On the Distribution of the Largest
Characteristic Root of a Matrix in Multivariate Analysis
by
K. C. Sreedharan Pillai

Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series No. 22

September 196k



On the Distribution of the Largest

Characteristic Root of a Matrix in Multivariate Analysis¥*

by
K. C. Sreedharan Pillai

Purdue University

1. Introduction

The cumilative distribution function of the largest characteristic root of & ma-
trix in miltiveriste analysis has been studied by Pillai (1954, 1956e, 1957, 1960 and
1964) with a view to obtaining an approximastion to this c.d.f. useful for computing
the upper percentage points. The approach, so far, has been to approximete the c.d.f.
of the largest root for each value of the number, s, of non-null roots from two to
seven. In this paper, general expressions are given for the first time, approximat-
ing at the upper end the c.d.f. of the largest of s non-null characteristic roots.
Further, these expressions are used to compute the upper 5 and 1 per cent points éf
the largest root for s = 8, 9 and 10.

It may be pointed out that Roy (1945, 1953, 1957) has shown that tests of cer-
tain hypotheses in rultivariate analysis and associated confidence interval estima-
tion can be based on the extreme characteristic rcots. The monotonlc character of
the power functicns of two multivariate tests using the largest characteristic root
has been demonstrated by several authors (Roy and Mikhail, 1961; Das Gupta, Anderson
and Mudholkar, 1964; Anderson and Das Gupta, 1964).

2. C.D.F. of the Largest Root

The joint distribution of s non-null characteristic roots of a matrix in ml-
tivariate analysis given by Fisher (1939), Girshick (1939), Hsu (1939) and Roy (1939)
can be expressed in the form

S m n
£(6158,9+-+59;) = C(s,m,n) i:lei (1-8;) 1;;3 (e;- ej) (1)

(0<8; %..26,<1),
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where
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C(s,m,n) = izl (2)
s {“2m+1+l) r(2n+1+l) rji)
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and the parameters m and n are defined differently for various situations as
described by Pillai (1955, 1957).
It has been shown (195h, 1956b) that the c.d.f. of the largest root, GS, can

be presented in the following determinantal form:
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In order to overcome the difficulty of integrating each of the s l multiple
integrals in the expansion of the determinant in (3), Pillai (195L4, 1955b) sug-
gested a reduction formula and gave exact expressions for the c¢.d.f. of the larg-
est root in terms of incomplete beta functions or functions of incomplete beta
functions for values of s from 2 to 10. In addition, Pillai (1954, 1956a) sug-
gested a method of approximating the c.d.f. of the largest root for computing the
upper percentage points and these two methods are appiied below in conjunction in
order to obtain the general expression approximating at the upper end the c.d.f.

of the largest of s non-null characteristic roots.



3. Approximation to the C.D.F. of the Largest Root

Now denote by V(x; Qgs Qg_q2°-°2 s n) the determinant of the type on the
right side of (3) with the powers of ©'s in the integrands in each row from left
to right being Agr Gg_q7°°> 4y respectively (the q's need not necessarily

differ by unity). It has been shown (1954, 1956b) that

-1 s) + _(s 8
Tz 0 oy poeeesags @) = (g +n o+ 07D 8l g o3 (8)
whare
A(S) = -1 (3’." n+l) V("‘ q . a-; n)
o\ % g X3 Qg _qre00r Y b

(s) - 5-j-1

B-°' =2 l(-l) I(x5q + a4, 20+1) V(xsqs_l,-'-,qj+l,qj_l,---,ql;n),
j=s-

. .

C( ) = V(x; qs-l, Qg _g2°°*r Y n),

q,
n+l
Io(x,' a ntl) = x ° (1-x)7,

and x

I(x; q, ) = j A% (J.-:cl)r dx, .
0

It may be noted that C(S) vanishes if 9. = qS_l+ 1.

