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Summary

A general queueing model is obtained, when one assumes that the service
time§ of the successive customers form an m-state semi-Markov process. If the
interarrival times are independent, identically distributed negativq exponential
random varisbles s 1t is possible to obtain general equations for the time-depen-
dent characteristics of the queue. The known results in the case of independent,
ldentically distributed service times and in the case of a queue with bulk ser-
Vice are obtained as special cases.

The stationary distributions, associated with the queue, are also obtained.

In this first DPaper the process of Successive busy periods and the virtual

walting time process are discussed.




1. Introduction

Considerable attention has been given to the theory of single server queue-
ing processes under the assumptions that the successive interarrivel times and
the successive service times are independent sequences of independent, identi-
cally distributed random variables. We refer to the treatises by L. Takacs [lll-]
and T. L. Saaty [10] end their impressive lists of references.

Apart from the general discussion by V. E. Benes [g] and a relatively small
number of technical papers, little work has been done on the explieit solution
of queueing models with some form of dependence in the input process or in the
process of service times. |

- In this paper, the strong, but convenient, assumption of independent y ldent-
1cally, negative exponentiaJJ.y distributed interarrival times is retained, but
the successlve service times form an m-state seml-Markov sequence. This can be
interpreted as a queueing model with =m types of customers for which the suc-
cessive customer types form an m-state Markov chain. Semi-Markov processas were
defined and extensively studied by P. Levy B], We. L. Smith [J.'L], R. Pyke [6, Ts
8] and others.

In the particular case, wvhen m = l,‘ the seml-Markov process becomes a re-
newal process and our results become those of L. Takacs on the transient and
stationary behavior of single server gqueues with Poisson input and recurrent
service times. The aueuelng process in which customers are served in batches
of size m - Tekacs [lll-] - is also a special case ef the present model, as we
will indicate later.

In order to make this paper relatively self:-contained, we will now review
some of the terminology and state some of the properties of seml-Markov proces=-

ses. For a detalled treatment, we refer to R. Pyke [6, 7] .




2. Semi-Markov Processes with a finite Number of States.
Ve consider a double sequence of random variables {(Jn’ Xn) sy 1 =0,1,c00 j »

defined on a complete probabllity space, having the following properties.

(1) X, =0 a.s, P{Jo=k§=1:§’ for k=1, ..., m < co.

(2) P{Jn = k, Xn SX I xl’ Xz’. esey xn-l’ JO’ Jl’ ceey Jn-l§=

P{Jn =k, X $x | Jn_lg= Q; . (x),
n-1
fO.T.' n= l, 2,0-.
The functions Qi,j(x)’ (L, § =1,¢.., m) are mass functions, which are non-

decreasing, right-continuous and satisfy the following relations:
) . . m .
(3 qyx) =0 forx<o, ql+w) =1, Zj (y(0) $3, (L3m2,0eem)

The latter inequality usually is replaced by equality. If strict inequality
holds for some 1, we call the semi-Markov prdcess ' Yimproper'?.

We will refer to the sequence {(Jn, Xn), D =0,l,...§ as a ''semi-Markov
sequence''.

It follows from {2) thazt the rendom variables Xn(n=l,...) are condition-
elly independent, given the rwpndcm variables Jn(n=o,l,...). Pyke [6] .

We dencte the matrix io,i j'{x)g by Qlx) and the matrix {piji by P.

In~ this peper, we will assume thitoughout that the successive service times
of the customers entering the queue can be described by a sequence of pairs of
random variables i(Jn, Xn), n = o,l,...} forming an m-state semi-Markov se-
quence with initial. probability vector po and a matrix of transition proba-

bility distributions Q(x), such that P = Q(co) is a stochsstic matrix. The

random variable Xn(n=l,2,...) may be Interpreted as the service time of the




4
oth customer and the random varisble J, a8 the type of the (n+l)st custcmer.
Pormula (2) expresses that X, and the type of the next customer depend on the
entire past history of the Drocess only through the type of the nth customer.

We note that the semi-Markov sequence is entirely characterized by the vector
2° and by the matrix of distributions Q(x).

In order to avoid inessential difficulties » we henceforth assume that the
seml-Markov sequence is irreducible, which means that the matrix P is irredu-
cible and hence that the marginal process {Jn, B=0,1,... g is a single class
Markov chain with m states.

We will also use the term ' 'general semi-Markov sequence''. This term will
refer to a process » defined as above, except that the initial random variable
xl is described by & different matrix of transition Drobability distributions
Ux), where , - e

'b‘m(x) = P{J’l=.j, I<xld, = 1}

The term ''semi-Markov Process'' is usually reserved for the continuous

Parameter 7rocess J = N(t)? in which

N(t) = Bup{nzxo Feoet X St} ’

It should be noted that the Process J £ which we will introduce below is not so
defined. In order to avoid confusion, we have coined the term ' 'gemi-Markov
sequence, '?
3¢ Formal definition of the Queueing Process

Customers arrive st a single server counter in the instants Tys 1'2,...
The interarrival times 0 "a-1(To=0 n = 1,2,...) are 1dentically distributed,

independent positive randem variables with distribution function



F(x) =P {Tn-rn-l < xg y glven by:

() Fx) =1-e™, x>0, A>0

0 x<o

that 1s, the input process is a homogeneous Poisson pProcess with parameter A.
If a customer arrives at the counter at an instant when the server is idle, then
his service starts immediately. If upon his arrival the server is busy, he joins
the queue. Unless otherwise stated, the order in which the customers are served
is immaterial.

Iet the type of the first customer (Jo) be described by the initial prob-
ebility vector p°. The type of the (n-l-l)st customer is Jn and the service
time of the nth customer is dencted by Xn. We assume that the déuble sequence
{(J‘n, -Xn) ; D=0y31,... } is a proper m-state semi-Markov seq_uehce with matrix of
transition probability distributions Q(x).

