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1. Sumary
A lemma is proved to show that the moments of the (s-i)th elementary sym-

metric function (esf) in s non-null characteristic roots, Xi(ial,a,... s8),
of a matrix in multivariate analysis can be derived from those of the ith esf.
Using this lemma the first four moments of the (s-l)th e_sf have been obtained
from those of the first esf already known (Pillai, 1954, 1960; Pillai and Sam-
son, 1959). Further, a second lemms is given showing that the moments of the
(s-1)th esf in the s characteristic roots, ;= J\.i/ (l+}\,i) , are derivable
from‘those of the first esf in the A's. Upper percentage poiuts (50/0 and
lO/o) are obtained for the distribution of the (s-1)th esf in the A's for

s = 3 using the moment quotients. An example is given to illustrate the use

of thils criterion.

2. ‘Introduction

Many of the distribution problems in miltivariate analysis are based on
the distribution of the non-null characteristic roots of a matrix derived from
samle observations taken from multivariate normel pcpulations. This distri-

bution, given by Roy (1939)s is of the form

*
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and m and n are defined differently for various situations described by
Pillai (1955, 1960).

The studies on the first esf in the A's have been carried out by Pillai
(1954, 1956, 1960) and Pillai and Samson (1959). In this paper, moments of
some of the other esf's are considered and in particular those of the (s-1)th,
(s-2)th and the second esf's. Further, the esf's in the characteristic roocts,

6,= )\.i/ (lﬂ‘i) , are studied in a similar manner.

3. Moments of the (s-1)th esf in the \'s

First consider the following lemma:

Lema 1. 1€ UL)

i o4 R %U(S) | denote the ith esf in the s
JLr

i,m,n j
A's Pollowing the distributlion (2.1), and its rth moment respectively, then

{ (s) ) ¢(s,m,n) (. (s) 1
t | = 2= ! .
Hy %LUs-i,m,ny ¢(s,n~r,mtr) My }LUi,n-r,mﬂ‘j ‘ (3.1)
Proof. Let 7= 1/xi(i=1,2,...,s). Then the ith esf in the 7's equals
the quotient of the (s-i)th esf  and the sth esf in the \'s or, recipro-
cally, the (s-1)th esf in the A's equals the quotient of the ith esf and
the sth 2sf in the 7's. Now note that the distribution of the 7's follows

the distribution (2.1) with m end n interchanged. Hence the lemms follows.



From lemme 1, putting i=1 in (3.1), the rth moment of the (s=1)th esf in

the M's 1s obtained as

) ' 10, 11)
ur{ (?-l,m, 5 ﬁ(gﬁz-?,z?ri-r) ”‘r{ Zﬁr)l-r,mﬂ'} ) (3.2)

The first three central moments of U§S) are available in (Pillai, 1954,
7 )
Pillai and Samson, 1959) and the fourth central moment in (Pillai, 1960). Using
these results, the following first four moments of the (s-1)th esf in the k's

are obtained:

1 (s) 5 onee —'Il (311""‘4'1)
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where
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and f's and g's are polynomials in s given below:

fo = 32 + s + 4,

£, = k583 + 12.55° + 10s + 16,

£, = 8.255% + 37.563 + h2.562 + 15.05s + 21,

£ = 7.8755% + 19,6255 + 93.7585 + Lh.2552 - 10,258 + 7,

fh_ = h.12536 + 33.1875s5 + 89.62551L + 85.0625s3 - 3.2552 - 34,25 - 5,

,
£ = 1.12557 + 115° + 38.562587 + 56.125s" + 20.937585 - 2h.25s°~ 20.758 =3,
fe = 012555+ 1.4375s T+ 6.1875s0+ 12.06258%+ 8.93756™- 383- 7.758%- 3s,



go = 23,
g = 8s2 + 158 - 20,
g, = 12.5s3 + l+7s2 + 9s - 92,

g3 = 9.5s’+ + 53.7533 + 81s2 - 558 - 156,

g, = 3.535 + 26”53lL -+ 68..75s3 + lﬂsg - 87s - 116,

= o.5s6 + 1:-.7555 + l6.75s,+

and

g5 + 2683 + 552 - 368 - 32.

