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1. Introduction and sumnary. Let Al and A2 be two positive definite Sy
metric matrices of order p, Al having a Wishart distribution [3, 15] with

'fi degrees of freedom and A2 having an independent non-central Wishart

distribution with fé degrees of freedom, corresponding to the linear

case l,é] . Now let

- t
A.l =CLC
where C is a lower triangular matrix such that
— ?
Al + A2 =CC .
It has been showm [6] that the density function of L is given vy

32 (£,~0-1)/2 (f5-p-1)/2
(L2) 2(0) = ™ /2 e (e eey) 30y, 22y Na) 2 ] ;



where

K= T-,-P(P-'l)/l* -E r[%_(fl+f2+1-i)] J{rl %(fl+1-i)]r£ %(J’;‘2+l-i)]} ,

i=1
Az is the single non-centrality parameter in the linear case, le is the
element in the top left corner of the I matrix, and _F, denotes the

11

confluent hypergeometric function.

In this paper, the density function of L gi#én by (1.1) has been
observed to be a product of density functions of p(p+l)/2 independent
beta variables, explicit expressions for these variables being given for
P=2, 3, hand 5. In view of the independence of the besta variables, it
has been shown how the moments of the trace of I (say‘W(P)) and of
I-L (say V(P), vhich is actually Pillai's V(S) criterion with s = p [8])
can be computed from those of the beta variables. Again, if we denote the
characteristic roots of I-L by 0; (i=1,2, ..., p), a method has been

- _ . 2 2
given for computing the moments of U(2)= X [91/(1-9i)] = T A (a ccnstant
i=1 i=1

times Hotelling's Ti » 8 =2), [8], also from those of the independent beta
variables., The case of p = 2 has been considered in detail, deriving the
first four moments of W(g), V(e) and U(z) and suggesting approximate dis-
tributions for them.

In addition, for tests of the hypothesis: Ho: A = 0 against Hl: A>o0
(@) (@) 2
based on the three criteria, v/, U and Wilks' criterion A = (1-9,) ,
i=1 -

[16] comparison of power functions has been carried out for different values

of fl and f2 using the moments of these criteria, Further, such comparison

has been extended to include also Roy's largest root criterion in testing



the hypothesis HO: p = o against Hl: P >0 where P is the single non=~

null population canonical correlation coefficient.
2. Independent beta variables, ILet
L=7T"'

where T is a lower triangular matrix [tij}. It has been shown [QJ
that then the diagonal elements tii are independently distributed and

that t?i(i =2, 3, ..., p) follows the distribution

3

. .
5 5 '2—(114'1-1) -1
(2.1) £ (67;) = (¢3) (1- t ) /3{ (£,+1-1),35,}
2
(0< 45y 1),
. 2 .s
while t11 is distributed as
2, 5 a2
-\°/2,,2 {72
(615 (1-t2,) 1F{3(g+85), 40 HE (- t-1)}
(2.2)  £,(£2) - 1l 11 2
£ (6] .
B(%;fl, Efg)
2
| (0<t;, 1) .
(i) p=2. Now, if p =12, it can be shown that
(2.3) (29155005801 ) = £ (1) (upp )5, (us,)
where
.2 _ .2 2 2 2\
(2.4) Uy = Byps Wy = oy and uyy = 6o /1(1-67; ) (205500

fl(ull) is given by (2.2), f2(u22) by (2.1) with 1 =2,



(f,-1)-1

: -1 2 1 1\
(2.5) f21(1121) = 1121 (1'1321) /B{'a": E(fz'l)}: (O S u2]. S. l) .

Thus, from (2.3) it may be seen that Yys Upy and uy, are independently

distributed.

(ii) p=3. When p =3, it can be shown that

(8:6) 200115002253, 2015230031 I=1, (g, V25 iy )1, (03370 (1 )2y (353, (v )

vwhere u's are defined in a similar menner as in (2.h), V3 is defined by

(2.7) Vo = (VT Vo i) /L (g ) (1)

fl<ull) follows (2.2), fi(uii)(i =2, 3) is given in (2.1), fEl(u2l)

and le(u32) both follow the form as in (2.5) and fSl(VSl) is given by

31 3(£,-2)-1 ,
(2.8) fBl(v?;l = Y31 (l'v31) /8{%, %(f2-2)}, (o< oy < 1) .
(1ii) p =L, Now, if p= b,

