o(1),

| Fy) = BUIs, + (n+l)x, o] o%7) €S2+ no(1),

Next, Lemma 9 is applicable below since (17) insures Esg { o while

Lemmas 6 and 2 guarantee (10). Consequently,
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18.
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