We propose for this queueing process the symbol F(x)/p°,q(x)/1.

We denote by J % the type of the last customer to join the queue, before
the instant of time t. In order to make this definition meaningful, we define
J g = J'o, the type of the first customer, in the interval from t = o +to the
time of the first arrival.

In this paper, we will show that the sequence of the successive busy per-
iods, together with the type of the first customer of each busy period, 1s egain
a general semi-Marov sequence and we will obtain general equations for its tran-
sition probability matrices G(y) and G(y).

We will also define the virtual v'r;:.'.ting time T(t) as the time a custcmer
would have to wait if he joined the queue at the instant + and gservice iIs in
order of arrival. The bivariate, continuous time process {Jt,n(t),' t > ojl

wlll be referred to as the ''virtusl waiting time process'‘t.
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Other processes related to this queueing model, such as the queue length
process and the walting time of the nth customer, will be discussed in a subse-
quent paper.
L. A Useful Theorem
We introduce the matrix Y¥(s) with entries ‘,Jid (s) (1, J=1,.7.,m), de-

fined as the Laplace transforms:

. dei,j(x)’ Re s D0

(5) Wi:)(S) = J‘oo

and we denote the m eigenvalues of Y¥(s) by ‘np(s). (p=1, «0ey m).
Throughout this paper we will make extensive use of the following theorem.
Theorem 1

The equation
(6) det[z I-w Y(sﬂ,-xz)] =

has exactly m roots in the unit circle |z| <1 if either Re s >0 and
[wW] <1 or Res >0 and |v] <1,

If, in addition, the m eigenvaluea ‘P,p(sﬂ.-)\,z), P=1lyeeey m of the
metrix ¥(s+\-Az) are distinct for all values of s and z, such that Re
8 >0 and [z| <1 or if some collection of eigenvalues ere idenmtical for all
such values of s and 3z, while the remaining eigenvalues are distinct » then
they can be defined so as to be analytic functions of s+\-Az in this region.

In this case, each of the equations

(7) zZ-w T]p(sﬂ-)\.z) =

/

has a unique root yp(s,w) in the open disk |z] <1 for either BRe s >0

and [w| <1 or Res >0 and |w| <1. These roots yp(s,w) are then
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regular functions of s and w for Re s >0 and |[w| <1 and continuous on

the boundary. Furthermore:

T (a2 | 7T 0]
L5

(8) Ypb(S,W) =v dsa_l 2

J=1
For s+\-Az real, the mgtrix ?(sﬂ-xz) is s nonnegative matrix. Iet us denote
by T(s+\-Az) the root » which is equal to the Perron eigenvalue for real values
™
of s+\-Az. For real s&+#\-Az, N(s*r-\z) is strictly positive. Let us dencte

. gy
by w= ym(o,l) the smallest positive real root of the equation

(9) w=T,(A = o),

It then follaws 't}:.lat w<l if and only if X,T):I:1 (o+) <-1 and w =1 if and
only if 'xn; (o+) > -1.
Proof

We first assume that in the reglon Re s > o, |z <1 the m eigenvalues
‘ﬂp(sﬂ.-lz) of the matrix VY(s+\-Az) are distinct and defined analybically..

For Re 56 >0 and |z <1 we have:
(20) lf!ij(S"'X-XZ)l Spi,j’ 1,J=1yeee, m

with equality holding only if Py j = 0. This implies that the spectral radius
of the matrix V(s+\-Az) is strictly less than that of the matrix P, which is
a stochastlic matrix and hence has its spectral radius equal to one - Wielandt

[15], Rosenblatt [9]. It follows that:
(ll) l'ﬂp(S'ﬂ.-XZ)l <l, p = l’l.l’ m Re 3 > Oy lZl _<_l

Equation (6) may now be written as:




(12) ]I:Il [z-wN (sﬂ.-)\.z)] =0

p=1 ~ P
Rouché’s theorem may now be applied to each of the factors, since |w| <1, to
Yield that each one of them has one and only one root in the open unit disk.

In the region Re s >0, |z] <1 the weaker inequality holds in (11), but
lw] <1 and Rouché's theorem again yield the desired result. |

The anelyticity of the root -yp(s,w), p=1,e.., m follows from the analy-
ticlty of the eigenvalue Tip(sﬂ.-x.z) as does the Lagrange expansion, given in
formila (8) Takacs [1h].

Ifweset s=0 and ¥ real (o < x) the matrix Y(\~Ax) is nonnega-
tive and irreducible and has monotone increasing entries on o < x < ®. The
largest eigenvalue (the Perron root) is simple and is a monotone increasing
convex function of x. - Miller [5], Bellman [Z]. Sinée 'ﬂm(o+) = 1 the equa-
tion (9) has a unique positive root <1 in [o0,] if and only if
xn!;l(o-i-) < -1. The unique zero will be equal to one if and only if “‘xi("*) > -1,
In addition the equation z = T}m(x-kz) has only one root in the open disk 1f
L‘n!;(o-i-) < -1 and has no root in the open disk in the other case. It follows
that = Ym(O'l',l).

