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l. Introduction. ILet

(1) Xpy Kpy ees

be a sequence of independent; identically distributed ranicm varisbles on a prob-

gbility space (Q, 7", P) with
(2) n ;xl=l)=P(xl=-l)=l/2,

and let e =X teeatx . Teh £=0, £, we.oand =0, 1, ... De two fixed
integers. Assvme that we observe tihe segusnce (1) tera by term and can decide to
stop at any point; if we stop with x  we receive the reward (i'+ Sn)/ (5 + n)‘.
Vhat stopping rule will maximize our expected reward? |

Formally, a stopping rule t of (1) is any positive integer valued random
varieble such that the event ¢ =n isin }n (2 >1) where \9’ , s the
Borel field generated by xl, ey xn. Let T denote the class of all stopping

rules; for eny ¢ in T, 8y is a well-defined random variable, and we set

i+ Sy
(3) vi(ile) =B (3557, vi(2) = sw v,(i]).
’ ' tel
It is by no means obvious that for given 1 and J there exists a stopping rule

'Cj(i) in T such that

(&) v (:L[ 4 (i)) = v, (J.) = max v, (:x.lt),
" teT



such a stopping rule of (1) will be called optim: = for the reward sequence

bk x 1
. i} i)
(5) J+l 2 J+2 J A .
Theorem 1 below asserts that for every 1 =0, =1, .e. and j=0, 1, ... there
exists an optim=l stopping rule Zj (1) for the reward sequence (5).
We remerk that for aay t in T end any i =0, +1, oo and j =0, 1,

+he randum variagble

if t if 1+ Sy >1,
(8} gt =¢ |
L iizst n >t asveh that ite =1 if 14s, <0
23in T and
_ i+st, .'i.+*.37,G
1t follows that
N
(i+s, )
8 v.(1) = sup E -

vhere by definition a¥ = max (0, a).

2. Reduction of the problem to the study of bounded stopping rules. For

gny fixed N =1, 2, ... let TN denote the class of all t in T such t <N.

By the usual backward induction (see e.g. [1]) it mey be shown that in T there

exists a minimal optimal stooping rule of (1) for the reward sequence

(1) (i+sl)+ (i+sz,)+
S e e ;

such that, setting

that i3, an element 2,1; (L) of Ty



S (i+s, )7
(2) wy (it) =B [-—-3;%——],
we have
(3) . . Wj (ll tl.;[ (i)) = .]i';nz..;‘lfN Wj(ilt}:

and such that if ¢ is any element of T, for which

g

w_.(i[’,:)' = m w,(i]t),
J tel

N

{len Z_lg (1) <t. The secomence T (i, Z?(i), «e» 1s such that as N —> w,

1< le. (1) < zJe. (1) < oer —> ’c; (i) <o,
(5)
0 wy(1] T3(1)) gwlal 25@) Seer —> 5w wile) = vy(1),

the lest equality following from (1.8). It is shown in [1] that there exists an

optimal element in T for the reward sequence (1.5) if and only if

(6) ' 7% (1) = Lim ¥ (1)

is in T that is, if and only if

(7) P(Z§(1)<oo)=1

*
and when (7) holds 7T ,j(i) is the minimal element of T which satisfies (1.%4).

The remainder of the present paper is devoted to proving that (7) holds.



b

3. The constants aﬂ (i) and an(i). In order to study the nature of

the optimal bounded stopping rules T gr(i) of Section 2 we proceed as follows.

Define for ns=1, 2, «oo and 1 =0, +1, ... the constants

N oy _ it
bN (i) = N 2
W N go Phup (THL)H] (1-1)
by (1) = (= » 5 (n=1, 2, ..., N-1). -
Then
+
. (i+s,)
» . N,. + t
2) bn(n.) = max (-J-'E- s 51..13 E[—Ti-'t—]) (n=1,2 ..., N-1),
("1 : ’
' N-n
- +
N ;. . T N o)
(3) ‘[3 (1) = first n > 1 such that bg+n (l+sn) = —-3+2 ,
and
+ .
(i+s J+N JHN
(k)  swpE [ jé—}% [b (i+1) +b  (i-1) ).
'teTN I+ J+1