4
£(z) = [il'lfi R MOMEN (o32)891 (043) 23 (g1 V253 ()24 ()



‘where u's are similarly defined as before, V31 is given in (2.7),

Vo is given by

(2.9) Mo = (VU +\/ul+3u32u33)2/ [(1-u5p) (1-uy5)] ,
(2.10) My = (Vi +VV51 B5) / [(1-v4) (10501
vhere

(2.11) g = (Vi Vi) [y ) (g )]
(2.12) 2y = (vul,a«;z b)) [y (L )]

and vhere fl(ull) ag before is given by (2.2), fi(uii)(i =2, 3, 4)
by (2.1), f21(u21)’ le(u32) and f2l(u)+3) follow the form (2.5),

fa1 (VB.’.. ) and f3i(vbr2) folldw the form (2.8) and

! %’."l l( 2 3)‘
(2.13)  £,,00) =y (L, )

/5<9: 2(l "3)) (o < vy, < 1)

(iv) p=5. When p =35,

I T -3
(2.14)  £(1) = | R ACHDE I 1(u1+1 l) il ™ f3l(v 2,1 )] X
bi=1 t Si=1



.. where u's are defined as before, v3l and v,, are given by (2.7) and

(2.9) respectively v is given by

53

(2'15) V53 = ( \/u53 + \/uu3u5l;.u)+}+ )2/[ (l'uh__o)) (l’uxjh)] ’

w,, is defined in (2.10), Vsp is given by

(2.16) vy = (Vg Vg Bag) (1) (1vs3)
where

(2.17) Vop = (Vg + /i) /1 (1-ugy) (1-ug))]
(2.18) Zg3 = ( Jﬁ53uu3 *~/“5uuuu)2/[(l‘uug)(l‘usu)J »
and vhere X, 1is given by

[( oy +Far2e0) (1) + (V¥ +/T5121) (Viavag TN

(2.19) Xg = 5
(l—v3l)(l-vh2) (l-v53)(l-whl)(l-w52)

and where

(2'20) VSl = ( \/u5l + \/u21u52u22 )2/r (l"uzl) (l-us}-l-)] >

(2.21) and Zop = (‘/uszu32 +\/u53u33)2/[(l-u32)(l-u5h)] .



Here again fl(ull) is given by (2.2). fi(uii)(i =2, 3, 4, 5)
is given by (2.1), f21<u21)’ f2l(u32), le(uh3) and fZl(ush)' follow

the form (2.5), f3l(v3l), f3l(vh2) and fSl(v53) follow the form

(2.8), fhl(whl) and fhl(W52) follow the form (2.13) and fSl(x5l)
is given by
1 1
3-1 3(£5-4)-1
(2.22) f51(x51) * xsl (l'xsl) 2 /a(%’%(fé°h))’ 0 E xsl 5 1. /

(v} General case (p) . In this subsection, for convenience, let us

(2) : i (3)
relabel ui+l,i as ui+l,i’ i=1,2, ... p-1; vi+2,i as ui+2,i
i=1, . p-2; W as u(u) i=1 p-3; % as

. 3 vey ] i+3,i i+3,i, -3 tevy y i+h,i’ 4
ugzg’i, i=1Y, eess p-b; ete. Now from (2.4),
(2.23) 1wl w1 nl(ee2)/l (i, ) (euyy)]
Ve Y2y T RApE e B R Ste - PE N
where L =T T' , Further, ugg) is obtained from uéi) by adding
simultaneocusly unity to both suffixes of each of the +'s involved in
uéi), which is reflected in the notation 32 vhich replaces 21. Similarly
uﬁg) is obtained from uég), uéi) from uﬁg) etc. Again,
I - LJ(D = 3)
2.24 , l - u(3)= [ = .
( ) ' 31 ( (2))

(1w, ) (1o ) (1-50) (10 ) (102




- (3)
" . Further, Y42  is obtained from ugi) by increasing as before both

\ (3) is

suffixes in each of the +t's 1in uéi) by unity. Similarly u53

obtained from uﬁg) ete. Following this pattern, it is easy to see that

1 - 1|

(2.25) 1 - u(P) ‘ '
Ypl T TP p-2 2
RIS );31 (l—uiii e uiig e - uigplg )

Hence it may be seen that in the case of p wvariables *

(2.26) £(1) = [ ™ 1, )J[ Zl(uiii DIRE:

i+2,1 1+p -2,1

p-2
[.f f31(u(3) )] [ f5-1,1¢ (w21 )1 51085 (p)) ’
i=1

where
1 e 2
. -1 ‘ §(f2-3+l)-l
(2.27) £ (u §i§ 1,1) = ¢ £+J-l ;) (1 £ia 1,i) /8(3,3(5-341))
o<uld) <1,5=2,3 .