Now apply (4) to the right side of (3). We get

Pr(Gs <x) = [%][—Io(x;mﬁ-l,nﬂ) V(x;m+s-2,...,m3n) + BJ(_S) :[ (5)

where
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Bg_s) =2 I (—l)S-J_lI(x;Zn+s+.j-2,2n+l) V(x;m+6-2, e e eyt ,m+j=2, « oo ,m30) - (6)
J=s-1

Now the approximation suggested by Pillai (1954, 1956a) for approximating

the upper end of the c.d.f. of the largest root neglects terms involving (l-x)2n+
and higher powers of (1-x) in the development of the c.d.f. obtained by re-
repested application of (&) to the V-function in the c.d.f. (3). Following this

method it can be easily seen from (5) that the coefficient of -Io(x;m+s-l,n+l),

denoted by km+s-l’ is given by

C(s -m n) .
bg-l = —I%*_-’n—_i_-é——- V(0;m+s~-2, ... ,m;n) (7
Note thati km+s—l can also be written as
k C(s,m,n) . (8)

mbs-l (mimts) C(s-1,m,n)

Now considexr B(S)

7 term by term and apply (4) to each term separately.

Bgs) =2 [ I(x;2m+2s-3,20+1) V(x;mts-3,..., msn)
-I(x;om+2s-h,2n+1) V(x;mts-2,m+s-k,...,m;n)
+I(x;2mtes-5,2n+1) V(x;mts-2,m+s~3,m+s-5, « 4. ,m51)
~I{x;2m+2s -5,2n+1) V(x;mte-2,m+s-3,mts-b,mts -5, ... ,m50)

+(-l)s-21(x;2m+s-l,2n+l) V(x;m+s-2, .. mtl;n) | - (9)



Now apply (4) to each term of (9). It is easy to see that the coefficient of

-Io(x;mﬁs-2,2n+l) in (9) is given by

( 2

Eﬁﬁlsii’ [-1(0;2m+2s-k,2n+1) V(O;m+s=4,...,m;n)

+I{0;om+2s-5,2n+1) V(0;m+s-3,m+s-5,...,m;0)
-1{0;om+25-6,2n+1) V(0;m+s~3,m+s-4,mts~6,...,m;n)
+. L] . - L] . * . . L] L] L] . * L] » - - L] L ] - L] L] L] . L]

4-(-1)5‘2 1(0;2om+s -1,2n+1) V(O;mts=3, 00 o0 mtl;n) |- (10)
Nowv using (4) we can see that (10) equals

(m+n+s-l)-l [-(mints) V(O;m+s-1,mts-3,...,m50) + (mts-1) V(O;m+s-2,...,m;n)

...(ll)
Thus from (5) and (11), the coefficient of I (x;mts-2,n+l) is given by
0
-1
K 4eo =(mnts-1) " [ ¢(s,m,n) V(O;m&s-l,m&s-3,...,m;n)—(m+s-l)km+s_l:]- (12)

Now let us obtain the coefficient of -Io(x;m+s-3,n+l). From the first term on
the right side of (9) after applying (&) we get for the coefficient of
-I,(x;ms-3,0+1)

21(0;2m+2s-3,2n+1)

(whots-2) V(05mts -k, « o pmsn) - (13)

From the second term on the right side of (9) we get

-2(m+s -2)I(0; 2m+2s -4, 2n+l)
(m+n+s-1) (win+s-2)

v(o;m+s-t,...,m;n) . (1k)



Similarly, we obtain from the third term

21(0;2m+2s -5, 2n+1 )

Tittirs 3) (ms -1) [ -21(0;2m+2s-7,2n+1) V(0;m+s-6,...,m;n)

+2I(0;2m+25 -8, 20+1) V(0O;m+s-5,m+5-T5 .00 ,m;50)

e & ®€ ® &6 & & & 8 S o & & e & & & & s 2 ¢ s o

s & ® & ® ® & 3 & 8w e & ® & e s o " & & s o o .