In view of (2) and (3) it is convenient to introduce the constants aﬁ(i)

defined for H =1, 2, see ;1 =0, +1, ¢eej n=1,2, ¢vs, Ny

Moo Npy i+ |
(5) | e (i) =v (1) - =
then (3) becomes
J+N
(6) Z?(i) = first n>1 such that a (i*s_) = O.
J+n

From (5) and (1) it follows that the constants aﬁ(i) satisfy the recursion rela~-

tions



(1) =0 (a1l i),

(7) | +

: (i+1) +a. (i-1) -
ari(i):::[ l 5 e (iﬂg)(z-%_)l) a J

(n = 1’2, esey N'l)

from which they may be successively computed for n = N, N-1, ¢e., 1.

Moreover, from (2) and (4) we have

(i+s,)
< N, + 4 i+
& | M) o B [ - F) L8 e B

tel

N-n
and

+

(1+s.) J4N j+n L. ayF
{9) -swp B[ j_;z ] .—.22: [a (i+l)+a (1-1) + (l+l?_1 :(ni-l) 3.
teTy 3+l 3+l

Forany i =0, *x1, .o and n =1, 2, ««s» we have

0= aﬁ(i) < aﬁ'rl (i) < ees, ond letting N—> @ we obtain constants

‘a (i) lr\I (1) such that
: N > (o]
(i+s, Yoo
0 e T e =swe - -,
while for § =0, 1y «ee
(i+s )+ i+s
(J_l) SIIPEE J""-z ):SupE('—j—.‘:-g =Vj(l)=

- %_ [ (1) (a1t + a (i+1) - a,']'i‘l(l J.)]

J+1

moreover Zlg(i)‘ T ‘(_?(i) where



first n > 1 such that 8 +n(i+sn) =0,

(12) z *;(1)' =

o .if no such n e:d.si:.s

Thus (2.7) bolds if and only if
, / : - -
(J.3) P"a'j+n(l+sn) =0 for some n>1) = 1.

Tn the next section we shall prove (lemma 4) that there exists a positive
integer n_ such that n >n, and 1>13 Jo  together imply that an(i) = 0.

Jnnce

fii) P(a (i+sn) =0 for some n >1) > P(sn > 13 /j+n-1 for some n > no).

j+n

"he law of the iterated logarithm implies that the latter probability is 1 and
+this establishes (13); hence Zj;(i) defined by (12) is in T and is optimal for
+he reward sequence (1.5). We thus have the following

Theorem 1. For the sequence (1.1) with the distribution (1.2) and the re-
ward sequence (1.5) there exists an optimal stopping rule ‘c?;(i) defined by (12);

*
the expected reward in using T J(i) is

its, .yt T '
(19 vy = mr s () - 3 RO e () v e, (1)

teT

(4= 0, + 1, +2e 3 § =0, 1, +.). The constants & (i) = lim eN(1) which occur
. n+—>

in (12) and (15) are determined by (7).



L. Lemmas.

Lemma 1. 8 (o) . (=12, «0e)e

\/__

Proof. From (3.7) we have

(l-i-l) + a (1 2.)

> (1 <£-1),
: (l) + a. ( 1)
(1) o) J 5 ] (1 = 0),
N . N . * N ..
a.n_,__l(:.+l) + mn+l(l“l) (:.+l) + l(_ i-1)
[ 2 n(n+l) J 2 i21)
Hence
(1) + 2 ( l‘ . )
81 1 1 - ) . -
o (0) = = 2 Y3 S 2 [n+2(2) 2oy 1 (O)4e o (20 3
. 1)
(2) _<. 2 [ n+3 (3) +3(l) + 3an+3<"l) D+3( 3)} 2(11"’1) (n+3)
(ve] 2k
-<- . _<_ z (1. )

7

since a.ﬁ(i) = Q0. By Stirling's formula

- 2k
' 3) 2k) < e 2
( (% =



XD (oo}
) L <1 x5 et L),
yop 2VER (n+2ictl) avr "1 Jx (neextl) J2n{o+l)
= 5 |
Hence
(5) a,(0) =1tm &)(0) <Z ) __1__:. 3 - ot B
\e | N"‘>m _ k—o aki'l n+2k+l) \/Ezr (ol 2 n+l
For =1 this glves
p 1 1 ]
(5) a (o) < < =,
B [
2(n+l) J2n Ja
Iemma 2. For n =1, 2; ...
) 0<.ee < an(-z) < a.n(-l) < an(o)' > an(l) ;an(e) > .. >0,
(8) (1) > 2L o 11) (a1l 1).
er ] n+2 n*
Proof. For i <0 we have from (3.10) and (1.7)
, - (i+st)+
2 - ) e sl =] >0
hence
: (i-l+st)+
(10) a (1) 2 :1;.5 Ef—pmr—] = an'(:.-l).