Further, it may be noted that K in (1.1) equals

-1

(2.28) ™ B (ey-5) M Hea )T

¥Since this paper was written, a theorem was proved to establish this.
(See Knatri, C.G. and Pillai, K.C.S. (1965) "Some Results on the Non-Central
Multivariate Beta Distribution and Moments of Traces of Tro Matrices',
Ann. Math. Statist., 36, October Issue.)

v gmim g e 3 S
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3. Traces of some matrices as functions of independent beta variables.

Firét, consider the trace of L wvhen p = 2. Noting that

, 2, .2 .2
(3.1) Aqt dop = Bt toot toy

and using (2.4) we get

(3.2) w(z) = Bq¥ App= Ugq * Uyt u2l(l-ull)(l—u22) .
 Similarly

(3.3) v®) -2y (1-ap1) + (T-up5) = upy (Lo M (1-wy,)

Vhen p = 3,

(3. W - Uyp *Vpp hUgy FUpy (1-yy ){Teuny) + ugy (1-upy)(lougs)

+ (1'u11)(l‘u33)[V31(1'“21)(l'“32> + Up3Vootss

' g
"2 VV3y (1= ) (1-g5 )5y Uoplgs |

ana v(3) - 3403

Similarly, W(h) s V(h) , and W(S) and V(s) can be expressed

explicitly as functions of independent beta variables.



10

2
~\ﬁ_How consider U(2) =3 li . It may be seen that
i=1

(3.5) o®) .

2
i=1l

[o,/(x-6.)1 = {[(1~8,) + (1-8,)1/T(1-0,)(1-6,,)1} -2 .

Noting that (1-91) + (1-62) = W(z) and (1-91)(1-62) = u]_.Lu22 we get

53 _ 1-vyy . 1 . Uy (1) (L)
Y11 Yoo Y11 Y2

(3.6)

4, Moments of w(z), V(g) and U(2). The first four moments of W(a)

will be given by

¢ 2 q° ;
(h.1) w@®) < {2,V 00} 5 8, BB
- i=o
Where
(4.2) a; = (vti-1)/g,

v = (fl+f2) and g =V + 2i .

: 2 @ : .
(1.3) s30®) = 1,2/ (20} £ b, (0B
. i=o0

vhere



(b.1)

11

{flv2+2(i+l)f§+(i2+3i~l)fl+(2i+3)f f +f§+(2i-l)f2+2(i2-l)}/eo

83

12

(g; +2)

2 S .
ps®) < (82 /20 () (wa))]) = e, (B2)H/s1

e

N
vhere &y =
(k.5)

vhere

(+.6)

and where
and

1

i=o0

3 |
= £v24(3149) £y #(61420 )38, (31415) P 22+ (31%211.425) 23

+ (312+3Oi+hl)f§

f2+(13+l8i2+hhi+l5)f§+(9i+18)flf§

+ 3flfg+2fg+(12i2+39i+9)flf2+6ifg

+(6i3+3oi2+18i-26)fl+(1212+6i-26)f2+813+1212-201-2u

4



) oy e®) - ree /2/{(v D)) 5 4, (3i?) Yar
i=o
where
(4.8) _ 4 = e3/eh ,
and where

= (v+5)[ (£+2)( £1+4) (V1) (v+3) (Ve +if g i+23fl+6v-hgi-3o)

+ h(fl+2) (v+3 )hi ( flv+3flgi+1gfl+hv-3gi -14)

+ 2(£2-1) (8;+4) (g, +6) (aflgi+3flv+13fl+6vf6gi+3o)

+12 (fl-l) (gi+6 )hi ( f,8; +L'.fl+gi+3hi+1o)

+ 6n, (n;+2)(3f lv+9fl+6v+10hi+58 )]

+ (g, +5) (£, -1) (g, +6)1 (fl(gi+5)+hi+1'r)(fl(gi+5)+l2hi+6)+h5hi(hi+2)}
+ lO‘jhi(hi+2)(hi+l+)]_)

and

and where

h, =f, + 21

Ty ST
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It may be observed that the moments of V(z) can be obtained from those

of W(z) using the relation V(z) = 2-W(2), which is given in terms of

the u's in (3.3).

