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1. Summary. A lemma is glven first which provides an easy method of express-
ing the product of an sth orﬁer Vandermonde type dsterminant and the kth and Rth
(x, E > 0) powers of the rth and hth (r, b <) elementary symmetric functions
(esf's) respectively as a linear compound of determinants. The lemms extends it-
self readily to the product of powers of any number of esf's up to the sth. Using
this lemma and some reduction formulae for certaln special types of Vandermonde
type determinants, a second lemma has been proved td show that the moments of esf's
in s non-null characteristic roots xi(o <A <A

1 2

can be easily derived from the respective moments of corresponding esf's in s non-

< eas <A <) of a matrix

null roots, O, (0<8, <... <8 <1) of another matrix and vice versa. Illus-

1

trations are given explaining both lemna.

2, Inmtroduction. Many of the distribution problems in multivariate analysis

are based on the distribution of the non-null characteristic roots of a metrix de-
rived from sample observations taken from multivariate normal populations. This

distribution given by Fisher [1], Girshick [2], Hsu [3] and Roy [12] is of the form

S
se e = ( I - - o -
(2.1) f(el, 8,5 , es) ¢(s,m,n) e. (1 ei) .n.(ei ej)
i=1 i>3
0<98; ... 26 <1

where



(2.2) o(s,mym) = 1772 ?Il r(2manie e, @i R r(1/2)]
i= .

and m and n are defined differently for various situations described in [7] 2

[o].

Now, if A, = ei/(l-ei), (1

1,2,¢00; S), the joint distribution of the A\'s
is obtained from (2.1) as

S
~ m; mints+l
(2'3) f;(.\.l, }"22"” ;\'S) = C(S')m)n) L I ki/(lll-}“i) 1 I (}"i-kj)

i=1 = 1>

0<)

L Seee SAg <.

The studies on the first esf in ©'s as well as the A's have been carried out
by Pillai [6], [8], [3], Pillai and Mijares [10] and Pillai and Samson [11]. Mijares

[5‘] has carried out some studies on est's in general. In this paper, a lemma is

proved which enables one to write down easily the moments of U§Sn)1 n from the re-
2549
. (s) . (s) (s)
spective moments of V; and vice versa, where U; and V; denote the
i,m;n i,m,n i,myn

ith esf's in the s A's and s ©'s respectively. But first, a lemma is given (see

next section) on which will be based the proof of the main lemma showing the easy

V(s_)

i,myn

derivation of the moments of Ugslzl n from the respective moments of
r42

3. Product of a Vandermonde determinant and powers of esf's. In this section

we introduce the following lemma:
Lemma 1. ILet D{(g_,g, qs+++s 817> (gj >0, j =1,2,.4., s), denote the deter-

minant



g, &1 B
X X £
i S S
(3-1) D(egr8y_qse0+28) )% .
% 8 xgs -1 xgl
5§71 1 1

If a(r<s) denotes the rth esf in s X's, then

1 1 . t
(3.2) (L) 8. D(g 18, _seevs B) = T Dlg,8 15005 81)s
G

1
where gj =g, + 6) 5= 1,0004y 5, § =0,1 and & denotes the sum over the

’ ©)

(i) combinations of s g's +teken r at a time for vhich r indices gj= gj+l

such that § = 1 while for other indices gj = gj such that § = O,

tt Tt 13
(3.3) (ii) a 8, D(gs,gs_l,.g., gl) = § JSD (gs 18g s B )
)E)
tt !
where h <s, gj = gj + 6_) J=1,2)ee05 S5 § = 0,1 and X denotes surmation
Sy /S5
&)

over the (i){;) terms obtained by taking h at a time of the s g's in each

Tt t
D in T in (3.2) for which h indices gj = gj+ 1 while for other indices

(1ii) (ar)k(ah)Q D(gs’gs-l’"" gl))(k, /QZ 0) cen be expressed as a sum

k
of (i) (;) determinants cbtained by performing on D(gs,gs_l,..., gl) in any



order (i) k times and (i) Qtimes with r = h.

However, if at least two of the indices in any determinant are equal, the cor-
responding term in the summation vanishes.

