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Summary

In this paper the queue-length and the waiting time of the nth customer
for a queuelng process with Polsson input and semi-Markovian se;'vice times are
discussed., -

It 1s a sequel to a paper with identical title (I) in which the process of
the busy pericds and the virtual waiting time process were discussed.

We refer to (I) for notations and definitions and we will number the equa-

tions continuously in I and II.



8. The Distribution of the Queue-length.

Let us denote by gn the number of customers in the system at the time of
departure of the nth customer. We assume here that customers are served in the
order of thelr arrival and that there is a departure at time *+ = 0. By go
we dencte the queue length at time o+, J o is the type of the ‘first customer
to join the queue after t = o and J  is the type of the (n + 1)st customer
If several customers leave the queue at the same time, then several values of
(gn,J n) are associated with the same instant of time. Since the customers are
served in a given order, there is no ambigiuity however about the value taken
on by the random variables (gn,Jn). The random variables {(gn,Jn), n=0,1,..
form a homogeneous Markov chain, whose state space is the cartesian product |

{o,l,... }x %\_l,..., m}.

The transition probabilities

(1,853, L) = F %,gnﬂ =Ly T =dlg =B, 9 = i}
n=°,l,'ou; i,j =l,o.00, m; h,i/=0,l,... are given by

(19)  P(i,h33, L) =2 gy (353)s  [2B-35 0= 10,2005 1, = L,eee, m.

PL(i,j)’ ,62 O; h = o,' i,j = l’-o-, jie )

=0 Z<h'13 h = 2,350005 1,5 = 1,ese, m

where

k
(80) Pk(i::j) = Ime-u '(X—;g_ d Q’ij(x)’ k =0,1,...
Q



Remark:

The Markov chain {(gn,d'n); n o,l,...} may be reducible and may have

periodic states. If the matrix P = Q(co) is strictly positive, then all
pk(i:.i) in (80) are strictly positive and the chain is irreducible, because
every state can be reached from every other state. The chain wi].’l. then have
the same period as the irreducible finite chain P.

We will now calculate the generating functions for the n~step transition

probabilitles
(@) s 4.5 - - _ile - -
P (1:h:J: £) -P{gn -ﬁ, Jn-Jlgo-h: J°~i}

We intrcduce the following generating functions:

©
(81) Ui?)(z) = ZP(n)(i)hSJ: K)Z’Q: n=0ylyeee
fos)
vy 5(zw)= Z U%‘%z)wn, 1,5 = 1yeee, m
n=o
co
Hij(w) = z P(n)(i,h;j,o)wn, 1,5 = Lyeeay m
=0

end prove the following theorem:
Theorem 9
Assuming that the non-degeneracy conditions, introduced in (I), are ful-

filled, the matrix V(z,w) = 4V, .{(z,w) } is given
ij



I:Zh'l'l

V(z,w) = I+ (z=1)w 0(w) ¥(r-rz)][2I - w Y(J\.—?\.z):rl,

in which the matrix I(w) is given as the unique solution to the system of lin-

ear equations:

m
Zﬂiv(w) o:vp[_i--x yp(o+,w)]= 'yg (o+,w) [i.-yp(o+,w)] -1 Otip[)\.-)\. yp(o+,w8,

LVEN
Tor 1,0 = lyjeeey me It 1is assumed that initially there are h customers in
the gueue.

Droof:

et 4 2t

The random varisbles § and § ., are related by the usual formula

(82) Spi1 = 18 - q¥+ Yo+l

in which VoL denotes the number of customers, arriving during the (n+l)st
service pericd.