If the matrix vVY(s+\-Az) has mltiple eigenvalues at all points of the re-
g[ém Re s >0, |z| <1, vhile the remsining eigenvalues are distinct, then the
above a.rgmnen‘t remains velid. Ve will assume later that in this case the matrix
¥(s#-rz) 1is diagonalizable. |

If the matrix Y(s+A-Az) has fultiple eigenvalues at some points in the
region Re s > o, lz[ < 1, then it is no longer possible to define the eigen-
values analytically, since branch-points are present. We will exclude this case
later, but the result on the number of roots in the unit disk remains velid as

~ 1s seen by a perturbation argument and an aspplication of Hurwitz's theorem. One
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may also apply the argument of R.M. Loynes [h-l, who uses an extended version of
Rouché's theorem.
Remaric

If we write Ym(s) for 'Ym(s s1), then it follows from

Y, (s) = 111n[s+x¥me(s):]

that 1f y = 1, we have

(B3) Y

111;1(0+) [l+l.1]£l(o+):] -1 for LT(!;(o-!-) > -1

= © for ).T]l;l(o-!-) = =1,

The following theorem throws light on the meaning of the number Tgl(o-l-).
Theorem 2

Let 7 = (1:1, Tpseses % ) be the stationary transition probebility distri-
bution for the Markov chein with metrix P and let £ 13 be defined as:

(o o]

(14) 5“ = J.o xd Qi,j(x)’ 1,§ = 1,00, m
| m
and Ci= Z giJ. We assume gi<co for i =1y4e.y, m then
J=1 n
(15) 12 (o%) = -le %46,

Moreover, let Sn denote the sum of the service times of the first n custo~
mers, then:

S n
s
(16) TR ) NG e
J=1




e e ——— . ———— T e

e .
2rcof
The distrfbution n 1s the unique probability vector for which
| ;(. P = ;,

- of_ '
Let o(s) denote the left éigenvector A ¥(s), corresponding to ‘nm(s) , normal-

ized in such a manner thos ofo+) = x then

[37) a(s) ¥(s)

() a(s)

Differentiating in (17) and setting s

o+, we obtain:

m m
Z czj(O’r) Pig " Z 381 = aj(ot) + M (o4) n,,
3=1 3=1

Tt follcws from the finiteness of the €13 that the numbers a5(0+) are also
finite. Summing cn 1 in the above equations yields |

m
"{o+) = = \-‘ x

=1
The statement (16) is one of the many versicns of the strong law of large num-
cers for positive recurrent semi-Markov process and a detziled proof is complete-
1y analogous to these of Pyke [8] .

™o ol

Berarlc n

. The quantity z x jg j mey be interpreted as the long ronge average ser-
J=1

vize time of & customer. We will find results on the stationary behavior of the
guens, thet are completely analogous to *l'.hos;;:1 for the queue with renewal service

times. The relative magnitude of % and z :tjg 3 will ccupletely character-
=1

Ize whether the queue becomes stationary, becomes transient or is in unstable




equilibi‘ium.

We note that the condition ¢, <o (1 =1,..., m) 1is a necessary and suf-
-ficient condition for the positive recurrence of the semi-Markov process of ser-
vice times - Pyke [6].

5. The Process of Successive Busy Pericds

Let XY,

time, during which the server is busy. Let Io denote the type of the first

Ya,..., Yn,... denote the lengths of the successive intervals of

customér to join the gqueue (Io = Jo) and let I be the type of the first
customer to be served during the (n + 1l)st busy period. If we define Yo= o]
a.8., then it follows from the assumptions imposed on the queue, that the bl-
variate sequezice of random variables %(In’ Yn) , n=0,1,...0 1s a general
seml-Markov sequence. If the virtual waiting time at t = o 1is 'zero, then the
sequence is an ordinary semi-Markov sequence and the process of busy periods is
coampletely characterized by the vector po of initial probabilities and by the
metrix G(x) = {Gij(x)g (i,3,=1,+0+, m) " Of transition probability distribu-
tions. '

If the virtusl waiting time is different frpm zero, the transition proba-
bility matrix, corresponding to Yl’ will be different from G(x). In this case
we denote this initial matrix by _'"(?(x) and then the semi-Markov sequence of
successive busy periods is fully characterized by p°, ?}/(x) and G(x).

We will now express the matrices G(x) and G(x) in terms of the imput
rate )\ and the matrix Q(x). We will also obtain the joint distributioms of
the lengths of the busy periods and the number of customers served during each
busy period. It 1s clear that these distributions will not depend on the order
in which the customers are served so long as service starts with the first cus-

tomer to arrive after an idle period.

Ve assume throughout this discussion that the matrix v(s#\-Az) has m
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distincet elgenvalues 'np (s+A~Az), which are not identically zero, throughout the
domein Re s >o, |z| <1 (p = 1,..., m). This and other non-degeneracy assump-
tions will be discussed below.

We Introduce the following notations:
Gi j (n,k;x) denotes the probebility that a busy period, other than ‘the first »
consist of at least n services, that the total service time of the first n
customers is at most x, that at the end of the nth service k customers are
vaiting and that the next customer to arrive after the end of the nth service
is of type Jj, glven that the first customer of the busy period was of type 1.

We-introduce the Iaplace transform:

[0 0]
(18) T, (nk;s) = f e 5% g G, (n,k;x), n>1,Bes>o
J o i3 - =

and the generating functions:

(19) cij(n’zas) = z j(n:l‘-:s)z ’ 'ZIS 1.
k=0
co
(20) ' Dij(w,z,s) = z Cij(n,s,z)wn jwig1
n=1
We -set (n,o,s) =T, (n,s) and define the generating function E; (w,s) as:
(21) 7 i.j(V’s) = 2 J(n:s)w ’ IVI <1

n=1

Clearly Eij (1,s) 1s the Leplace-Stieltjes transform of the distribution G. .(x).
Finally let the vectors o (s+}., Az) = r 107 @ op? 2 mt;l dencte the right
eigenvectors of the matrix i’(s-f-l-xz) corresponding to the m eigenvalues

p(sﬂ-kz) (p=_l,..., m). We then have the following theorem:
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Theorem 3

Provided the m X m matrix T with columns &p]:Sﬂ.-kyp(s,w)] (0=1y++., m)
is non-singular for all s and w in the region Re s > o, |w| 5 1l the ma-
trix E(w,s) with entries Eij(w,s) is uniquely determined by the fact that

its m eigenvalues are the rocots Y, (s,w) of equaticn (6) and the correspond-

ing right eigenvectors are the m vectors EpEsﬂ-xyp(s,w)] . (p=1,...,m)
Proof

The probabilities Gij (n,k;x) satisfy the following recurrence relations:

) = Mr!_xL
(22) oy y(am5x) = [ o 2, ),
and
m k+l
k-r+l
G (n:k:x) = Z Z J. G’ (n'l:r:x'y')e Xy%dij(Y):
v=1 r=1 '
for n > 1.