Before indicating a proof of the lemma, let us consider an illustration. Let

us note first that [4]

_ =1 T Pu, P1 P2 Pa 1)
(3.4) 8. = z (-1) S{7 Sy +er Sy /(l 2 %eee W " Pyt Py ...p‘;')]

where £ extends over all non-negative values of Pyreces Py such that

Pl + 2p2 Fooot vrpw_ = W,
and

k
= X, .
k J

o
|
cﬁ.Mm
'—l

ts
Also note that if we multiply the right side of (3.1) by e u, differentiate with

respect to t once and put t = 0 we getl,

S

(3'5) 54 D(gs’gs-l’"" gl) = z D(gs’gs-l"."gj+l’gj+ng-l’"’gl)'
J=1

Now considsr the special case, w = b. We get from (3.4)

L2 2
S S 5,5 5.5 S
. I N N st W i W
(3-6) T v T

Using the right side of (3.6) and by repeatedly applying (3.5) with varying values

of u (from 1 to L) we get

-
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{ =
(3.7 7, D{g,r8 1778 = boz D(,gs,ss_l,---,gj+l,gj+lb,gj_l,---,sl)

=1
S
+ "Ol -Lz D(gs’gs-l’ . a agj+3_,gj_l, ses ’gj‘#-l’. . ',gl)
Td

Jei'=L
s
+b2 ' ZD(gsigs_l,-oa,g'j'*'z,n.o,gj""l’...,gj"+l’..’gi)
JEITET =R
S
+b3 lz‘D:,gs)gsul,tlojgj"e:o--,gj‘+2,'vo,gl)
Jeit=l
S

+ b D(g ,g - ".,g¢+l".,g-’+l,‘.,g. 1] +l,ll
4 s’ "s-1 J J J
j+j’+j"¥j"t=l

--,gjm*-l,---,gi)

where bo=-jf_-+]3—'-'-%,r+%+£-'!—=0,
Py = %-%-:—ﬁ*-;:o:

and where the indices J, 'ty gty 't are the only ones which have been increasec{.
Now since in the last smm the right side of (3.7) there are only (i) distinguish--
able terms, it is obvious that ahD{gs,gs_l,-..,gl) is obtained from (3.7) &s a
sum of (i) determinants whose indices are obtained by selecting b out of s g@
at a time and increasing each of the L selected g's by unity.

Now consider the general case (1). Apoly (3.4) to (3.1) with w = -

e can show that the coefficient of the determinant of a specified set of indices



obtained in this operation such that at least one g on the left side of (3.2) hes
been increased by more than unity, is egual to zero. For instance, the coefficient
of the determinant witk ona g Iindex increased by r - J > 1 whlle any other |

g's increased each by unity is given by

r-J
r-j+ I o,
g
(3.8)  @ihH) (D T e -0
lpl292 (-,._ : )I)r"f.:'.a [ ) ]
a0 e L J _;L'Pzﬂﬂ.tpr-j.
where p, + 2p, +e.o* (r-j}pm_j = T=Je.

In a similar marner, coefficients of all other deterwinants with at least one
index increased by more than unity can be shown to be equal to zero. There remain,
therefore, only determinants in vhich r out of s indeces have been increased
just by unity. It zey be ohserved that this last set of determinants is obtained
from the term si/rl in (3.4%), {(w=r), vwhile all other terms arise from more than
one term in {3.L4), (w=r), and their coefficients are obtained as sums of positive
and negative values where each sum (coefsicient) equals zero.

Now it may be seen that the truth of (ii) in lemma 1 can be observed easily by
an application of (3.4) to the right side of (3.2) with w = h.

Similarly (iii} further follows easily by repeated application of (i), as statsd
in the lemma, k + { times, k +times using (3.4), {w=r), and Q, ties using (3.4) v
with w = h. In adéitioa, it may be pointed out that the method of proof extends
itself to generalize (iii) farther to include powers of any number of esf's up to }hz
2N

S

: \
L. Derivation of moments of Ugs’ from those of V(s) . In this section
i.m,n i,m,n

we prove the najin lenrna.

Prosf. Jet



) wmis- 4.+n ot mig
[ o, F(1-0,)" ¢0_.ee] © 1(1-a_)%ae
o 3 9 S ) s
(,-[-.l) V(m‘l'S-'l+qs’,.¢’m"‘::3.;n) = @ L] ) v . 3 . - . = o©o e . . . e . L) 3 e & & @
.G.‘l L3 « L] L] L] » L] - L] L] L] - - L . L L] . L ] L] L]
2 mis -l-!-qs n 2° m+ql n
f o, (1-0,) del....!_[ o, T(1-e,)%e.
0 0
and let 1 m+q1_
J.c.u\ (6 0] >"s
— d.)\, cseve J bt d}\,
(142 Y oS o ()P °
(’-I-'E) U(m':f"l"'q_:oan,m’i'q K ) =
b .]- ] o 'm;‘s::]_'?'q; < -« . L ] L] L] .m_}_q' . » L]
J..)"z )"l [.}"2 A L
dﬁ\. sese | - dk
o @@= T o (1+y)? 1
4. >0 J=1,2, ece; Sy
end p = mtnts+l,
- Ve k oL} Tt "\/.S) ! (s)
Now, from Lemma ~ and '2.1), the kth moment of V. .~ A ; can be
i,m,n; ¥k ) i,m,n

expressed as a linear compound ol determinants of the V-type in ()-L.l) where

QG 2 s G may take different sets of values in different terms. Further,
the coefficlents of the lincar corpound would involve as a ccmmon factor C(s,m,n)
but otherwise would be independent of m and n.