It follows that:

(e = 1 _ s - sl
(&3) P i_gn-l-l - Ll"'Jn+l N Jlgo - h’Jo - lj -

Yy 9 o
XP %gn = 0,3 = v|g, = b,J_ = l)J‘ oM Q‘f? a Q4 (x)
v=1 ©
m la o {+1-cx



It now follows from (8L) and (83) that:

@) w9 =, 2B

+ P(n)(i,h,'v,o)] q;vj(x-xz),

iJ z
v=1
and:
m
f e h+l
{85) zVij(z,w) =834 2 + W Zviv(z,w) \';vj(x-)\.z) +
' w=1
m
(z=1)w Zniv(w) q;vj(x-xz), (1,3 = Lyees, m)
v=1
or in matrix notation:
(86) V(z,w) = [zh+l T+ (z-1)w 0(w) ¥ (A=rz)][z I - w y(A-rz)] 'l,

The functions Vij(z,w) are regular in |z| <l, |w| <1 and the determinant

of z I -w ¥(A-Az) vanishes only at the points where
z = yp(o+,w) P = lyene, m

in which the functions yp(O+,W)_ are the unique solutions of the equations

Z =W 'ﬂp(h-kz) p=l)nu" m
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in the open unit disk. The T]p(h-)\.z) are the m (distinct) elgenvalues of the
matrix y(\-Az).
Imposing that the 'yp(o+,w-) must also be zeros of the denocminators of the

expressions for Vij(z,w) ; derived from formula (86), we obtain:
m
h -1
(87) Zniv(w) avp[i,-xyp(o+,wﬂ = yp(o+,w) [l-yp(o+,w):|_ aipl_i-x, yp(o-o-,wﬂ
v=1

fOI‘ i, p=l,o-o’ m.

Using matrix notation ’bhe matrix [M(w) may be written in terms of the ma-

trix T(w,o+) = %aipr_i-xyp(oﬁw):[ir as follows:

(88) M(w) = T(w,0t) T (w) T (w,04),
in which

Y1 (o+,w) 'yl(o-l',w)
(89) Y (w) = diag ?m 3009, m

By using (86) and (88) the probabilities P(n)(i,h;j, {,) may in principle be
determined explicitly.

If the Markov chain is irreducible, we may obtain the generating function
for its limiting probability distribution directly from formulae (86) and (87).
The limiting probebility distribution will exist only if 7\.‘%(0+) >-1. Inall

other cases the Cesaro limits

n
L Y e a,ns5,0 )



will be zero.

Let us denote the limits

lim

w~> 1~ Hiv(w)(l-w) = Av

These limits are independent of the initial state. The numbers Av are

the solutions to the system of linear equations:

(90) ZA\) avaX-). Yp(o"',l)] = 0, for P = l’o'o’ m=-1
1 '(o+)
ZA = 'ﬂ’ 0+T_’ for p =n.

Ir 1+ M]I;l(o+) = 0 then the limits A are zero. If 1 + Mlx;l(o+) is strictl
positive the system (90) has a unique solution. Let us now dencte by P(j, L)
the limits of the Cesaro sums given above. It follows from the ergodic theorem

of Markov chains and from Abel's theorem, that the generating functions

@D
(51) vj; () = Z (3, L) z°

=0

im

are glven by the limits _ 3 l_(l-w) Vi3 (zyw).

Taking this limit in formula (86) we obtain:

% 2 9 (A. -\z) - 2
(92) Vj(z) = Z m 6pj (}\,-XZ)(Z-J.) ZA\’ avp(x-).z),
p=1 w=1
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in which the numbers Av are the unique solutions to the system (90). If the

A\: are zero, it is clear that all P(J, {) vanish. If the Av are dlfferent

from zero, formula (91) gives the generating function for the P(J, AR

9. The Queue-length in Comtinuous Time

In this section we investigate the process g_g(t) , J:; t>o0 } , in which
g(t) denctes the mmber of customers in the queus at time t end J, 1is the
type of the customer who is belng served at time +. The state space of the
process is the cartesian product 75_0,1,... }x {l,..., m} « As in the case of re-
neval service times - Takacs [2] - we need to derive the joint distribution of
the random varilables €y 'rl'l and Jn first. We recall that 'rl'1 is the time
of departure of the nth customer. The process g(t) may not be defined for
certain values of t, since several customers may leave the queue in the same
instant of time. This is not & mejor difficulty, since the process is contin-
uous at almost all points and we may define the value of £(t) by right con-
tinuwity at all points where this difficulty occurs.