+("l)s-)+ 21(052111"’3"2’ 2n+l) V(O,‘m+S-5, se e ’m+l;n] . (/ﬂ
Now again using (4), (15) can be written as

21(0;om+2s -5, 2n+1)

(m+n+s..2) [ 'V(O,’Iﬂ+3 "2;m+s-5,m+5 -6 sew ,m,‘n)

+ (-(-m-'f?"—zl)v(mm-jg,msﬁ, veseesmyn) | - (16)

mtn+s -1
Similarly from the fourth term the coefficient is obtained as

-27(0; 2m+2s -6, 2n+l)
(m+n+s-2)

[ -V(0;m+s -2, m+s -k ,m+s <6, e0e,m3n)

( mts -2

_E_E;s-_—l) V(0;mts -3 ,mts -b,mts-6, .o ,myn) |- (17)

1

Proceeding in a similar manner we obtain the coefficients in the other terms.

last term gives

(-1)57207(0; 2mts -1, 2n+1)
(mtn+s-2)

[ "V(O,'m+s-2,m'|'s‘)+, se 0 ,m+l,.n)

+(E%;%%) v(0;mts-3,m+s -k, ...,m+1;n) ] . (/?)



Now combining (13) and the first terms in (16)-(18) (including other similar
terms obtainable from (9)) one obtains

( ndn+s

,m) V(0;mts-1,m+ts-2,mis~l, ... ,m;n). ' (19)

Further, combining (14%) and the second terms in (16) - (18) (including other simila/

terms obtainable from (9)) we get

[ (mts -2)
- 7 b (atnt+s-2) (mnts-1)

1[ (mtn+s) v(0;mts-1,mts=3,...,m;n0)

-(mts-1) V(0O;mts-2,m+s-3,...,m5m) | . (20)
Now from (19) and (20) and (5), the coefficient of -IO(}:;m+s-3,n+l) is given by

-1
km+s-3= (mtn+s-2) [ C(s,m,n) V(0;mts-1,m+s-2,mts-b,...,m;n)

- (m+s-2) L

ol - (e1)

Proceeding on similar lines we can in general show that the coefficient of

(-1)* IO(O,'m+s-i,n+l) is given by

(mtn+s-1+1) -1 [ C(s,m,n) V(O;m+s-L,m+5-2,...,mts~i+l,mts-i-1,...m;n)

-(m+s -i+1) K el ] (22)

where k.m +5=0 °
Now it may be noted that i in (22) goes from 1 to s-l. But the approxi-

mation will contain one more term which should be considered separately for even
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and odd values of s.
(1) s__even. 1In this case repeated application of () to the V-function in the c.d.f.
(3) would leave a final term independent of x which would be equal to J?r(eS <1)

and therefore, is unity. Hence the approximation to the c.d.f. for even velues of

s 1is given by

s-1

i .
1+ 151 (-1) S Io(x,m+s-i,n+l). (23)
(i1) s odd. When s is odd the remzining term is Iixim,n which 1s obtained as
3 9t4 8(mtl,n+l

follows:
Apply' (4) repeatedly to the V-function in the c.d.f. (3) and after the last stage
of reduction, a set of simple incomplete eta functions are obtained which cannot be

neglected and the sum of these terms involving x will be of the form

. s=1
‘bOI(x;m,n) + olI(x5m+l,n) Hooot bs_lI(x,'m+ = n) (2k)

2
where the b's are obtalned by pooling together all the terms involving the re-

spective I integrals after the last stage of reduction. Now since

I(xtiq,r) = (qrre1) ™ [-Io(xl,q,r‘rl) + qI(x*59-1,7] (25)

and since

s+l

by 8(m+l,n+l) + by B(m+2,n+l) +...+ b, 3 B (m+ 5 n+l) = 1 (26)

2
(obtained by putting x=1 in (2l) which equals Pr(es <1) = 1), for the coefficient
of I(xjm,n) in (24) after integration by parts of the remaining integrals using

(25), we get
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-1
_ (m+l). .. (m==)
Ixim. = oy by (éﬁiiéf * by (ﬁ&gié (§:§+3 Teeet bg g 2s+.l ]
o EE—-(m+n+2)...(m&n+75-)
= I(x;m,n)/B(mtl,n+l). ' (27)

