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1. Introduction. Let 21, Z2, - - - be a sequence of independent observations
from some population. We want to find a confidence interval of prescribed width
2d and preseribed coverage probability & for the unknown mean x of the popula-
tion. If the variance o* of the population is known, and if d is small compared to
o, this can be done as follows. For any n = 1 define :

Zo=n" 22, In=[f—d % +d,
and choose a to satisfy
(21r)—iff-¢ ey = a
Then for a sample size n determined by
(1) n = smallest integer = (d’”)/d,
the interval I, has coverage probability
P(uel) = P(\/n|Z. — pl/c < dv/n/o).

Since (1) implies that limg.o (d’n)/(d’e®) = 1, it follows from the central limit
theorem that

limaso Plp e I,) = (2m) % e P du = o

We shall be concerned with the case in which the nature of the population,
and hence o, is unknown, so that no fixed sample size method is available.
Define ' :

(2) o =000 (2 — £a) 0T (n = 1),

let a1, az, - -+ be any 'sequence of positive constants such that lims.o an = @,
and define ’

(3) N = smallest & = 1 such that n < (d%)/a’.

The object of the present note is to prove the following
TueoREM. Under the sole assumption that 0 < @ < o,
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458 Y. S. CHOW AND HERBERT ROBBINS

(4) limg.o (N)/(d'0°) = 1 a.s,

(5) limg.o P(pely) = & (asymplotic “consislency”),

(6) ling.o Qmmzv\gnqn = 1. (asymplolic “efficiency”).
REMARKS.

1. In case the distribution function of the z; is continuous, Definition (2) can
be replaced by, e.g.,

7 Uy = :LMM. (zi — z,)%

2. As will become evident from the proof, N in (3) could be defined as the
smallest (or the smallest odd, ete.) integer Z 7o such that the indicated inequality
holds, where ng is any fixed positive integer.

2. Proof of the theorem,
Lemya 1. Let ya (n = 1,2, ---) be any sequence of random variables such that
Yo > 0 as, limnoyn = 1 a.s., let f(n) be any sequence of constants such thal

f(n) >0, limeof(n) =, lim..f(n)/f(n—1) =1,
and for each t > 0 define
(8) N = N(t) = smallest k 2 1 such that ye < f(k)/L.
Then N is well-defined and non-decreasing as a function of t,
(9) lim.o N = © as, limy.o EN = e,
and |
(10) lim..f(N)/t=1 as

Proor. (9) is easily verified. To prove (10) we observe that for N > 1,
yv S F(NY/t < U(N)/f(N — 1)]lyx—1, whence (10) follows as ¢ — .
Lemua 2. If the conditions of Lemma 1 hold and if also E(supa y») < «, then

(11) lime.. Ef(N)/t = 1.

Proor. Let z = sup, yn ; then £z < «. Choose m such that f(n)/f(n — 1) S
2, (n> m). Thenfor N > m

JINY/t = [F(N)(N — DN = 1)] < 2yya < 22
Hence fort 2 1, ,
(12) JIN)/t S22+ (1) + -+ + f(m).

(11) follows from (10), (12), and Lebesgue’s dominated convergence theorem.
Proor of (4) aAxD (5). Set

(13) Yn = va/d’ = (1/nd") (27 (3 — %) + 1),
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then va can be writlen as
N = N(1) = smallest & 2 1 such that e S f(k)/t.
By Lemma 1,
(15) 1 = limno f(N)/t = limae (@’N)/(d’0") as,
which proves (4). Now .
Plaely) = P(lts + + -+ + aw — Nul/ov/N £ dv/N/o).

By (15), dv/N/o — aand N/t — 1 in probability as { — oo it follows from a
result of Anscombe [1] that as { — =,

(tr+ -+ + v — Ztv\q/\Nl/wzon. 1).

Hence

B P(peln) = (20) 2 e™ du = a,

which proves (5).
It remains to prove (6). This is an immediate consequence of Lemma 2
whenever the distribution of the z; is such that

(16) E{supa A3I_Mum. (25 — “mavJ < w,
for then
17) lim.., [Ef(N)}/t = 1,

and from the fact that the function f(n) defined by (14) is n + o(n) it follows
from (17) that

1 = limee EN/t = lima.o (’EN)/(a’e®

For (16) to hold it would suffice for the fourth moment of the z; to be finite;
however, we shall in the following prove that (6) holds without such a restric-
tion. For this we need
LemMa 3. If the conditions of Lemma 1 hold, if limn.w Jf(n)/n = 1, if for N
defined by .Amv, o o
(18) EN < o« (dlt > 0), lim sup:.. E(Nyx)/EN £ 1,
and if {there exists a sequence of conslants g(n) such that
gn) >0, limeog(n) =1, 7 Z 9(n)¥a,
then
(19) lim.. EN/t = 1.
Proor. For any 0 < e < 1 choose m so that

fin—1) =2 (1 — of(n)
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fn—=1)2 1 —en forn =z m
g(n) 21—

and E(Nyx) € (1 + ©)EN fort = m. On theset A = {N Z m] it follows that
[(1 — YN = (1 — N-(1 — ON/t < g(N)NJ(N — 1)/t
. < QQIJZQZL < Ny».