We again assume that the cusiomers are served in the order of their arriva
and that a departure occurs at + = o. We dencte by go the value of & at
o+ and set 'ré = Q.

We first introduce the following notations:
J o

(ee]
(93) 5’; (s,2) = z 2 Im ™St dP{’rI'ISt, E =% J = il = 1}
Q=0 °

fOI‘ ReS?_O, lZI Sl and n=0,l,... (i"j=l,-uo’ m)

and



®
(ok) f\}/ij (syz,w) = Z a;.j (s,z) v, fw] < 1.
=0

We have the following theorem:

Theorem 10

The matrix f\;(s,z,w) = gi\\f‘ij(s,z,w)} is given by:

{95)  V(s,z,w) = [z W° (s,2) - w %}%ﬁv (s50,4) ¥{str-rz)] [2I-w ¥(sr-rz)]"

in the reglon Re s > o0, |z|] <1, |w| <1. T%(s,z) =§( N[/I?.J. (s,z)}

The matrix V(s,o,w) is the unique solution, under the usual non~-degen=

exacy conditions, of the following system of linear equations:

m
- R S
(96) LS‘*'?\.‘I.YD(,S:V}] Z’ ‘471\)(5303“7) avpl:s'h\.-k 'yp(S,W)] =
y=1

o
(s+) Uiigs_)'Yp(s:W)] Oiip[_é+h-7\. ‘Yp(S,W')], (1,0 = 1,¢00, m)
in which the functions yp(s ,w) are the m solutions of the equaticn
det l:z I-w ‘lf(sﬂ.-xzz] =0

which lie in the open disk |z] < 1.
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Proof:
1Je have:
+
(97) Sy = (8, - I+ vy
] e i 4
and Tn+l'Tn+Xn+l+ o) if §n21

* if =
en gn— o

in which v L denotes the number of customers to arrive during the (n+l)st

sarvice and where e: = Togp ~ 'rr'l is a negative exponential random variable,

n
lndspendent of X .., the service time of the (n+l)st custamer.

Furthermore:

M (ax)®

(\ = = j = =i
(98) Povy=0Jd =§l% =x, 30 4 1} :
fOI‘ a = o’l,aa. ar.d. i,j = l,noa; (0

Tt now follows from formulae (93) and (97) thet:

m m
(99) z\ﬁggl(s,z) = z:&?v(s,z) -J;vj(sﬂ.-u) - ENﬁgv(s,o) ¢vj(s+x-7\.z)
w1 v=1

m
+7Lz(x+s)-l ZU?\:(S’O) \;rvj(sﬂ.-A.z)

v=1

We note that it follows from the definition of ”ﬁid

i + je Summing in (99) after multiplication of both sides by z" we obtaln:

that it vanishes for



m
no
(100) =z Vij(s,z,w) =z 51.3 :.i(s z) + WZV (s,2,w) ¢, (s+7\.->~z)
v=1
m
~
- W Zviv(s,o,w) ¢vj(s+>\.-kz)
v=1
m
-1 ~
+ w AMAts) z:viv<s’°’w) ¢vj(s+m-xz)
v=1

and in matrix notation:

S+A=AZ

—ry V(s,0,w) ¥{s+r-Az)

V(s,z,w)[z T «w ¥(st-rz)] = 2 °(s,z) - w

The matrix z I - w ¥(sh-Az) is nonsingular for Re s >0, [w] <1, |z] <1l

except for
Z = '\l/p’:S,’.'T), p = l,-oo, m

where the -yoi:s ;W) are the m roots of the equation det E: I-w ¥(s-rz)] =
in the open unit disk. Talking the inverse in equation (101) and after diagonal-

ization of the matrix ¥/s+\-Az) we obtain:

-~ Z (S+A'—>"'7) ( 0
(102) Vij(_s,z,w) = L z-vr‘n (Sm 2/z Uii(s,z) O:ip(sﬂ-)»z)
p=1

