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1. TIntroduction

This paper investigates the estimation of the parameters (both loca-
tion and scale) of the logistic distribution using sample guantiles and
order statistics. Three kinds of estimators have been considered; (1) Best
linear unbiased estimators based on sample quantiles; (2) Unbiased linear
asymptotically best estimators of Blom; (3) Asymptotically best, asymptotically
unbiased linear estimators of Jung. All these methods of estimation are asymp-
totically efficient and one of the purposes of this investigation is to deter-
mine how good they are when campared to the best linear unbiased estimators
in terms of their relative efficiency.

Let (xl, Kpyeoss xn) be a sample from a logistic distribution with

p.d.f. of x given by
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where

a=n/y3

The ¢.d.f. F(x) is then defined by

(1.2) F(x) = — e_a%x_@ e

Section 2 contains a discussion of the estimators based on sample quan-
tiles. When 4 is known the optimum symmetric spacing of the quantiles
used in the estimation of § has been obtained, for any number k of
quantiles. When W 1is knowa, the optimum spacing cf the quentiles for
estimating 5 has been derived for k = 3, L,

Section 3 contains a brief discussion of the approximations to the best
linear unbiased estimators suggested by Blem (1957) and Jung (1956), and com-
pares these two sets of estimators in terms of their relative efficiency with

respect to the best linear umbiased estimators.

2. Quantile Estimators

The quantile estimators are based on a fixed number of sample quantiles
when the total sample size is very large. Such a method of estimation would
thus be useful when the experimenter hés a very large sample, but would like
to estimate the parameters with a few selected observations which he has the
freedom to choose. Such a situation could afise in life-testing experiments
when the observations do arise in a certain order and it is possible for the
experimenter to select a few quantiles, the choice of the number of quantiles
and the spacings between the quantiles being left to the experimenter. BEx-
pression for the quantile estimators of the parameters are discussed in this

section. The scale parameter is assumed to be known, the optimum spacing



3
of the quantiles for estimating the location parameter |14 has been obtained
for any number of quantiles. If the location parameter 5 is assumed to be
known, the optimum spacing of the quantiles for estimating ¢ has been deter-
mined for the number of quantiles = 3,4.

Let A ) <X ) < e < x(nk) be the k order statistics in a sample

(05

of size n from the logistic distribution (1.1). The following expressions

will be needed and are defined as follows

' 4
(2.1) Aian]imaT, lofo: xk+l:l’ i=1342, ..., k
u. _
(2.2) A= [ fe)a, =108, 00/Q)), 1oL 2,k
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i=1

'*1-1(1‘*1-1)1°3e(11-1/(1'11-1))(*i(l'*i)x(ni)
R A R IR DA LR PR

k+1
(2.6) ' K, = Z (xi-xi_l)(l-xi-xi_l)a
i=l

1 K kﬂ (g (11, 108 (0 /(14,)) = &g (1,1 )og (n;_o/(1n, 1 ))°
. A. ~ x
1—1 i 7 Ml




_ k+1
(2.8) Ky = ) (Tg-hg 1) 00 (14,108 (0s/ (21y))
i=1
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Three different cases will be discussed.

(A) Estimation of u, {c known)

From the general expressions for the estimators derived by Ogawa

(1951), the best linear unbiased estimator u* of @ and its variance are

given by
2. ' * = X . Sfi
(2.9) W ) )
02 1
(2.10) V(u*) = = - ..K;

(2.9) and (2.10) give the estimator of u* and its variance for a fixed
number k of quantiles and for fixed values of li' For a fixed number of
quantiles, the following theorem gives the values of xi's which will minim-

ize V(u*).

Theorem 1. For a fixed mumber k of sample quantiles, the spacing of the
quantiles for which V(y*) is minimel, is symmetric and is given by
Ay = if(k+1)

Since minimizing V(y*) would be equivalent to maximizing Ki, then
by maximizing K, w.r.t. A;’s (i=1,2, ..., k), the optimm A 's will
be obtained as the solutions ¢f the system of equations

(2.11) A A=A mAy, =1, 2, cvey k.

i+l i
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The above set of equations is satisfied for i, = i/(k+1).To prove that
2
» ’ - . . K -
this set of hi s does maximize Ki, consider the matrix D = (3 Kl/axiaxj)
evaluated at \; = i/(k+1).Let By.p be the determinant of the matrix ob-

tained from D by deleting the last p rows and p columns. Then

8, = - 2, 1) - 8 5= (1))