Taking Laplace-Stieltjes transforms in formulae (22) we obtain:

® k
(23) ry;(Lk,s) = fo eWrely Lo & ;(¥)
and:
k+l -(X"‘S) A )k -r+l
I‘id(n,k,s) = z ZI" (n-1,r,s) I y L(h)—.' d ij(Y)
r=1 v=1 -

for n > 1 and hence:

(24) Cij(l,z,s) = ¢ij(s+x-xz)



1k

_a.nd
| m m
z Cij(n,z,s) = z Ci\)(n-l,z,s) q;vj(sﬂ.-xz) - Z I‘iv(n-l,s) (;va.(sﬂ.-u)
v=1 . =1
for n > 1.
Finelly, we obtain:
m
(25) 2 Di'j(w,z,s) =w Z Div(w,z,s) u,r:va(sﬂ.-xz)
v=1
m
+wz q:i'j(sﬂ.-u) -w ZEiv(w,s) ¢vj(s+x-xz)
v=1

or in mestrix notation:
(26) D(wy2,5) [z I-w g(sh-rz)] = vz I-E(w,s)] ¥(s+h-1z)

The inverse of the matrix z I-w Y(s+\-Az) exdists for all z, weand s5 in

the region |z] <1, |w] <1 and Re s > o, except for the roots:
2= YD(S,W) p = l,oc., m

Under the non-degeneracy assumptions the matrix Y(s+\-\z) may be written as:

(27) ¥(s#-rz) = R(s+r-rz) H(s+r-Az) R‘l(sﬂ.-xz),

in which Hij(s-l-x-xz)- = 8y T]i(sﬂ,-xz) and in which the columns of R{s+\-Az)
are the' right eigenvectors of the mat_z_‘ix ‘l’(sﬂ.-}.z). The components of the
elgenvectors may be défined to be analytic functions of s+\-Az in the region
Re 8 >0, |z] <1, |

If we set
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Rij(sﬂ-).z) = aij(sﬂ.-u)

(R-l)ij(s+x-xz) = aij(sﬂ-xz)

then (26) and (27) lead to:

avo(sﬂ-xz) 7 p(sﬂ.-kz) Bpj(sﬂ.-k.z)
Z =W 'ﬂp(sﬂ.-kﬂ

m m
(28) Di'j(w-,z,s) = WZ [zaiv-Eiv(W’s)] }j
v=1 p=1

for a1l z {:.yp(s,w) (p=1y00sy m)

The functions Dij(w,z,s) mist be enalytic for all |w| <1, Re s >0, |z| <1.
This Jmplies that the zeros of the denominators must also be zeros of the nu-
merators and hence for all p = l,.sey, m we must have:

‘m
(29) z E&ivvp(s,w) - E'iv(w,s)J arvasﬂ.-x Yp(s,w)]

v=1

- T \s+>»-7\. Yp(S,W)] Bpj S+A=A Yp(s,w)J =0

fOI‘ alJ- i, j = l,o-o, e \
By assumption T}p(sﬂ.-k Yp) does not vanish identically and B m[sﬂ-kyp(s,w)]

is different from zero for at least one J, so we obtain:

m
(30) ZEiv(w,s) ozvp[sﬂ.-k‘{p(s,wﬂ_ = ‘Yp(s,w) ozip[s-!-k-k 'Yp('s,wD
v=1 |

foralJ- i,p =l,uon, e

Since we have assumed that the matrix T(w,s) is nonsingulsr the system (30)

2

can be solved uniquely for the m“ functions Eij (w,s), which are then analy-

tic in the region Re s > o0, |w| <1l

KL AT
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Bquation (30) leads to:
(31) E(w,s) = T(w,s) Aw,s) T'l(w,s)

in which Aij(w,s) = 61.]' yi(s,w').
This completes the proof of the theorem.
Remarks

a.)' The assumption thet the matrix T(w,s) 1s nonsingular is not essential
for this theorem, since the entries of the matrix E(w,s), glven by (31) will
only have removable singularities at points where det T(w,s) vanishes. This
condition seems to be necessary however to guarantee the uniqueness and the
enalyticity of the solutions for the analogous equations for the matrix ’C\}J(x).

The case of multiple eigenvalues for the matrix Y(s-l-x-xz) seems to be
intracfable in general. In some cases (Qi P negative exponential ,m = 2) it
was posslble to verify that this cannot occur except in degenerate cases. As
an illustration of such a degeneracy, we mention the cases in which
Qi;](x) = ijJ(x) or Qi,j(x) = iji(x). In these cases, all but one of the
elgenvalues are identically equal to zero, but it is easy to see that these
queueing models may be solved directly by considering only one customer type,
whose service time distribution is a mixture of m distributions.

b) This argument generalizes one of the many derivations of Takaes'®' func-
tional equation for the case m = l. Takacs [ 12] + The more direct combina-
torial arguments, which are available in the case m = l, appear not to extend
easily to our model [13] .