-w s+2,+;z ZV (s,0,w) a, (a+7\, AzZ) n (s+n- )\.z)}
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This leads to the following system of linear equations for the unknown functions
/Xz_v(s,o’w), since the right hand side of (102) must be regular in |z| <1,

Res >0, |w| <1

(103) (s#) U?-il:é,yp(S,W)] O‘ipl:s'*'}"'k 'Yp(s’w) =

m
ER N -yp(s,w)] Z‘V‘iv(s,%w) avpl:s+x-7\. -yp(s,w)],
v=l

fOI‘ i, p=l,-.c, Me

It should be noted, as in all previous instances, that if m =1 our for-

milae reduce to Takaecs' results. [2] We now study the probabilities

104) HLMLZW)=P¥&)=Q,ﬁ=JH®)=sz=g-

We introduce the f£ollowing nstalions:

0
(105) minmsdis) = [ e pla,ns,Lst)at,  Res >o
Q
@
~ '
{106) Hij(s,z) = ZZ n(i,h; ,j,ﬁ,‘ s), Re s >0, |z| <1

A=0

!
Under the assumption E(o+) = h, let us denote by Mij(t) (i, = 15000, m and
UJ= 0,1,...) the expected number of times the queue length increases from Q
to VJ+ 1l in (o,ﬂ » whereby the type of the arriving customer is j, given that

£

the type of the first customer was i. Let l\Ti j (t) be the expected number of
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times the queue length decreases from A+ 1 to A 4n the interval (0,t],
whereby the next customer to be served is of type Jj, given that the first

customer in the process was -:L.

We have, under the assumption that E(o) = h, that:
o t
(107) Mij(t) = xj P(i,h;j,o;u) du
Q

The matrix mo(s) of Laplace~Stieltjes transforms of M:‘?,j (t) is given by for-
mula (71), where (ﬁ)(l,s) may be calculated using the fact that there is a de-
Parture at time t = o and that there are h customers waiting at time o+.
It suffices therefore to express the generating functions in formula (106) in
terms of the matrix mo(s) and other matrices which may be calculated.

Ve prove the following theorem:

Theorem 11

e have for Re s >0 and |z] <1 that:

l-hj (s+n=rz) .,

~ _ o h, -~ Ll o
(108) Hij(s,z) = oty [Yij(s,z,l) + mij(s) + 3z 6ijl +3 mi,j(s)
for h>o0 and
o 1-h,(s+\-rz) ] (s)
' T = J 0 V] S
(109) Hij(siz) = sHh=A\2Z E\rf;_j(siz}l) + mij(s).{ + 7“
for h = o, in vhich
m
(110) hj(sﬂ.-hz) = Z e;jv(sﬂ-xz)

v=1



and ,\;;_J.(s,z,l) is glven by formulae (95) and (96).

Proof:
le have:
; lu )
Nij(t) = Z P%Tri <t d, =35 g =LIJO = ij’
n=1i

so that by formula (93), (94), (102) and (103), 1t follows that:

o o ©

o -su , O ~
z z L e d Ni.j(u) = Z'ﬁ?j(s,z) = Vij(s,z,l)
Q=0 a=0

e now know ng(t) and Ni‘j(t) for all t >0, @ = 0y,1,.0. and 1,5 = Lyeeyc

We now express the probabilities P(i,h;j, % ;t) as follows:

t
-At +f e’h(t'u‘) a N;j(u),
o

(111) P(i,h;J,03t) = & _ 6

*
ho®i3S

and

L-n
¥* -
(112) P(i,h,-j,@ ;t) = 8 ¢ éij[l-Hj(t)]e A %)—1

) w12
+ Z [: [l-Hj(‘c-u)]e-k(t-u) [Cou)] 7 dl\l?_‘j(u)

(=)
=1

£ {1
+] oy (sea)]e MO DL 000 )
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in which
m
H.(t) = Z .\t
5(t) Q;,(%)
v=1
* *
and 8, =1, 6,y =1 1if h= 1,2,+++5% and zero in all other cases.