4., Moments of the (s-l)th esf in the 6's

As In the previous section a lemma may be stated.

Lemma 2. If C) B ulf,{v(s) denote the ith esf in the s ©'s

i,myn i,m,n):{

and its rth moment respectively, then

r
' (s) Y _ _¢(s,m,n) ry r=3 ,(.(s)
“'r Vs-l,m,nk - gis,n,mtr 2 (J) 8 'J'J gUl’pf,m-[-r} o (Ll"l)
Jj=o M

Proof. For proving (4.1), it is enough if we note that

<]
s
S
Vg-fi,m,n = (S + Z?’i)/ifl (l+ ‘}'i) t-The'!_’_'e 7's (’4--2)
i=1 ==

as stated above, follow the distribution (2.1) with m and n interchanged.
The rest easily follows.

The first four moments of the ('s-l)th ‘esf in the €'s thus may be ob-
tained by using lemma 2. However they are not given here since it has bgen
shown (Pillai, 196k4) that the moments of Vfi’n can be derived in a simple

menner from the respective moments of U:Esxl n (and vice versa).
=



5.

Moments of other esf's Jn the ©6's

and A's

Tt hes been shown (Pillal, 1954, 1956; Pillai and Mijares, 1959) that the

distribution of 6's
My= Oi/(l-ei)(i=l,2,...,s)

integrated within the limits, 0 <6

1

obtainable from (2.,1) by the transformation
can be expressed in a determinantal form and when

< eee £8,<1, is given by’

mts -1 m n
jl CH (1-e, lae .....Il es(l-es) a8,
o] o)
C(s,m,n) V(s-l,s-E,...,l,O) = C(S,m,n) e o o & 8 6 o 8 e & s e e s & s v e e o
e? e
[ “qots-le, I J‘ me. 30
i 9 (1 el) a8, .... Gl(l el) a8,
o o]
(5.1)
Further,
ui{ j(.f; n(. = C(S,m,n) V(S, -l,-..,S i+l S-i-l,--.,l,O) (5-2)
The right hand side of (5.2) can be shown to be equal to
s { omts - j+2)
(i) Jﬂl (ami-2n+25-3+3) (5'3)
based on some particular cases evaluated by Pillai and Mijares (1959). From

this result, using the method given by Pillai (1964k) i.e. by attaching negative

signs to all terms except that in n in each linear factor involving n in

(5. 3) and further changing n to mint+s+l,, the first moment of the ith esf

in the A's 1is given by

Lgm&s -i+2)

e

(Zo¥3-1)

(5.%)




Now consider i} {Ygfi n§ . Tt can be shown that (Pillai (1964))
4

ué %Véslzl n?'q = C(S,m,n)[\-f(s+l,s,s-3,.-.,.1.,0) + V(S'l‘l,s-l,S"g,S-ll-,--.,l,O)
20y _

+ V(S,S-l,S-E,S-3,S-5,S—6, 0’. 0’1,0] .
vees(5.5)

Now substituting the values of the determinants in (5.5) y already evaluated by

Pillai and Mijares (1959) y

(5.6)

2,myn § 6 1,
3! x (omtents-j+5)
J=1

“é{v(s') 1 o s(s-1)(omis) (omistl)

)

vhere Gy = 6n2§ L s(ss-l)m2 + 2(5—1)(252+s+8)m + 5 + "{sa -8 + 12}

.
1

+ 3n.{l6s(s-l)m3 + 4(s-1) (852458+8)m>+ 2(s-1)(10s3+125%427s+2k )m

b

+ hs5+as +12s3+5s2-2hs+36 é+-s(s+1)(2m+s+1)(2mﬁs+2)(m&s)(2m&2s+1)

+ (s-2)(zn+23+3)(au+s-l));.ll-sm2+ 2s(3s+2)m + 053+ 332+ 5 + 6} .
.