Similariy. p.l; }fLU:gf;,n} can be shown to be a linear compound of the determian-
ants of the U-~type .:1 (4.2) with the coafficients of corresponding terms in this com-
pound the same as in jche pfevious compound, the correspondence of terms being marked
by the equality of the vector (qs,qs_l,..., ql) in the two compounds.

Now we siete the lema.

Lexci 25 :LKSL i”,)n’n} is derivable from p' {\.f i n } by meking the following
changes in the e:pression for the latter (obtained by eveluating the linear compouild
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of V-type determinects): (a) Multiply by -1 all terms except the term in n in
each linear factor involwirs 1 and {») ckange n to —<ns+l after performing
(a).

Before proving the lemma let vus illustrate it by a couple of special cases.

Using (i) of lemma 1 we get

%
) . .
(h--3) IJ.' \Tgs ’ = C{S’m’n) ‘;(m‘l's;.m'i'S'*’ cw e 1‘=1"'S-i'i'.l._- IIH'S-l-l, ceey m+l, I}) .
1 i,m,n .

The right side of (k.2) can be shown to be egual %o

=

s (2mie=gi2) _
(b4 (;) sy (Bwieads=3i)

based on some particuiar cases of determirants evaluated in !:_101 . From this result

using lemma 2, the fiscst moment of {the ith esf in the A's is glven by

S ds) L5y g lemmmpe)
(%.5) “3_2 "'i,m,n} - (i) j:l (on+j-1)
()
Now consider u. iVEbI‘n n]S . Using (ii) of lemm= 1 with h=r we get
o 24k

TN

I

£a) . \
(4.6) 15 )ng-‘;hnk = C(s,m,n)§ Vimts+l, mts, ms-3,..., m+l, o)

)

-,A
\
£ Vimrstl, mhs-l, mis-2, mis-ky..., w, m)

|
+ V{mts, mis-1, mts~-2, mis-3, mis=-5y .0y mtl, m)}.'

Now substituting the values of the determinants [1¢] in (4.6)



, Vo(s) ]r_ s(s-1)(2mts ) (om+s+1)
(LL"T) ﬂzgve’m,n = | 4 G-l
4 3] 1 (emtentls-j45)
J=1

b 762 85412 }

2§ 2 i avind2
where G, = 6n .th(s~l)m.+2{s-l)(25 +s4+8) mts
+ 3nu{165(s-l)m3+4(s-l){832+5s+8)m?+2{s-l)(10s3+1252+275+2h)m
5- )4' 3- ? ~? . LA ? .
+ Us243s 1280 +587-2 =°6} + s(s+1){2nts+1) {2mts+2) (mts ) (2mt2s+1)

+ (s~2) (2mtes+3) (2m*s-1) {hsm2+2$(3s+2) m-:es3+3s2+s+6} .

Using lemma 2 we get from (4.7,

n (2n+j-3)
j=1

where G 1is obvtained from Gl ¥ atbaching negative sign to the first degree term
in n and then changing n to nts+l in all the terms.

Proof. Apply theorem 3 of {ﬂ} 4o the V-determinent in (4.1). We get

(k.9) V(m+s-l+qs_.a,...,m-‘.-c_.'_J.;n) = (m+s+qs+n)'l (B(s)+ (m+S-l+qs)C(S))
where
1
(4.10) B(S) = 22 (-1)5"4"1 V(2m+s+j-2+qs+qj,'2n+l) X
J=s-1

X V(mhs-2+qy_1ye e e 4G, sWH] =240y 50 e esmrHe 50)
and

(ll-ull.) C(S) = V(m+S-2+q_s,m+S‘2'l'qs_l,...,m‘l'ql;n).
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Again, applying theorem 4 of [8] to the U-determinant in (%.2) we get

(4.12) Ulmts-1+q s o0y 50) = [P-(m+s+qs)]'l (Q(S)+(m+s-l+qS)R(s))
where

&) 3 ' '

5) _ ~ s-J-1 e .
(4.13) QY = :Z (1) U(omts+3 2+qs+qj,2p 1) X

J=s~1
X U(mts ~2+q__1se- "m+'j+qj+1’m+'j'2+q-j yreee ,m+ql;p)

and
(h‘ol}-l') R(S) = U(m+S-2+qs,m+5-2+qs_l,...,m+q_l;p) .