It may be pointed out that integration by parts in (24) using (25) would also
give Io terms which, in fact, are already pooled together in the respective IO
terms whose coefficients are given by (22). Hence when s is odd, approximation

to the c.d.f. is given by

-1
_ Ilgmn) L ° i N
P8 =% = gl ey ¥ ifl (-1)7 kg Tolxsmts-1,n+l). (28)

Now it may be noted that for evaluating (22) we should know the velue of the
V-determinants involved therein and it has been already shown (Pillai and Mijares

(1959)) that

V{0;m+s-1,m+s-2, . .. ymts -1+l ,mHs5~1-1, ... ,m;n0)

i-1

_ rs-1 (cmts-j+l) _

- [(l"l) J:l (2m+2n+25-,3+l) ]/C(S l)m,ﬂ) (29)
and thus (23) and (28) gives the desired approximation to the c.d.f. of the largest
root at the upper end in a form simple to compute. It may be pointed out that the
approximations to the c.d.f. obtained by Pillai for s =2 to 7 (Pillai, 195k,
1956a, 196L; Pillai and Bentegui, 1959) are easily deduced from (23) or (28) by

putting the appropriate value of s.
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4. Upper Percentage Points

P1llai (195k, 1956, 1957, 1960) gave the upper 5 /o and 1°/o points of the
largest root for s=2 and s=5 using his approximation formulae. Sen (1957)
computed similar upper percentage polnts for three roots, Ventura (1957) for
four roots, both following Pillai's method. Pillai and Bantegui (1959) gave
such percentage points for s=6. All these percentage points were given for
values of m=0(1)4 and n varying from 5 to 1000. Purther, Jacildo (1959) ex-
tended the tables for s=2 and s=3 for values of m=5,7,10 and 15 and the same
range of values of n as before. Pillai (1960) has published all these percent-
age points for s=2,3,4,5 and 6. More recently, Pillai (1964) has given such
percentage points for s=7 for values of m;O(l)5,7,lO and values of n as before.

Foster and Rees (1957) have tabulated the upper percentage points (80, 85,
90, 95 and 99) of the lergest root for s=2, m=-0.5,0(1)9 and n=1(1)19(5)49,59,79.
Foster (1957, 1958) has further extended these tables for values of s5=3 and L.
The arguments they have used for tabulation are vy= 2nws+l  and v2=2m&s+l.
Heck (1960) has given some charts of upper 5°/0, 2.5°/0 and 1°/o points for
s=2(1)5, m= - 5, 0(1)10 and n > 5.

Upper 5°/0 and 1°/o points were computed for &g and 8, using (23) and
%

as before. These are presented in Tables 1-6. The computation was carried out

using (28) for values of m=0(1)5,7,10 and 15 and n ranging from 5 to 1000

on IEM 7090 but a trial value was extrapolated from Pillai's tables (1960) and
(196k), of percentage points for £=2,3,4,5,6 and 7 for each of 9 x 16 = 1hk com-
binations of m and n in order to be fed into the machine. The values of .x
were computed such that Pr(es < x), (s=8,9,10) was within a unit difference in
the sixth decimal which gave six places accuracy for the percentage points with
the exception that for s=9 and 10, for m=15, Pr(es fgx) was allowed to be with-

in five units difference in the fifth decimel. At the right bottom corner
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of each table a few values have been extrapolated since the computer failed to ob-

tgin those values. The extrapolated vealues are given only to four significant {ig-

ures while all -others are given to five places.
5. Error of Approximation

All the values glven in Tables 1 to 6 are believed to be accurate within a

unit in the last decimal quoted. A detalled examination of the error of approxi-

mation for earlier studies has been made by Pillal and Bantegul (1959). In the
more recent study for s=T (Pillai, 1964) the error of approximation has been

further dealt with but in a different manner than in the previous studies, for

example by comparing the frequency of differences between the trial and f£inal val-

ues. By comparison, the trial values in general were even closer to the final
values in the present computations sirce percentage points were available for
more values of s for computing the trial values. It should be pointed out
that the trial values for s=9 were computed after the final values of s=8
were available and similarly for s=10. An added feature of the present compu-
tations is that percentage points for m=15 are also obtained as well as a
uniform accuracy of five significant digits 1s provided.