Theorem 4 |

The semi-Markov sequence of successive service times 1s irreducible. It

is proper if and only if A.T[l_:l(o+) > ~1l. It is positive recurrent if and only

ir A.Tlx;l(o-l-) > -1l. In this case the means
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Mi,j = J‘m xd Gi.j(x)
(o}
are finite.
Proof:

In order to show irreducibility it is sufficient to prove that there 1s
positive probability of a transition from state i into state J in the semi-
Merkov sequence of successive busy periods s> for any two states 1 and j.
Since the Markov chain P is irreducible, there is an integer v Ffor which
pi‘\;) > O

Assume first that the. service time of the customer of type i 1s differ-
ent from zers with positive probability. Then there is positive probability
that during the s21vice time of the customer of type 1 exactly wv-l1 customers
arrive éuch that duriag their accumulated service time no further customers
arrive and such that the next customer thereafter is of type J.

If the service time of the customer of type 1 1s zero almost surely,
then there is either a sequence cf busy periods of zero length, which leads
from 1 to J in v steps or from‘ i a type of customer with non-zero ser-
vice time is reached. The argument glven above then shows that there is posi-
tive probability of resching J in the remeining steps.

If we consider equation (30) with p =m, w=1 and let s tend to o+

we obtain by continuity:

(33)

~1H

¢, (o) @ (rho) = o, (hdw), (1= 1,.e., m)
v=1

The vector 5m(7s.-xw) is the eigenvector corresponding to the largest eigen-
velue of the matrix Y(A-2w), which is a nonnegative matrix. The components

of Em(x-m) can therefore be chosen to be strictly positive. Equation (33)
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expresses that Em(x-kw) is also the elgenvector of the matrix G(w) corres-
ponding to the eigenvalue w. Since G(ew) 1s irreducible and since w is a
positive' number It must be the Perron eigenvalue of G(w ), since the Perron
elgenvalue of an irreducible nonnegative matrix is the only eligenvalue that can
have a strictly positive eigenvector. Therefore G(m) can be a stochastic
matrix only if w = 1. Conversely if w = 1 we have c—zm(x-kw) = 5m(o+) , where
Em(o+) is a right elgenvector corresponding to the eigenvalue one of the ma-
trix .P. Hence all components of Em(o+) are equal and it follows that
m
z ¢, () =1, (L=1,.es, m)
v=1
Finally we know that ® = 1 1if and only if A.T]r'n(o+) > -1, |
Let us normalize the vector &'m(o+) by setting aim(o+) =1 for all
1 =100y me It is easy to verify that in this case the finiteness of the
g (3 = 1,000y m) implies thet @ (o+) is finite for all i.
If we differentiate with respect to s in equation (30) and take p = m,

=1 and s = o+, we obtain:

m -1 m
(34) Z‘ X, = "[1"'7\'% (O"')] Eiim(o"') - ZG:L\) (o) @' (ot) + nx;l(o+)‘l
v=1 v=1 -

The result fo.'L'Lows if we show that the denominator and all the numerators in
(311-) cannot van:I.sh simultaneously. The denominator vanishes if and only if
Tlm(o+) 1 <o, fet us denote the vector a'(o+) by §, then if all the

numerators in (34) vanish simultaneously we have the equation

(35) [x - ()] 7 - Talo) 1.
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vhere 5: is the columnvector with all its components equal to one. Iet o
dencte the stationary probability distribution vector corresponding to the sto-
chastic matrix G(oo). e note that x is the same vector as for the matrix
P. Upon teking the scalar product of the rowvector = and the columnvector in

(35) we obtain:
0= T[T - 6(w)] T~ rlot) FF= Mot = 4 o

which is impossible.

So if ”151(“) >-1 all Mij are finite (4,j = Lyeces m) and it follows
by & theorem of Pyke [6] that this is equivalent to positive recurrence of the
seml-Markov process of bus:} periods. then M]I;l(o-i-) = =1 &t least one of the

M

4 3 must be infinite and hence the semi-Markov process is null-recurrent.

e now proceed with the derivation of the equations for the matrix E(x).
This metrix will depend on the random variable 7(o), the virtual waiting time
at t=o0. If 7(o) = o a.s. then the matrix G(x) may 'be set equal to the
identity matrix. Ve recall that .J'O is the type of the first customer to Jjoin
the queue and that J

t
meny spplications T(o) and Jo will be dependent on each other, so we intro-

= Jo for values of t wup to the first transition. In

duce the conditional éistribution

(36) "».-Vi'(x) = P{‘n(o) <x | I, = 1}, (i=1,004, m)

There are several ways to define the initial busy period but we will agree to
say that a transition occurs from state 1 into state 1 in the case where no
customers arrive during the interval (o,7(o)). The initial service, before
the arrival of the first customer is counted as one service in the definition

of Eid(n,k;x). The definitions of B’id(n,k;x) and of its transforms are then
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the same as for G:L,j (n,k;x). e only write down these recursion relations which

are formally different from those for Gi.j (n,k;x). e have

. J~°° Ay Op)F |~
(37) G'i'j(l,k,x) = éij Jo e k‘. d n'n’i(y)’ k = O,l,,...
If we introduce the Laplace transform
©
(38) [* e aWm - T
o .
then
‘ ~ ~J
(39) Cid(l,z,s) = 8y Qi(sﬂ.-kz),
co
~4 ~ n
Eij(’\"r,s) = Z Fij(n,s) W )
nN=
and
m
~J A
(0) = Di‘j(vr,z,s) = WZ.»Di\)(W’z’S) ﬂ;vj(sﬂ.-kz) +
v=1
m
~o ~J
513 vz Qi(s-!-}\.-)\.z) -w ZE:L\)(W’S) grvj(sﬂ.-kz),
w1

for i, J = l,ooo, e

In matrix form we get:

(k1) Af(w,z,s) Ez I-vw ‘?(sﬂ.-kz)j = w[z Ax(sr-rz) - i{(w,_s) ‘F(sﬂ.-kz)]

)




in which

(42) a{sh-2z) = diag '51(s+x-xz),..., ?z'm(sﬂ-xz)z ,

Reasoning as before, and under the same nondegeneracy assumptions y we get:

m
(43) Z Eiv(w,s) avp(sﬂ.-A.'Yp) = W?Z;[sﬂ-v{p(s,wﬂ %o I:s_+7\.-xYp(s,w)1
v=1

for 1, p=12,¢e4, m. - }
Note that formula (43) yields E’ij(w,s) = 6;y ¥ incase 7(o) =0 a.s. As
before we find that ’E(co) is a stochastic matrix wvhen o = 1.