For i1 20 we have



) ty i] "'[ns -it]
11 = sup B :
teT e a{ntt)

+
nst-(:u-l)t

> s E [W = a (1+1) > 0.

{(7) follows from (10) and (1l). To prove (8) we shall show that for n = 1,2, ..., N,

(12) ME e (1) 2 (1) (a1l 1);

{3) will follow from (12) on letting N—> . (12) is true trivially for n =N

- siuce ag(i) = 0. Assume now that (12) holds; for i £ 0 we have by (1),

+*
N+1 4+ g l
gy B Gy n+1 [n+l(l 1) +a T(i-1) it
' 2 °n 5 " (o))
+
Ny, Ne.
041 [n+l e.n(:.+l) + a.n(:x.-l) _ it
= n ok 2 -n(n+1)’
: +
Ry N,.
s an(:.+l) + e (i-1) ] it 8
2 2 (n=-1)n/ = “p-1‘"’°

The case 1 = O is trested similarly. Thus (12) holds with n replaced by n-l,
2nd hence (12) holds for all n=N, N-1, ..., 2, l. .

Temna 3. Iet i and J be non-negative integers such that a.n(i-i-j) > 0.
et T o ~denote the first integer m > 1 such that sm = j+l. Then for any |
given t in T thereexsts a ¢ in T such that

: +S i+s,
(14) 2% T2 ZOJE(n+Z ZE(W
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Proof. We have from (3.10) and (3.11) for i >0,

L

' : s, 4

By (7) and (8) the inequality an(i+,j) > 0 implies that for every positive integer

» end every integer k < J,

{16) . a.nm(.iﬂ{) >0,

&2 hence that there exists a stopping rule tm,lc of the sequence Xo41? Xpio?ooe

sich that

l+k+xm+l + xm+2 Yoot xm-H: ]
l";T) E( m‘,k. ) > itk
nHmt n+m

myk

Tet A be the event {:c <2, 3’, and define

t(ew) i o £ 4,
-0 : - L . I's - -1
{38 tl(u)) = < t(w) + tm,k‘m) if we4, t(w) =mn, Se(w) = %

(@m=1, 2, «ev; k< J).

“hen t, 1s a stopping rule, t, >t, and tl(a)) >t(w) +1' if w ¢ A. Moreover

1 1
. oy, its, Yot
as) n-H:.l) I o+t ap +Z I n+t+tm Xk @
0-A m,k {t:m,st=k,t <Z°§ ’
i+s ' . i+s
. t itk _ t
' Z.rn-i*t dP+Z J. n+mdP_E(n+t)°

0-A m, k {t:m,s =k,t <2, 3

t
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Set t°= + and A°= A. By a repetition of the preceding argument we may

define a sequence of stopping rules t IR

(20) | b=t <t <y S e

and events A,Q- = {1‘. < Zog with

¢
(21) _ A=A DA DAy D oo
such that .
e
=t, (@) i edag,
v22) T (@)
P 8 .
2tﬁ(w)+1 it ueAL.
Set
(23) = lim
< A—>c0 ZL ’

then (Z=oo} = {_Z0=ooj ,so’ghat Ié isj.n T, and ZZZO,‘CZ’G.
By the Lebesgue dominated convergence theorem,
its .
i+s . t . i+s

(2b) E(_nft)= Qﬁn—;o‘;E(nﬂﬂ‘)?_E(n_,,:):

and the proof is complete.

lemma 4. There exists & positive lnteger n such that n 2n, .and
1 >13 /o imply that e (1) = O.