It follows that the matrix D is negative definite. Hence Ki is
maximized when A, = i/(k+1l). Now for A; = i/(k+l) and for i =1, 2, ..., k,

it follows

(2.12)
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Clearly, (2.12) implies that the spacing is symmetric and K3 = 0,

Thus the best linear unbiased estimator with optimum spacings is given by

k
6 . .
(2.13) g¥* = ®(E+L) (542) .Zl 1(k+l-1)x(ni)
i=
2 2
(2.14) v(ur) = S L)
aznk(k+2)

The Cramer-Rao lower bound for the variance of an unbiased estimator for
and ¢ is known is given by 3c2/(a2n).Hence the relative efficiency is

given by



C.R. lower bound k(k+2)
2.15) = .
( V{w®) (k+l)2

The above relative efficiency increases with k, its minimum (for k ® 0)

being 0.75.

Estimation of y for censored samples

In practice there often arise situations when some of the observations
are missing. Suppose that the (rl-l) smallest and the (rg-l) largest

observations are not available. Then imposing the following restriction on k

(2.16) k < min

1'2 n-rl]
. H
n .£'2 I'l

the best linear unbiased estimator for g can be obtained from (2.13).

(B) Estimation of g when yu is known

In this case it has been proved by Ogawa that the best linear

unbiased estimator for ¢, for a fixed number k of sample quantiles is
(2.17) o* = I/K, - u KyfKp
2
(2.18) V(o*) = o/ (nK,)
K, and Ks being defined by (2.7), (2.8).
As in the previous case, the problem of deriving the optimm spacing of

the sample quantiles arises, The optimum spacing for g% is obtained by

maximizing K2. Now
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yields
Q.
(2.19) E F{-I—- 1+1'7‘ ] I-Z{(l 2\ )1log, <1 = >+ l}
Q _ -
) "‘i"‘i-l 1+1" ] Bl )
where

s
(2.20) @ =;(1-A;)10g, <-1:;—l> 1.1 (37Ay ;) log, (l ;.-l ) .

For a subclass of the class of all distribution function, Tischendorf
(1955) has derived necessary conditions for the spacings that makes K,
maximum. It can be verified that the logistic distribution belongs to this

subclass. This necessary condition for logistic distribution is

(2.21) 2{(1-21 )1og, (1 » )+ 1} -7\ :i*i\. =0, 1=1,2, ouu, k .
i-1 i+l 71
From (2.20) and (2.21) it is clear that the optimum spacing can be ob-
tained by solving (2.21).. However, it is not possible to solve (2.21) explic-
itly for Ai' Besides the system of equations (2.21) may also possess multiple
roots which further entails a choice of the proper Ai's. A slight simplifi-
cation of the problem is effected by considering only symmetric spacings.

For k = 2, and using symmetric quantiles,



2 2
(2.22) %, = 2 (1)) ii;sifll/(l A1) .

For this case, equation (2.21) becomes

2
1-3\ +h A
1 1 1
(2.23) 1'23.1 loge CETXI) +2=0,

By solving (2.23), it was foumd that A o= .103 is a solution of (2.23) and
it was verified that K2 does have an absolute maximm at Al = ,103 .

The estimator o¥* and its variance are given by

(2.24) o = M92(x (1 Bo7n71+1)*([.1080]41)
2
(2.24) V(c*) = 1.0227 %; .

It can be shown that the Cramer-Rac lower bound for the variance of an

unbiased estimator § of ¢ 1is ,

2

(2.26) Cv(s) 2~ .

n(3+ﬁ )

[The details are lengthy and have been omitted.] Hence the relative efficiency

of o* as compared with the Cramer-Rao bound is 68.38°/0
For k = 3, the assumption that the spacing of the quantiles is symmetric

gives Az to be equal to .5, and the coefficient of x( in the

[xen]+l)
estimator of ¢ is zero. In general for k = 2m + 1, the condition of

symmetric spacing reduces the coefficient of X(Elm+1n]+l) in the esti-

mator of ¢ %o zero. Thus for k = 3, Ké is the same function of Kl as



given in (2.22) so that the estimator o* and its variance is again given

by (2.24) and (2.25), respectively.