The probabilistic argument underlying (111) and (112) is the following:

*
The event £(t) = o, Iy

mers in the queue at t = o and no new customers arrive, or the customer of

= J can occur as follows: Iither there are no custo-

type J arrived at some time +t-u between o and + and no new customers
have arrived since.

The event £(t) =4 > o, J: = j can occur as follows:
Initially there are h customers, the service of the customer of type Jj, vhose
sexrTice started at o+ 1is not yet finished at time + and £ - h .new custo-
mere have arrived, or the customer of type Jj started service at time t - u
and there were & > o customers present at t - u+, vhile between t - u and
t, L - a new customers have arrived. Finally the third term is due to the
case & = 0, where no customers were waiting at t - u+ and 1’,7 - 1 new custo-
mers arrive in (t - u,t:l .

Taking Laplace transforms in (112) we obtain:

(113) ﬁij(s,z) = [—_i-hj(sﬂ,-xz):l (s+>\.-7\.z)-l %{\A/"ij(s,z,l) + mgj(s)}

1l -su, .0 A ST
d ——— N | ——— . L =
x lo e d ‘Iij (u) + f i 5'i,j e for h=o

zh(sﬂ,-xz)‘l [1-hj(s+)\,-)\.z)] Si,j for h + o8
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Finally we may express the Iaplace-Stieltjes transform of Ngj (t) in terms of

mzj (s), using formulae (107) and (111). Ve obtain:

0 *

-su o _AMs o -
(124) ‘]‘o e dNiJ.(u) ey mij(s) 833 Sno

Substituting in (113) this leads immediately to (108) and (109) .

Remarlk:
The study of the limiting behavior of the probabilities P(i,h;J, ¢;t) for

t —> o appears to be very difficult. This is tied in with the fact that the

P1imbedded’ ' Markov chain Sign,-:f n} may be reducible and may have periodic

states. A%t best wo mey obtain theorems on the behavior of

= [ ol Low)

e}

using Tauberian argmments. %We will not pursue this subject further in this
paner.
The expected number of departures in the interval (o,tj is also readily

ohtained from the previous discussion. We prove the followlng theorem:

Theorem 12

Let ﬁi,j (t) denote the expected number of custcmers of type J departing
from the gueue in the time interval (o,t:l y given that the first customer is of
type 1. We denote by N:j(s) the Laplace-Stieltjes tr.ansform of Nij (t) and

¥ s ¥
the matrix %Nij(s)j by N (s). Then:

(125) Nis) = [T - 25 W(s,0,1) ¥(sN[T - ¥(a)] 70 - 1.
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for Re s > o. The matrix ?f(s,o,l) is the unique solution to the system of

linear equations:

m
(16)  [s+n-n yp(s,l)] 2 ?r'iv(s,o,l) a\)p[sﬂ.-k AACTS]
w=1

= (sﬂ.) Ugil;,yp(s,l)] aip[sﬂ-). yp(s,l)l,

fOI‘ i’ p=l,-o.’ M.

Proof:
We have:
®
¢ . o2
(117) Ny (t) = ) Py <t, I = 3|7 =1}
n=1
and
© ®
V(szw)-gwn’ya[& St P <y =a, J_=j|J_ =
15\89%0W) = L=, ¢ {Th St g =03 = o=
n=o Q=0

hence, since 'rc') = 0 we have:

0

[

-s't ~
I e d I\Tij(t) = Vij(s,l-,l-) - 8330

Setting z and w equal to 1-, in formulae (95) and (96) the result follows.
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10. The Waiting-time of the nth customer.

e now study the sequence of pairs of random variables § (‘nn,Jn_l) n=l,...
in which ’ﬂn denotes the length of time the nth customer will have to wait be
fore entering service and Jn-l is the type of the nth customer. The random

variables T are related to the virtual waiting time process, studied in (I)

by

M, = M, - o)

We will now obtain expressions for the probability distribution

P %nn =% Il = jl"To i}

We introduce the laplace transforms

(as}
n - [‘ -SX N - = i1
(118) Qij (s) i e d P znn < "’Jn-l— JIJO =i,
and the generating functions
fes]
~ _ Y' n n
(119) Qij(s,w) = ) Qij(s) W
n=