First, it mey be observed that the factor mis+q +n in (4.9) becomes the factor
p-(m+s+qs) in (4.12) by chenges (a) and (b) of the lemma. Further, repeated appli-
cation of theocvem 3 of [8] to the right side of (%.9) would reduce it to a linear
compound of terms each of vhich is a pfoduct of s/2 simple beta functions of type I
(V-type) if s is even and (s+1)/2 beta functions if s is odd. The coefficients
of this‘linear compound would involve products of functions of m and n of the
type (m+j+qj+n)'l and the type (mﬁj-l+qj) as in (4.9). Similarly, repeated
application of theorem 4 of Bﬂ to the right side of (4.12) would reduce it to a
linear compound as above with the exception that simple beta functions involved will
be of type II (U-type) instead of type I and Lp-(m&j+qj)]'l will replace
(m+j+qj+n)'l. Now it may be observed that changes (a) and (b) of the lemma
will make the corresponding coefficients the same in the two linear compounds which
are obtained after repeated applications of theorems 3 and b of [8] to (ll-.9) and
(4.12) respectively. It remains, therefore, to show that C(s,myn) times each
term of the linear compound involving products of beta functions of type I reduces

to C{s,m,n) times the corresponding term in the second lineer compound involving



the product of beta functions of type II using (2) and (b) of the lemma. Now

note that, if s is even,

(4.15)  C(s,m,n) = 2~s(s+6)/8 X

s/2
I I(2mtonts+2i+1)
i=1

/2
ir_rl {r(2m+2i)r(2n+21)r(i)} (1.3)(1.3.5)...(1.3.5...(3-3))

X
s

and if s is odd

(4.16)  C(s,myn) = 2-(5-1)(54'5)/8 X

(s-1)/2
0 I{owtents+2i+1)l(min+s+l)
i=l

I {r{zmei)r(zmei)r(i)r[(m:sﬂ)/e'jr[(2n+s+1)/2]} (1.3).

veo(1.3.5)(1.3.50 .+ (s5-2))
Now, for s even, consider the term

(4.17) C(s,m,n)‘«'(2m+25-3+qs+qs_l;2n+l) X
X V(2m+2s-7+qs_2+qs_3;2n+1) ceo v(2m+l+q2+ql;2n+l) .

Substitute in (4.17) the value of C(s ,m,n) from (4.15) and those of the type

I beta functions and we get
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(4.18) g(m,s) [(zm+2n+2s+qs+qs_l-1) ... (2m+2n+2s+1)] [(an+2n+25+qs_2+qs_3-3) ces

(2m+2n+2s-1)] . [(2m+2n+q2+q_l+3) (2m+2n+s+3)]

[(2n+3) (2042)] [(2n+5) ... (zn+2)] .... [(onts-1) wen (2n#2)] 3

where g(m,s) is a function of m and s.

Similarly consider
(4.19) ¢(s,m,n) U(zm+2s-3+qs+qs_l;2p-l) U(2m+25-7+qs_2+qs_3;2p-l)
U(2m+l+q2+ql;2p-l) .
After substitution of values of C(s,m,n) and U's in (4.19) we get
(4.20) g(m,s)[(2n-q ~q _,*3) --» (2n+1)] [(2n-qs_2-qs_3—!-7} oo f2n43)] ..

voo [(ont2s-g-qy-1) .- (2nts-1)] [(2mton+s+3) ... (em+entes)]

[(om+onts+5) ... (cm2nt2s)] ... [(2m+2n+25—1)(2m+2n+25)_] .
Now it may be noted that (%.20) can be obtained from (1.18) by (a) and (b) of
the lemma. In a similar menner, when s is even, other corresponding terms of the

linear compounds in the two cases can be shown to satisfy (a) and (b) of the lemma.

If s is odd, we may consider the terms like

.(b,.al) C(s,m,n)V(2m+25-3+qs+qs_l;2n+l) V(2m+3+q_3+q2;2n+l)V(m+ql_;n).

Using (4.16) and the values of the V's and performing (a) and (b) in (4.21)

we will get



13

c(s,m,n)U(2mias-3+q_+q _152p-1) «-- U(2n+3+q_3+q252p-l) U(mta, 57) -

Similarly, if s 1is odd, we can show that other corresponding terms of the linear
compounds in the two cases satisfy (a) and (v). ’

Hence the lemma.

Tt may be noted that p'z" g_vi,m,n‘g may similarly be derived from p‘;;ui,m,n%
by inverse operations of (b) and (a) of lerma 2. Fur’ther) lemma 2 readily extends
to the case of product moments (say of the rth and hth esf's) in view of (ii) -

ot lerma L.
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