(C) Estimation of both yw and g

In the case vhere toth i and ¢ are unknown, the estimators are

given by
(2.27) W = % (KX - K:¥)
(2.28) o* = 3 (KX + KY)
where
bR - K
(2.29) Var(u#) = gn_z_ % > Vo*) = % % )

The problem of obtaining the optimum spacing in this case even under the
simplifying assumption of symmetry of the spacings is complicated since mini-
mizing the generalized variance leads to simultanecus equations which cannot

be solved explicitly.

3. Blom's and Jung's Estimators

This section discusses Blom's and Jung's estimators for estimating
4 and o by linear functions of order statistics. Blom (1957) approximated

the best linear unbiased estimators by estimators that are unbiased but do nct
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necessarily have the minimm variance of all linear unbiased estimators.
Jung (1955) approximated the best linear unbiased estimators by estimators
that are "asymptotically unbiased and asymptotically best”.

Since this investigation was carried out, the best linear unbiased
estimators of the location and scale parameters using order statistics have
been computed for sample size < 25, and are given in Gupta, Qureishi and |
Shah (1965). However the estimators of Blom and Jung are relatively simple
to compute and hence it is of intérest to determine how good these asymptot-
ically ‘good' estimators are when compared to the best linear unbiased esti-
mators in terms of their relative efficiency for moderate sample sizes.

This investigation would thus be useful for estimating the parameters for
sample sizes > 25, and also as providing some indica.t._ion of the general
properties of these two kinds of estimators, and hence has been included.

The authors computed both these estimators for both y and o¢. Since
the estimators of Jung are biased they were modified by multiplying them by
an appropriate constant. The following were the main results.

(i) The modified estimator of Jung for estimating g reduces

to Blom's estimator ' where

n
6i(n+l-i
v = ) e )
i=l

The approximate variance of ' is given by

30-2 n+1)2

viu') ~
a"n(n+2)



(i1) Jung's estimation of ¢ modified to make it unbiased did not
reduce to Blom's estimator and its exact variance for n < 25
was found to be uniformly lower than the exact variance of the
corresponding estimator of Blom. Jung's estimator for g, 3'

is given by

7 n
G = - ) ZE-(n+l)2+ 2u(n+l) + 2y(n+l-v)log, (v/n+l-v)] X(y) *

a(n+l)* (3 N3 2

Blom's estimator of g, of is

n.
ot = Z“i"(i)

i=1

where

ai{n+l-i) (ci-ci_l)

i ci(n+l)2

L (ae1) n+1)? ’
n-i
. 1 1
ul(n.,n) =-3 Z ;=" p,l(n-1+l,n), n-i»i-1
J=i

Table I gives the coefficients of the order statistics in Blom's
estimator of . The last column gives the exact variance of the estimator,

These exact variances were calculated by using the variances and covariances



of the order statisties given in Shah (1965) and Gupta, Shah and Qureishi
(1965). The relative efficiency of this estimator when compared with the
best linear unbiased estimator is given in Table III for selected values of n.
Table II gives the coefficients of the order statistics in.the modified
Jung's estimator of ¢, since this estimator has smaller variance than Blom's
estimator. Again the last column gives the exact variances of these estimators.,
Although Blom's estimator of ¢ did heve higher variance than the corres-
ponding estimator of Jung (modified), yet it does have fairly high relaﬁive
efficiency when compared with the best linear unbiased estimator, and was
found to be at least 96 percent for n < 25. Table IIT gives the relative
efficiency of Blom's estimator of g, and the relative efficiency of Jung's
estimator (modified) of ¢ for selected values of n.
From this table it is obvious that Blom's and Jung's estimators, besides
being simple to compute, have very high relative efficiency even for moderate
values of n, so that for n > 25, one could expect these estimators to be

almost as efficient as the hest linear umbiased estimators of Lloyd.



Table I

Coefficients of the ith order statistic in the unbiased nearly best estimator of y,
the mean of the logistic distribution, using Blom's method.