The matrix ?2(5,»;) has the entries Adi,j(s’w) for i,j =1,..., m. 7ie now

prove the following thecrem:
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Theorem 13

Under the non-degeneracy conditions, stated in (I), the matrix @(s,w)

is given by: (Re s > o0, |w]| <1)

(120) o(s,w) = [(A-s)w Ql(s) -5 2 (W][(A-s) T -~ wy(s)] -1

in which

~ a
Ql(s) =éaji'i(s) 5ij; and Zij(w) = ZP {T'nﬂ: o, J_=jld.= f}wnﬂ

n o)
n=1

The matrix Z(w) is obtained as the unique solution of the following system of

linear equations:

m

(12]_) 2 Ziv(w) O:vp[)»—)\. yp(o’i-,w)—_[
v=l

- -1 .1
= yp(o+,w) 1 - 'yp(o+,w7_]_ W Qii[:k-k yp(o+,w):laip[:)\.-x.yp(o+,w)]

for i,p =1,..., m. The functions yp(o+,w), P =1ly..., m are the roots in

the open unit disk of the equaticn:
det [2I-w ‘?(A.-?\.z):l = o,

Proof:

S—r o .

“le have the usual relation between the successive waiting times:

(122) Mo = M, + %, - Gr]+
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in which Xn is the service time of the nth customer and en = Tn T 'rn. It

follows from the independence assumptions that:

(123)  (r-s) on l(s) = A E: Q (s) ¥, (s) -5 P! “n+1" 0, J,= j[Jo= ;}
v=1 .

fOI‘ i,,j =l,o-n, Me

In matrix notation we obtain:
(124) ?f(s,w) [()\.-s) I-xw ‘i'(s)] = (A-s) w Ql(s) -5 2 (w)

In view of the non-degeneracy assumptions the matrix V¥(s) can be written in

spectral form:

v(s) = R(s) E (s) B:(s)

in which R,. = ¢,.(s).
i3 ij

We obtain:

m
(125) 5 gl = T)' Q ) - s Z ( J Z \)r\ B (S)
5 u.-ij\:. T} = /= l. 3/ W 6 S W X"S-XVTT‘ (ST

The denominators k-s-)\.w'np( s) have unique zeros in the domain

Fe £ > o0, |w| <1 given by
=\ -2 yp(o+,w)

It follows from the fact that the left hand sides of (125) are analytic in this
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domain, that the unknown functions Ziv(w) must satisfy the equation (121).
This concludes the proof of the theoreu.
The following theorem states the main result on the existence of a limit-

ing distribution of the waiting time.

Theorem 14

lim

¢ _ 3 R B |
If hﬂ!;l(o+)§-l, then n'->oonﬂn— n_l-JIJ ~1}-o for all

X > 0.

If M\I;l(o+) > -1, then:

lim l - 4 - 31 _u°
n->c0 ¥ {lnr+nd <% Jr+nd-l N JIJO“’ lj - Wj(x)
exists. The integer r is equal to the minimum number of transitions required
to go from i to J with some positive probability in the semi-Markov process
of successive service times. The number d is the period of this same semi-

Markov process.

The Laplace-Stieltjes transforms of the W(J?(x) are given by:

(126) 2%(s) = s[(s-n) T + 1 v(s)] -1 ¥

*
and the vector P 1is given by the system of equations.

m
) *
(127) z avp[x-x Yp(o+,l)] P\) =0 for p % m
v=1 .
m
y P*=l+)\. ! (o) for p=n
L Vv T]In *

V=
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These limiting distributions are the same as those found in (I) for the virtual

walting time process.

Proof:

The statement concerning the existence of the limiting diétribu‘bion is a
consequence of a theorem of M.F. Neuts and M. Tata [l] which extends Iindley's
theorenm.

The expressions given in formulae (126) and (127) follow from formulae

(120) and (121) upon application of Abel's theorem

o _ Xim - ~ (
3 8) = g (2-w) . ulsw)
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