The author wishes to thank Mr. Peter E. Dress, I tructor in Statistics,
Department of Statistics and Mrs. Louise Mao ILui, Statistical Laboratory, Pur-
due University, for the excellent programming of this material for the IBM TOSO

Camuter, Purdue University's Computer Science's Center.
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Table 1. Upper 5°/o Points of the Largest Root for s = 8

n 0 1 2 3 b 5 7 10 15
5 |.87386 .88974 .90198 .91173 .91968 .92630 .93670 .94773  .959k8

10 {.72804 .75412  .7753%  .79300 .80798  .82085 .8h191  .8B6546  .89206
15 |.61550 .64525  .6702h  .6916hF . 71022  .T72656  .75M02  .78589  .82359
20 |.53065 .56108 .s58718 .60997 .63010 .GLBO6  .67886  .71565  .T6C68
25 |.b654  .Lk9seh L5212z .5Wh20 L5675 .58331 .61561 .65503 . TOk6Gh
30 {1408  Jhho7h JWGB00  LLOOS9 .51099  .52957  .56228  .60290  .65518
Lo |.33876 .36473  .38799  .L0909  .u2841  Jhh623 47816 .51881L .57296
60 |.oh79h 26912  .288LL  ,30627 .32286 .33838 .36679  .LOM11  .Ls600
80 |.19537 .21303 .22931 .ohkk7 .25871 .27215 .29703  .3303%  .37787
100 |.16115 .17623 .19022 .20334 .21572 .227h8  .2hghk2  .27915  .32232
130 |.12759 .13993 .15145 . 16231 .17263 18247 .20099  .22638 .26392
160 {.10559 .11602 .12579 .1350hk  .14386  .15230 .16827 .1903%  .22335
200 |.085849 .o09LL82 .10260 .11032 .11769  .12478  .1382h  .15698  .18531
3C0 {.058496 064526 .0QT0225 .O75663 .080887 .085929 .09556% .109119 .1298¥
500 |.035726 .039482 .0b30LT .OLGLG3 .OLOTSS  .052946 .05907hH .COTTSE  .08119?
1000 |.018105 .020038 .021878 .023645 .025355 .027016 .030219 .03480% .04201s

¥value extrapolated
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Table 2. Upper 1°/o Points of the Iargest Root for s = 8

::\\3:& 0 1 2 3 b 5 7 10 15
5 |.91031 .92176 .93055 .9375k  .9k323  .9W7T96  .95537 .96320 .97152

10 |.77855 .80027 .81787 .83248  .8uh82  .85541  .87267 .89189  .91349
15 |.66867 .69502 .TL708 .73589 .75218  .766h7  .79039 .81803  .85033
20 |.58250 .61043 ;63429 .65505  .6733%  .6896L  .TITHL  .T5045  .T9066
o5 |.51467 54066 56696 .58839 .60751  .62hT2  .65456 69080  .7361k
30 |.46038  .48773  .51176 .53317  .55245  .56997 60071 63869  .68T27
5o |.37948  .hok8O  Jha7hl  LLLTB6 L6653 LW8371 51438 .55327 60475
60 |.28011 .30123 .32046 .3381hk  .35456  .36990 .39787  43WLT 48507
80 |.20175 .23958 .25597  .27120 .28547  .29892  .32375  .35686 .40386
100 |.1834% ,19878 .21298  .22626 .23878  .2506hk .27271 .30251  .3L4559
130 |.14565 15829 .17C07  .18115 .19165 .20166  .220k3  .2L609 .28386
160 |.12076 .131%9 .1k152  .15100 .16002 .16865 .18492  .20734  .2kOTh
200 {.098336 .10725 .11562 .12356 .13114  .138k1  .15219  .17132  .20013
300 |.067151 .073412 .079320 .c8L9L8 090347 .095531 .105476 .119400 .1LCE*
500 |.0L1O86 .OW5003 JOLBTLS .052266 .055685 .05899k .065337 .O74316 .088oz%
1000 |.020850 .022872 .02b79L .026638 .028k20 ;0301h8 .033477 .03824* .OLST3I*