Hence

IA

[(1 — Y/0(Ja N = [(1 — /8fa N* £ [4 Nyw < E(Nyw),
(1 — &%0fa N < E(Ny~)/[4 N,
[(1 — &*/(EN — m) < E(Nyx)/(EN — m).
From (9) and (18) it follows that . |
(1 —¢)’ :B,mcvra EN/t £ lim sups... E(Nyx)/(EN) £ 1,

so that
(20) lim supi. EN/t £ 1.
~ Now let ya = min (1, ¥). Then
0< m\=~ .M HJ m\=~ M Yn, ..—waa.vs m\.-s =1 as.
Define

N' = N'(f) = smallest k 2 1 such that v < f(k)/t
From Lemma 2, since sups, (y.) €1,
1 = limpw [Ef(N))/t = lim.. (EN')/L.
But since QK £ Ya, N' £ N, and hence EN' < EN. Thus
lim infrw (EN)/t 2 lim infeaw (EN')/t = 1,

which, with (20), proves (19).

Huzo.om, oF (6). Fix ¢t > 0, choose m such that f(n)/t 2 1(n = m), choose
$ > Osuch that (n — I)f(n — 1) 2 én’(n = 2), and define for any r = m,
M = min (N, r). By Wald’s theorem for cumulative sums,

mA M“ AH.. - tvnv = h&N..@AH.. - tv» = @h\.o&.
Hence by (13),
@1)  EMyx) = (A/AECTY (2 — ) + 1)
< (1/DE(SY (2i — p)* + 1) = EM + (1/4°).
Put g(n) = (n — 1)/n, (n 2 2); then
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v

Yn =

Hence

(1/n0") 277 (i = &) + (1/15') = [(n = V)/alyy = g(n)pos

E(Myy) 2 .—._sz_ Yy, + ~_.:<M1 Nyy 2 T.\.QV\N_NVAZ > r) + ._._nsz._ Nyx
=rP(N>r)+ ._.EM.,.M‘_ [Ng(N)f(N — 1))/t
2 *P(N > 1) + (8/1)[ogn g0 N*.

Hence by (21),

Jiwsn N 2 (/) fugngn N' — (1/0%) 2 (8/t)([2gngn N)* = (1/4%),
and letting r — o it follows that
EN = lim., [ixgn N < o,
which is the first part of (18). Again by Wald’s theorem,
E(Nyx) £ EN + (1/d°),
so by (9), .
lim supe. [E(Nyx)l/(EN) £ 1,

which is the second part of (18). All the conditions of Lemma 3 therefore hold,
and hence

1 = limg, EN/t = lima., (d’EN)/(d%?),

which is (6). This completes the proof of the theorem of Section 1. As to Remark
1 following the theorem, it is clear that the only purpose of the term n™" in (2)
is to ensure that y, = v,/0° > 0 a.s., this fact having been used in the proof of
Lemma 1 to guarantee that N — « a.s. as{ — oo, If the distribution function of
the z; is continuous the definition (7) is equally good, the only change being that
the term 1/¢” in the proof of (6) disappears.

The method used in this note is a modification of that used in [3] to prove the
elementary renewal theorem. The theorem in this note has been proved when
the z; are N(u, ¢”) by Stein [6], Anscombe [1], 2], and Gleser, Robbins, and
Starr [4]. Some numerical compulations for a slightly modified procedure have
been made by Ray [5] who, apparently misled by having considered too few
values of d, doubts the validity of (5) in his case. Extensive numerical computa-
tions in the N (g, ¢°) case have been made by Starr and will soon be available.
They indicate, for example, that for a = .95 the lower bound for all d > 0
of P(iy — d £ p £ Iy + d), where N is the smallest odd integer k£ = 3 such that

(k= 1728 (2 — ) < (d%)/ad,

is about .929 if the values a; are taken from the {-distribution with (k — 1)
degrees of freedom.
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