The second moment of the second esf in the A's can be obtained from (5.6)

using the method given by Pillai (1964). We get

" j Uéfz?x,n% _ s(s;l) Lag+s)(2nr!-s+;) a (5.7)
‘ n_(2n+j-3)
J=1

vhere G is obtained from Gl by attaching negative sign to the first degree

term in n and then changing n to mints+l in all the terms.



Further, applying (3.1) with 1=2 and r=2, we get from (5.7)

e \ (S) ) ~ Cf{s,m.n) t (S) ,
H2 )LUS‘E:msn v C(s,n=-2,m+2) Ha U2,n-2,m+2} ' (5.8)

J
(3)

6. Upper percentage points of U
PYi1731]

Using (3.3) to (3.6) with s=3, the moment quotients, B, and B,, were
computed on IBM 7090 accurate to five decimals for values of
m= - % (%) 5,7,10(5)50,60,80,100,130,160,200,300,500 and 1000 and n start-
ing from 20 but otherwise as for m. The upper percentage points were computed
manually usi_ng tables of !‘'Percentage points of Pearson curves for given sl,
By expressed in standardized measure'' (Pearson and Hartley, 1958) and extra-
polating in some cases from ''Tables of deviates of Type I curves measured from
the mean in terms of the standard deviation'! (Pearson, 1931). Tables 1 and 2

give the percentage points thus computed.

7. An Exemple

The use of the percentage points for Ué?ll,n may be illustrated by an ex-
ample. This criterion is being suggested for testing different kinds of hy-
potheses in multivariate analysis, for example, i) that of equality of the
dispersion matrices of two p-variate normal populations, ii) that of equality
of the p-dimensional mean vectors for f{, p-variate normal populations and,
iii) that of independence between a p-set and a g-set of variates in a (p+a)-
variate normal population. It may be pointed out that for the last hypo*thesis,
transformation has to be carried out from 8's to the A's since computa-
tionally 1t 1s easier to obtain 6's first. Now, for illustration, hypoth-
esis 1i) 1is considered here using the following data teken from Rao (1952,

p. 263) concerning measurements of 140 schoolboys of almost the same age



belonging to six different schools in an Indian city. Three characters were
measured (1) head length, (2) height and (3) welght. The problem is to test
for the significé.nce of differences between schools in the mean characters.
Let S¥%, S be the matrices consisting of the sums of squares and products
”be‘twéen” and ''within'' schools for the three characters. The S% and

S matrices as well as the values of m = 0.5 and n = 65 are given in
Pillai and Semson {1959). Using those matrices, s'l, the inverse of S, and

S¥ S-l are given below:

/ .0"823,947, 419 \
st . ‘ -.04572,276,500 .02148,8h9,391 (7.1)
\ 756,373,421 -.0°284,873,91k .03103,h13,9h6/
and
f.050,096,98 . W127,295,4 -.006, 541,510 \
g% g7t = .009,293,867 .098,659,55 -.00L,449,733 |- (7.2)
.021,212,45 .107,934,8 .052,878,55
From (7.2) 3 US% 5,65 = .01192. By interpolation from Tables 1 and 2
sV /2

respectively it may be seen that this value is significant at the upper 50/ o]
level but not significant at the upper 1°/o level. This agrees with the find-
ings (see Pillai and Samson, 1959) based on the test Uﬁ?g.5,65 and also with
those of Reo, who examined the data using the A criterion of Pearson and
wilks (1933). Foster (1957), however, finds that the largest root is not sig-
nificant at the upper 50/0 level but only at the upper 150/0 level.

It may be pointed out that the monotonicity of the power function of this

test hes been already established (Das Gupta, Anderson and Mudholkar, 196L).
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