¥value extrapolatéd
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¥valie
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Table 3. Upper 5°/o Points of the Largest Root for s =9
. ml 4 3 5 3 L 5 7 .10 15
5 1.89098 .90390 .91kOL 92215 .92886  .934k8  .943k0  .95203 .96318
10 |.75598 .77833 .79670 .81212  .82528 .83665 .85536  .8764h  .900k5
15 |.64727 67357 .69584  .71503 73178 L7H655 WTT150  .Boobl .8352h
20 |.56307 .59053 .6126  .63507 .65353 67005 69848 73256  LTTLLT
o5 | 49716  .52khk7  J5WBML  .56969 .58878  .60606 '.63622 67318 71976
30 iauhh55 J7111 Whob6s  W51577 L5301 W55237 .58319 .62156  .6TLOT
40 1.36633 .39077 .41278 .h3280 45118 46816 19863 53752 58939
6o |.o70h0  .29069 .30929 .32650 .3h2Sk  .35757 38512 k2135 L7178
80 |.o1h08 .23118 .24699  .26177  .27567 .28880 31315 34578 .39237
100 %-33713 .19182  .20550 .21836 .23052  .24208 .26368 .29297 .33552
130 , .1k066  .15275 .16h08  .1Th80 .18hk99  .19hT2  ,21305 .23822 .275hk2
150 '.11663 12689 .1365h  .14570  L1SWWh .16283 .17869  .20065  .23349
200 |.094986 .10351 .11156  .11922 10656  .13362  .1h7ok  .16575  L19hOk
300 i,o6h875 070856 .076532 .081961 .08718k .092232 .10189 .11548  .1363*%
50C 5.039699 .Oh34h0  .O4TC05 .050k2T7 .053733 .056939 063104 .O718hk* ,085h2*
1000 E-ozolu9 002080 .023925 .025702 .027423 .029097 .03233% .0369h* .OLL16*
extrapolated
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Table 4. Upper 1°/o Points of the largest Root for s =9

0] 1l 2 3 L 5 T 10 15

5 1.9206F .93192 .93916  .94k98  .9k9T8  .95379  .96013 .96691  .OTMLT
10 {.80179 .82030 .83548 .84R1E  .85899  .86831 88361 .90078  .92025
15 {.69676 .79k .T3951 .75631  .77093 78381 .8oshT  .83066  .860LT
00 |.61021 .63727 .65886  LOTTTH  .69WML  .TO935  .T3L93 76547 80282
55 |.54440  .56992  .59221 .61196 .62965  .6U56L  .67339  .TOT2h  .THOTT
30 |.48OkO L5162 .53691 .55685 .57486  .50126 62013  .65590 .70182
50 |.40632  .43003  .45131  Jh706k  LLB833  .S0héh  .53383 .57092 62012
60 |.302h7 .32262 .3hi0h  .3580h .37386  .38867  .L1570 JA511h 50021
8¢ 'n2u06o 25778 .27365 L2884k .30232 .315k2 .33965 .37199  .L41796

100 |.19966 © .21bsh  .22837  .2W13h  .25350  .26521 20688 .31617  .35853
150 1,15901  .1713k .18288  .19377 .20h11  .21398  .23252 .25789  .2952h
160 1.13209 .14260 L1528  .16183  .17075  .17929  .195h1 21766 .25082
2cC |.20775 .11652  .12479 .13265 .1h0l7 .1k739  .16110 .18015 .20885
300 |.073760 .OF9948 .085812 .0QL413 .096795 .10199  .11191  .125Ch  .1hTi¥
500 |.0k5220 .0h9108 .052807 .056355 059777 .063093 .069460 .078LE*  .092U3*
3000 |.022983 .02u997 .026918 .028767 .030555 .032293 .0356L* . oloko¥ .ol788%