We sumerize these findings in the following theorem.
Theorem 5

Provided the m xm matrix T(v,s) is nonsingular for all s eand w
with Re s >0 and IWI < 1, the matrix ’E(w,s) is uniquely determined by the
system of equations (43). If o = 1, the metrix G(w) = B(1, o+) is stochas-
tic..
6. The Virtual Waiting time process

Consider the bivariate continuous parameter process S .J‘,c » N(t): ¢ > 01 s
in vhich J

t
time Instant t and in which T(t) is the virtual vaiting time at time t.

is the type of the last customer to join the queue before the

Clearly the pfocess { dJd £ nt): ¢ >0 i 1s a Markov process and its path funce
tlons can be described as follows: In the instants 'rn(n = 1,2,.+s) the value
of T](t) has e Jjump of magnitude Xn, where Xn is the service time of the
nth customer. Also in these instants the process J £ which taltes values in
the set 2 1,2,000, m% changes value. At all other points the value of T(t)

is eith_er zero or decreases linearly with slope -1 wuntil it Jumps or reaches

ooyl

Sy ey
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zero. If at the instant ¢, T(t) is zero, it remains zero until the next cus-
tomer arrives in the queue.

We introduce the following notations:

(bh) Wy (6,x) = P{n(t) Sx J.=3 |9, = il’ (1,3 = 1,000, m)
(45)  ¥;5(0,%) = 8y, W, (x) (1,4 = 1,uee, m)

=-5X s
J.w e dx Wij('t,x), Re S 20 i,J = l,noo, m

(h6) : Qij(t,s)

(o]
~J (a0) -S%X ~s '
(lI-T) Qi(S) = Jr e d Wi(X), Re =] Z o i = l,o-o, m
o .
@ -st
(18) of.(s,0 = Jl‘ 9,(t,0 e at, Res>o, Re (3o
t. (o]
(49) W;._"j(s) = Jm Wij(t,o) oSt dt, Res >0, i,5=1,0ee, m
: - [o]

We have the following theorem.
Theorem 6

The Laplace-Stieltjes transforms of the virtual walting~time disfributions
are glven by the following foimulce:

I o(t,s) = (Qij(t,s)> then

t
(50) o(t,s) = {-Aa'(s) - J' Sw(u,o)e-u[(s-x)Iﬂ‘i’(s)Jdu et[(s'k)lﬂ‘i’(s)]
o
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in which the matrix W(u,o0) remains to be determined and the matrix A_ is
Q

defined in formula (42).
Provided the metrix of coefficients does not vanish anywhere in Re s > o,
the Laplace transforms of the entries of the matrix W(u,o) are g:l.ve'n by th

unique solutions to the system of linear equations

m ~
* 2,(c (s))
(51) Zl T(8) &g (o)) = =iy (o s)
v= ,

(1,p=1,..., m) in which the mmbers

(52) gp(S) =8 +A.E."Yp(s,l)] (Q= l,cc', m) .
are the roots with smallest ebsolute values of the equations
(53) =s+xr-21{0

Proof:

Our proof parallels Takacs ! proof for the case m= 1. Iet & dencte

At
the number of customers, joining the queue during the time interval (t ,t+Atl .

Then by assumption we have

| X
(54) P{am_fk) =’Mt%’f—)—, (k = 0,1,...)

Using the theorem of total probability, we obtain:



2k

(55)  9y4(t+at,s) = f:ne'sxdx P {ﬂ(w\t S % Tppp = 3T, = ig

-~ QO

) _ =-5X . - - -

= ZP {5&:" ki J:o e "4, P {“(t"“) % Type™ 9= 15 6= k}
k=0 )

o
-3X - _ _
. = (1-)At) fo e d, P{‘n(tﬁs’c) <x Tt ,leo- 1, 8 4= o§

0 .
=-8X
+ A4t _fo %P {Tl(tmt) <% Tpppe= 30,2 1, 6= 1k+ o(at)

We evaluate the two integrals separately:

: {
=-3X . - ¥ = = =
(56) jo e 4, Plﬂ(‘lﬁm:) <%y Fypne™ J[JO_ 1, 8y = o} =

sAt o -SX
wij(-t,At) + e 'JAt e 4 Wij(t,x) ,
Since A J(t,x) is right-continuous in x, we have:

'.-Tid(t,At) = '.-Tij(t,o) + 0(at)

t
) g.fj xd T.-Iij(t,x) < AtEIij(t,At) - t-fij(t,o)l = o(at)

It follows that:




(57) J'm e ¥a_P {‘n(t-!-At) S5 Ty 3T 05 8= 0 z

Q
(l-l-sA‘b) (t,s) - 84t (t,o) + o(At)

The second integral can be written as:

o

(58) .rb e, P {n(ﬁm) S % Jpppy= 1957 1, 8= li=

ifmd v, (& )l Xy PIn(test) <x, 3, .= 3|0 =1
o y 'iv ’y ° e p'e n A -— ‘{’ t+At— J O—
=1

8

s(y At)d Wy (6,7) f 5% q J(2) +

v=l At

-3g At J.At co
t . ~_=BZ
Ze . dy inv(t,y) fo e d ij(z)

w1l

with °o%e S

~

Z(1+sAt) }:a (ts8) - JA (1- sy)d . Wy (t,y)] foy(s) *

w1
m

Z’l—se At) A (t,At) U J(s),
w1l

Sumiing up in forrmla (55), we ~btain:

At= 1, Jt= Vs T‘(t) = Y‘k

25



(59) Qij('b-!-m:,s) = nij(g,s? + sAtE)ij<t,s) ;wij(p,o):[

i1}

- \AL Szij(t,s) + AL Zﬂiv(t,s) b,4(8) + ofat)
=1 J

As At —> o, we obtain:

m
P)
(60) 5% 95(63) = (s-1) 0y (t,8) + 2 Zl%v(t,s) ty(8) - 5 Ty (5000,
: V=

(i,J = ’l,oo', m)

Equation (60) can be written as a matrix differential equation

(61) ,;:% Qt,s) = .Q(t,s)[(s-).)l + A ‘i’(s)] : s W(t,o)

with the initlal conditions:
2(0,s) = A~(S)
Q

Its solution is given in formula (50).
In order to determine the unknown matrix W(t,o0), we write  1in place
of s in equation (60) and take the Laplace transform of both sides with re-

spect to the variable t. %e so obtaln:

. m
(62) (s-c#0) 9,(s,0) = %) 4,,(0) 95 (550) =
w1

n ' o -5t
8,5, (C) - ¢ J‘o Wy(6,0) e™%at, (1,3 = 1,...,m5Re s30)



In matrix form, we obtain: S e T T T e

) N0 - !:AM(C) - GW*(S)][(s-gﬂ.) -]
Q |

As before, we assume that the matrix ¥(g) has distinct elgenvalues for

Re £ > 0o and can be written as:
(64) ¥(¢) = R(g) B(g) RY(p)

where R and H are defined in formula (27).
Formulae (63) and (64) lead to:

n
(65)  afylsse) = Y Lo 200) - ¢ ¥ ()]
w1

o o, (08 ()

p=1

The right hand side of (65) must be an analytic function in s and ¢ for
Re s >0, Re{ >o0. By Rouché's theorem we see that the denominsiors
s+A.-Q-A.T]p(Q), P =lyees; m have one and only one zero in ¢ din this domain.

It 1s directly verified that these roots are given by:
(66) gg(s) = sﬂ.-)wp(s,l), (0 =1yeeey m)
vhere ¥, (s,1) is the root of the equation

z = T]p(sﬂ-l.z)

which has smallest absolute value.
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S
Arguing as before, we see that the matrix W (s) must satisfy the system

of m2 equations in m2 unlnowns ¢

m ~S
* (¢ (s))
(67) ) y(s) @, (e (o)) = Lfy—ay (c (o)),
v=1 : f

(gi = l,tot, m)-

Remark
The distribution functions Wi J(1:,::) satisfy the followlng system of

integro-differential equations:

D, (t,x) DV, . (t,x) o
(68) :,I.'% T = i'% " - x&’i{](t’x) - Zl r: QVJ(x-y)dywi\)(t’yj
. .

(1,4 = 1,000, m) Por almost all t >a and x > o.

This can be argued as follows: By the theorem on total probability, we |
have:

(69) Wij(t'!-A‘b,X) = (1-rat) 1y 5 (t,z4at)

m
+ Mt ij Quy(x-¥)a, y (6,y) + o(at)
w1 © '

for the event { N(t,At) <x, Tebpt™ 3} mey heppen in the following, mutually
exclusive ways.

1. In the time interval -—-(t-;t-bat:] no customer arrives at the counter and
n(t) <x + at, Jd.= J« The probebllity of this event is

(1 - aat) ',-Iij(t,x + At) + o(at)
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2. In the time-interval Eb,t-i-At] one customer arrives at the counter.
His fs@e mist be j and type of the previous customer is v (v = 1,..., m).
His service time is less than x = ‘n(t) + etAt, wvhere o < et <1l. The Prob=-
ability of this occurence is:
m
- +
Abt f: Quz* y? a, Wy (¥) o(at)
w1l
3. In the time-interval (t ,t+A'b] , more than one customer arrivesin the

quene. The probability of this event is o(at).

Now for each fixed t and almost all x > o, we have

awi.(t,x)
Wij('b,x + At) = Wij(t’x) + —:SL_T At + o(at)

Substituting in (69) and taking

14m Wij(t+At,x) - Wij(t,x)
At—> 0o at

we obtain formula (68).

It is possible to obtain the equaticns (67) for the matrix W*(s) directl;
from the process of successive busy periods.

We consider the sequence %(In, Zn) ;n= o,l,...} in which the random
verisbles I_ ere definedes Z, =0 as.and Z =Y +U, (a=1,..) in
.which the Un are the lengths of the idle periods, immediately following the
busy i:eriods. The idle periéds ‘have lengths, which are independent of the busy
periods and are negative exponentislly distributed with parameter A\. The se=-
guence g (In’ Zn) ;= o,l,...} 1s clearly a semi-Markov sequence with initial
probability vector po and with transition probability matrices, whose entry-

-1~ -
wise Laplace transforms ere given by A{A\+s) 1 B(1l,s) and A(r+s) 1 E(1,s).
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The matrices E end E were defined in formilse (39) and (21) respectively.

Let us denote by Zt the continuous time semi-Markov process assoclated
with the sequence é(:cn, z) n=0,1,...} and let Mgd('b) be the expected
number of visits to the state J before time t, gliven that the initisl state
is 1.

We set:

0
(70? mgj(S) = '[o et g ng(t): (1, = Lyeee, m)

and dencte the matrix {mzj(s) } by mo(s). It then follows from a slight ex-

tension of a formula of Pyke [7] that

~ ~ SR -1
(1) - o(s) = ﬁ-s- E(l,s) |I - X%E(l’sﬂ = E(L,s)}{(at8) I - A E(l,szl
On the other hand
o o )
(72) Mij(t) =\ Jo Wij(w,o) du,

for, if we introduce e new time variable, involved only when the server is idle
and It = j, then in this process the successive visits to j form a Polsson
process with parameter M.