Coefficient of x

(n-i+1) = coefficient of x(i).
Nf1 2 3 & s 6 7 8 9 10 1 12 13LeHigce
o
5 .1k29 .2286 .2571 .1927
6 .1071 .1786 2143 .159k
7 .0833 .1429 .1786 ,1905 1358
8 .0667 .1167 .1500 .1667 .1182
9 .0545 .0970 ,1273 .1455 .1515 . 1047
10 .0k55 ,0818 ,1091 ,1273 .136k4 -0939
11 .0385 .0699 .09Lk 1119 .122L ,1259 0852
12 .0330 .0c60L 082k 0989 .1099 .1154 o779
13 .0286 .0527 .0725 .0B79 .0989 .1055 .1077 L0717
14 ,0250 .oh6k 0643 ,0786 .0893 .096L4 .1000 0665
15 .0221 ,0k12 0574 .0706 .0809 .0882 .0926 .09k1 .0620
16 .0196 .0368 .0515 .0637 .0735 .0809 .0858 ,0882 .0580
17 .0175 .0330 .06k ,0578 .0671 .07h3 ,0795 .0826 .0836 L0546
18 .0158 .0298 .0k21 0526 0614 .068k ,0737 .0TT72 .0789 .0515
19 .0143 ,0271 .0383 .0k8L 056k ,0632 0684 .0722 .OTW4 .0752 .0L87
20 .0130 .0247 .0351 .okl2 ,0519 .0584 .0636 .0675 .OT0L .O71h 0463
21 .0119 .0226 .0322 .0hko7 ,0k8O ,0542 .0593 .0632 .0661 .0678 .0683 .Oklo
22 ,0109 .0208 .0296 ,0375 .OkL5 .0504 .0553 .0593 .0623 .0642 0652 .0k20
23 .0100 .0191 .0274 .0348 .0k13 .OL70 .0517 .0557 .0587 .06C9 .0622 .0626 .olkoL
2k ,0092 ,0177 .0254 .0323 .0385 .0k38 ,0u85 .0523 0554 ,0577 .0592 .0600 .oaés_
25 ,0085 .016k4 .0236 .0301 .0359 .0k10 ,0455 .0k92 .0523 0547 .0564 .0574 .0578 .0369




linear estimator of ¢ (by Jung's method) modified to make it unbiased.

Coefficients of the (n~-i+l)th order statistic X(a-

Table IT

i+l) in the

L

i ’ Variancs
n\| 1 2 3 4 5 6 7 8 9 10 1 1 13 2
5.3538 .2038 O .1706
6 .2907 .2024 .0715 .1372
7 .2459 ,1907 .1024k O L11h7
8 .2125 .1767 .11k7 .0396 .0985
9 .1867 .1630 .1180 ,0616 O .086h
10 1663 .1503 .1170 ,0737 .0251 0765_
11,1497 .1389 .1138 .0800 .0k12 O .0693
12 .1360 .1288 .1095 .0828 ,0514 .017h .0630
13 .124k .1198 .1049 .083k ,0577 .0295 O T L0578
1k .11k7 .1119 ,1001 .0827 ,0615 .0379 .0128 0534
15 .1062 ,1048 .0955 .0813 .0636 .0k36 .0222 O .0k96
16 .0989 .098L4 .0911 .0793 .0645 .OL75 ,0291 0098 .OlL63
17 .0925 .0927 .0869 .OT7L .0646 ,0500 ,0341 .0173 O L0h3h
18 .0869 .0876 .0829 .OT48 .06LL 0516 .0377 .0230 .0077 .0kog
19 .0818 .0829 .0793 .072k .0633 .0524 .okok .o27Lk .0138 O .0386
20 ,077h .0787 .0758 .0700 .0622 .0528 .0k22 0307 .0187 .0063 .0366
21 ,0733 .O7h49 ,0726 0677 ,0609 .0527 .O43L4 ,0332 ,0225 ,0113 O .0348
22 .0697 .O7T1hk ,0696 .0655 .0596 .052k ,0kkl ,0351 .0255 .0154 .0052 .0332
23 .0663 .0682 .0668 .0633 .0582 0518 .ok4s5 ,0365 0278 .0188 .0095 O .0317
2k ,0633 .0652 ,0642 .0612 ,0568 .0511 .Ohhk6 .037h .0296 .C215 .0130 .00L3 .0303
25 .0605 .0625 .0618 ,0592 ,0553 .05Qk ,O4hs ,0381 .0310 ,0236 .0159 .0080 O .2903

~Computed by using the same approximate covariance matrix as used in Blom's method,



Table giving the relative efficiency of Blom's estimator of

Table TIT

15

i and Jung's

estimator (modified) of o3 relative efficiency is with respect to the best

linear unbiased estimators.

.
\ 5 7 10 15 20 25
Rel. Eff.
Blom's Estimator
of u .991 .993 996 .997 .998 .999
Jung's Estimator
(modified) of ¢ .998 .998 .999 1.000 1.000 1.000
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