*yalue extrapolated
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Table 5. Upper 5°/o Poimts of the largest Root for s = 10

N o 1 2 3 I 5 7 10 15
5 |.o0n83 .915M7 .92393 .93083 93636  .Ohlhl 94916 .95759 96720

10 |.77978 .T79907 81509 .8086L  .84o26  .85037  .86708 .88605 .90789
15 |.67519 .69855  .T1BhE L T3575 75090 .76L3L 78TOk 81372 84561
00 | 50217 .6170n 63867 65772 .67MEE  .68990  .TIOL 7478 78695
o5 |.50606 .55k 57325 .59297 61073 6068k 65503  .68966  .T3355
30 | 47263  .49728  .51923  .53901 55697  <57339  .602h5 63872 .68566
50 |.39214  LBISLT L3599 LB5LO9 ATou8  J48865  LSLTTE W55MOh .60165
60 |.29180 .31125 .3201h  .3L5Th 3612k .37580  .Lo2h8 143765 J4B66L
80 |.23209 .2u86hk  .26400 .27839 | .2919%  J30WT7  .32857 .36050  .h0613
100 |.19260 .20690 .22028 .23287 L2440 25616 .27739 30622 .34812
130 |.15339 .1652h .17638 18693 .19699  .20660  .22UT3 .ohg63 28647
160 |.12783  .13752 <170k ,15610 16476 17307 .18882 .21063  .2u327
o500 |.10396  .11237 L1203k 1279k .13523 L1026 W15562 WATh2T .2025%
300 |.071167 .077098 .0827hL .088157 .093372 .098418 .10808  .12169  .1h26¥
500 |.04363%F .OWT358 L050918 .05u3hk .057657 .060875 .06T7C6T .OT585% .089L8%
1000 |.022179 .024107 .025955 .027739 029470 .031155 .O34hI* .03905% .0uG32*

¥yzlue extrapolated



Table G.

Upper lo/ o Points of the Largest Root for s = 10

19

15

5| .93258  .9k020
Jo| .821kg  .837hO
15| .7e13%  .7H183
20| .63873  .66133
25| 57137  .59468
20| .51602  .53932
bo| 43131  .L45356
60{ .32368 .3k292
80l .25867 .2752k
100 .21530  .2297h
130 17197  .18hkol
160| .14313  .15344
200| 11696  .12559
360} 080258 .086375
5G)| .04930L .053160

1000{ .025096 .027100

.9h62l
.8505¢
- 75927
68093
.61519
. 56002
7362
36058
29059
.2k321
19532
16315
13375
.092191
05684

. 029020

.95116  .9552h  .95869  .96419 .97016
.86170 .87122 .87948  .89311  .9085k
JT7433 78751 .79916  .81886  .84189
L6981 L7I3ME LT271E 75072 .TT900
L6334 .BhoB2  .66U65 L6905k  .T2222
57862 59547  .61085  .63798  .67LT2
19180  .50867  .52416  .55195 58733
37692 .39216  LBOBhh  .h3257  .L66ES
3095  .318uk .33120 .35482  .386LO
25588 .26786 .2792k  .30049  .32925
20602 .21619 .22592 .24hk20  .26925
.17238  .18119  .18963 .20560  .22765
,14153  .14898  .15615  .16977  .1887T1
,097760 .10312 .10830 .11820 .13213
.060386 .063808 .067128 .073509 .08258%
.030871 .032666 .034k11 .03778% .O4260%

.97680
.92620
.86931
81378
76217
.T1517
63440
<H1UhL5
43132
37088
+30617
26054
2173%
1534
09661

.05013%

* ralue extrspolated