From (71) and (72) we obtain:
(73) W (s) =’5(l,s)[(7us) I-x E(l,s)]-l,

In particular if P i'ﬂ(o) = oIIo = i} =1 for i=1,..., m then we have

~J
E(l,S) = I Ap(S) = I,
Q
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Formlae (73) and (31) then yleld:
(74) W (s) = Tcl,s)[(w) I-a (1,sﬂ'l (1,5

in which the matrix A{l,s) i1s defined as in (31). But we have
gy(s) = s + & - ay (s,1)

which'yielas formula (51) after substitution in (74) in the case where T7(o) = o
BeSe |

If we use the formula for the metrix E(1,s) we likewise obtaln the for-
mila (51) for the general case.

If we know (51) and E(1,s) we may by the same token derive the equations
for E(1,s).

Equation (51) may be written as.

W*(s) 7(1,s) = B(s)
in which

(5 (s)
Big(s) RN %p(Chs))

This leads to:
’E(l,s) = B(s)[}h-*-s) I- A.A(l,s)J-l T-l(l,s)

which is clearly the matrix version of the system of equations (43) with w = 1.



32

- 7. The ILimlting Behavior of the Virtual Waiting Time
We first study the limiting behavior of the probebilities W, 3 (t,0) eas

t tends to Infinity.

Theorem 7
im R
The limits . ~J° Uﬁ(t,o) always exist and are independent of {i.
If we set
dim _ ot
£—> oo Jij(t,o) = Py
. 5
then P;.’ =0, J=Leee, m 1f A (o4) < -1. The limits P, are the solu-

tions of the system of linear equations

m .
(75) ZP: @, [gp(o+)] =0 for ptm
R v=1 »

m

ZP:: =1 + .M]z;(“) for p=m.

w1

i‘he latter equation glves the asymptotic value of the probability that the
queue is empty at a given instant of time t for t+ —> oo.
Proof:

We consider the time intervals between epochs at which the server becores
idle. If we essociate with each such interval the typé of the first customer
to be served during the busy period, which it contains, then we agein obtain
é semi-Mariov process. It is characterized by two matrices ’jz and Jf
and by the vector 5 ° of initiel ﬁi;obabiuties. Clearly

~s

3613(-") = ?’;a(x)




3h-

recurrent processes - Takacs [llg we obtain from (76) and (77) that

lim _
t—> o My (850) =

1
m*
w

which is equal to zero in the null-recurrent case and strictly positive in the

positlve recurrent case.

Knowing that the limits exdst, we may obtain the equations (75) by apply-

ing a standard Abelian theorem.

Since the limit exists, we have:

1im 1

T *
t—> oo T 'J‘o vrij(u,o? du = PJ.

and hence

-st " ¥*
§—>q S Jm e Wij(t,o) at = P,

using (49) and multiplying by s in both sides of egquation (67), we obtain es

—> o+, that:

w=1
ad for p =m:
n
ZP: @ (o) = o (o+)
v=1 - im
However,

m - .
*
ZPV avp[x - xYp(o+,:_Lﬂ =0y, for pim

lim s ,
s —> o+ s+A,-M(m(s PED) = aim(°+) l+A.T1m(0+ﬂ

b e
GeaUSe of the interpretation of the o \m(°+)’ we have
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3L ij(x) = F * Gij(;:)

where F 1s the negative exponential distribution with parameter A.
Let Niv(t) (1,v = 1yees, m) denote the expected number of times empti-
ness is reached in the interval (o,t:[ s whereby the first customer of the next

busy perlod is of type v. e then have:

.
(0,0) e +J e'<t-u)xdn’iv(u)

{76) Wiv(t,o) = § .

1v Ty

fox i’ V-'-'l’oa-.o De

Tha sad ~tarkev proacess %o, 'é’-ve ,}ﬂ.i clearly has the same ergodic pro-
perties as the process of busy pericds. i—f )s.nx;l(o+) < =1, then all states are
transient and N, (u) = o for ell 1 and v and u2o.

it follews that if k.T[x;l(o+) < =1, we have

1im e-kt
t—> @

Wiv(o,o) = 0.

It »M]x;l(o+) > -1, then the semi-Markov process 1s recurrent., The epochs
gt which the été.te v 1is entered, form a renewal process. Applylng Blackwell's
theorem, we obtain that for all h > o.

) up Ny (e (8 M)
, t—> o B "t>o Tt "

1

*
M

v

*
in which Mw i1s the expected length of time between successive visits to
O ~
state v in the seml-Markov process Ip 530 ;¥ |, It is known that
* | -

MW (v = lyeesy m) 1is finite if and only if the seml-Markov process is posi-

tive recurrent and infinite ctherwise. - Pyke [6].
We note that the distribution of the recurrence time of the state

v (v =100y m) 1is non-lattice, so, applying the fundamental theorem on



recurrent processes - Tékacs ]:lla we obtain from (76) and (77) that

lim

1
t—> Wiv (t50) = *

mW

which is equal to zero in the null-recurrent case and strictly positive in the
positive recurrent case. |

Knowing that the limits exist, we may obtain the equations (75) vy apply-
ing a standsrd Abelian theorem.

Since the limit exists, we have:

7
lim 1l . _o*
> oo I Jo Wij(u,o? du = PJ

and hence

1im J‘m -st _ ¥
E—>¢ S . e Wij(t,o) dt = Py
Using (49) and multiplying by s in both sides of equation (67), we obtain as

8 —> o+, that:

m .

* .
va avp[x - lYp(o+,lﬂ =0, for L $ m.
w1l

and for p = m:

o

P:: @, (o+) = oy (o) i>imo+ sﬂ,..;;m(s,l) = (o+) E_+M]'I;1(o+ﬂ
w1 :

However, because of the interpretation of the am(o+) » we have