Proof. ILet i1 be a positive integer such that an(2i) > o0, and let T
denote the first integer m >1 such that s = 1. Then [2; p. 87] & 1—>c0,

2
- E"‘ '
- (25) p(7>i%)—> ./EJ& e 2du,>\/—2—- >= .
~ L ne 3
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Hence there exists io > o such that

1

(26) , E (12 +Z) > g L2 io):
and thereforé
(e1) | E (n_:,) >% (121, 15n_<_i2) .

By (7), an(:‘.) > 0, and hence by Lemma 3 (putting J = i) there exists a t €T

-such that t > ¢ and

i+s
mn (—ty s 1
£23) B { n-l-t)_) = .
Tience by lemma 1 and (11),
s9) L>a (0)>E (=D I N NG WU U G 3
\29 Jﬁ—an 2B (oig) = Bl n+t n - Y’ nT ‘ot
ig(fey>i 4> 2
?_nE(n_f.Z‘)>gﬁ' (1210,1_<_n51).
Assume now that & (j) >0 for some § >13 Vi esd n2n = 2.
Then by (7),
(30) - (2 [4) >0 i]2>' >1, [& >.i
3 . an 2] 2 [2 _n psi el 4 2] - "0 o
Hence, setting i = [g-] in (29),
(31) [%1 < 6yn,

and therefore

(32) 31<12 Ja+1<13 Vo ,



a contradiction. The proof of Lemma 4, end hence of Theorem 1, is complete.

5. Remarks.

ln If we define fOr n= 1,2, ese

(1) k, = cmallest integer k such that a.n(k) = 0,

then from Lemma 2 it follows that

(2) 0<k) <ky< oo
andt that
(33 a (i) =0 if and only if 12k .

T: is easily seen that

¥,0. . _
_Cj(l) first n > 1 such that e, aplits ) =0

(i)

first n > 1 such that i+s = kj+n .

i3

*
Hence the stopping rules ( g(i) are completely defined by the sequence of posi-

tive integers kn. Tt is difficult to obtain an explicit formule for kn,' by

Lemma 4 we know that k =0 (Vo) as n—>co0. Ve note also that

(5) lim k = oo.
: n—>> o :

Otherwise we would have kn <M for some finite positive integer M and every

n=1,2, eses o If 50, let t = first m >1 such that s =M. Then since

an(M) = 0,

(6) B (—) S
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" and hence
| 2M M n 1
(7) E(H) <5, B <5
But as n—> W,
n
®) B (D) —>1,
which contradicts (7).
2. We have from (3.15),

. | Sy 1
) =mmx 3 (9 < 3 [+ @) + a2
o by (4.15), since s <t
10) @ =B o -y
{10 8.(1) = {swp E (=) -1 =0

) @ Ly (E - -0
end by (k.6) and (4.7),

' 1

(11) a,(-1) Sa,(0) ST + j;: < .96 .
Aence
(22) , v (0) < .98 .

This inequality is very crude and can be greatly improved by & more detailed analy-
sis of the term al(-l) , but it is interesting to note that even (12) is not easy

%o prove directly from the definition of vo(O).
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3+ In this connectlon let us define

st+
- (13) Yy = max E[-_E—J ;
' teT
N
then as N—> @ }
. . +
: £ v _(0) B (<) B (2
r1k) v v = max ~—) = max =) .
bt te? °  ger T

Fow for any fixed N = 1,2, ... the value vy can be computed by recursion; by
i2.4) and (3.2),

‘n ' _1nrN N 1 N

{25) Vy = 5 7(1) + v, (-1)] =3 [1+bl(-_1)] )

-liere by (3.1)

Neoy _ it
bN(l?

==,
N . N
(26) e P (iH) 10 L (i-1)
. +1 +1
- bg(l) = max (3'-5- , = 5 L ) (n=1,2, ..., N-1).

N
The camputation of the bn(i) is easily programmed for a high speed computer; the

following results were kindly supplied to us by R. Bellmasn end S. Dreyfus:

Vioo = .5815
_ ~ Vao = %35
£37) Voo = 5845
Viooo = 350

4. It would be interesting to see whether the existence of an optimal
stopping rule for sn/n can be proved for sequences xl, x2, ess with a more
general distribution than (l.2). Ve have some preliminory extensions of Theorem 1

to more general cases but no definite results as yet.
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