Now consider the moments of U(z). From (3.6)
() _
(h.g) U = Zl + 22 + _le2u21

vhere z, = (l-ull)/ull and z, = (l-uae)/u22.
From (2.2) we get

3,1 >

2
-A°/2 2 2
(k.10) i‘(zl) = e /zl lFl{%\),%fz,(-al-l zl/(1+zl))1/{(1+zl) B(%_—fa,%fl)} .
Similarly from (2.1) ,

%‘fg"l 2(v-1)

1
(b.11) fzp) = 5, © [l(L+2)" (3, (2,-1)))

Now using (4.10), (4.11) and (2.5) we obtain the first four moments

of U(z) as follows:

2 = .
(+12) @B < 12 N0 2 (s @i
i=o .

(22,40%)/ (£, -3)

Simijarly



1k
(u.ls) ﬂé(U(z)) = [hh(fl-2)+h(K2+f2)(fl+f2(fl-3)-l)]/[(fl-2)(fl-3)(fl-5)],

aat)  wgo®)) - 38(e -2)em (2, 2) (2yeh e, (£, -6)44)
+(3k2+2f2)(f2+2){(fl-2)(f2+h)
#3(fp(£)-6) ) J1/L (£ -2) (£, -3) (£, -5) (£, 7)),

and

(.15) w(03))=0a®on0r (1205 Yorkn}atl (28465, 45, Y12 (2,4 )B46A)

+x2{(8+hsl+2s2+s3)b+16(f2+2)(f2+u)B+12(f2+2)A}
128, (£,42)[ (£,+4) (£,+6)b°
£+l y3+3a3 T /0 (2 -2) (£, -3) (£ 1) (£, 45) (£,-T) (£,-9) ]

where S; is the ith (i=1,2,3) elementary symmetric function in the

arguments £, f,+2, fé+h and f2+6,
A = fé(fl—6)(fl-8)+2fé(fl-h)(fl-6)+l6fl-72 ,
B = (£,-4)(£,(£,-8146) and b = (£,-2)(f; )

It may be observed that when A = 0, the moments given in this section

reduce to those obtained by Pillai [8], [9], 10}, [11] .



5.'-Approximations to the distributions of w<2), V(Z) and U(2).
On the basis of the moments presented in the preceding section, the
{2
I )

following approximetion to the distribution of is suggested for

small values of X:

(5.1) g ®)) = NP (@) /z)qiﬂ/[aplg (9,01 0 < W@z

where

p, = (2K -K)K ] / [2(%,-K)] ,

ay = [(2-K)(2K,-5,)] / EZ(KZ;KEl)] ,
where

K, = 22, {1-05/2)/(vs2)} / v
and.

K, = 45 (£ vrv-2){1-%/ (vi) 1/ (v-1)v(v+2)} .

A comparison of the lower order moments from (5.1) with the respective
exact ones may be made from Table 1.
(2)

Since V(z) = 2—W(2), an approximation to the distribution of V

can be obtained from (5.1) in the following form:

(5.2) ge(V(z))=<V(2))ql-l(l-V(g)/2)Pinl/[2qlﬁ(ql, p)1, 0 < vz,

15
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Table 1
Moments (central) of W (2) from the exact and approximate
distributions for different values of £, and £, and A= 2.
Moments fl= 10 f2= 5 fl= 100 f2= 5
1{,' Exact  Approximate Rabtio (A/E)| BExact Approximate Ratio (A/E)
”i I 1.2134 1.1765 .9696 1.8708 1.8692 .9991
1y 0.0506 0.0578 1.150h | 0.0%269  0.0%284 1.0560
by -0.0%151  -0.0%229  1.5230 | -0.0%919  -0.03113 1.2319
Hy, 0.0°731 0.0°907 1.2405 0.0“255 o.oh3o3 1.1900
gﬁgg 0.2250 0.2403 1.0679 0.0518 0.0533 1.0276
A 0.0175 0.0273 1.5639 | 0.4350 0.5605 1.2086
By 2.8510 2,7192 0.9538 3.5265 3.7632 1.0671
Momerrts- £1=20 =20 f£,=100 f,=80
Exact Approximate Ratio (A/E) Exact - Approximste Ratio (A/E)
Hq 0.9575 0.952L «99L7 1.0992 1.0989 0.9997
Ho 0.0229 0.0232 1.0103 0.0°5L19  0.0°5425 1.0012
by 0.0°112 0.05100 0.8899 | -0.0%109  -0.0*117 1.0722
y 0.0°151 0.0715k 10158 | o.ofere o.oteTh 1.0020
v@;; 0.151k 0.1522 1.0052 0.0736 0.0737 1.0C06
By o.02105 0.0°806 0.7678 0.037h8 0.03856 1.1456
By 2.88L9 2.8681 0.99k2 2.9695 2.9688 0.9997
Monments fl= 5 f2= 20 fl= 5 f2= 100
Exact Approximete Ratio (4A/E) Exect  Approximate Retio (A/E)
By 0.37§1 0.370L 0.9875 0.0935 0.0935 0.9991
Ho 0.0208 0.0203 0.9782 0.0%162 0.0%162 0.9976
Mg 0.0160 0.02167 1.0L37 o.ou522 o.ou53o 1.0136
My, 0.02139 0.02136 0.98c6 o.ohloe 0.0”103 1.0075
./E;' 0.14k2 0.1426 0.9890 0.0403 0.0403 0.9988
By 0.28148 0.331% 1.1637 0.6368 0.6591 1.0350
By 3.2123 3.2920 1.0248 3.8780 3.9262 1.0124




Agein, consider U(E). An approximetion to the distribution of U(g)

for fl > f2 and which is good even for very small values of fé is

given below:

oy Po-l o Pytdatl P .
(5.3) g3(U(2)) = (U(Q)) ¢ /{ (l+U(‘_)/K3) 2 K3 26(P2:Q2+l)} )

o < U(2)< [ee] s
where

= 2q, / {qy(h-1)-2n}

e
n
1

21 o (£, -5)n-(c+a)? (£,-3)}/16% (2, -5) (1) 2(e+a)? (2,301

[is]
n
1

cfqy(n-1)-2n}/{2(£,-3) ,

U;/_‘.
Il

o
i

(e+1.990)3(2,-3)/7 () (£, M)l

2 ; poe .
2f,+\" and 4 =_(fl—f2—l)/(zl-2) .

(e}
fi

A comparison of the moments from (5.3) with the respective exact ones

may be made from Table 2.

6. Power functions of tests of hypothesis: A =0 against A >0

17

o
based on V(L), U(Z) and A . Using the results on the moments of W(2)

in section L, and the relation V(z) = EAH(E), the central moments)

by 3 and W), and the moment quotients: 5, and 32)

various values of fl, f2,
@)

and A. Similar computations were made for

and Wilks?! criterion, using the expressions in section U for the

were computed for



Table 2

" Moments (central) of U(z) from therexact and approximate

distributions for different values of fl > f2 and A = 1,3, and 5

Moments £1= 10, £,=2, ) =1 £,=15, £,=5 A=5
Exact Approximate Ratio (A/E)| Exact Approximeté Ratio (A/E)
“i 0.7143 0.7143 1.00C0 2.9167 2.9167 1.0000
T ~0.5041  0.4760 0.94k2 | 2.3937 2.1092 0.8812
by 1.5792 1.5333 0.9709 8.0457 6.8781 0.8549
Ky, 25.7893 27.0736  1.0498 | 82.91L6 67. 024k 0.8084
\/E; 0.7100 0.6899 0.9717 1.5472 1.4523 0.9387
By 19.4703 21.8049 - 1.1199 4.7198 5.0415 1.0682
By 101.4935 119.5121 1.1775 | 1b.k708 15.0656 1.0k11
Moments £,= 50, f,=10, M = 1 £,=100, T, =10, A = 1
Exact Approximate Ratio (A/E)| Exact Approximate Ratilo (A/B)
pi 0.4468 0.4468 1.0000C 0.2165 0.2165 1.0000
oy 0.0258 0.0253 0.9823 0.02532 0.02522 0.9798
by 0.0°373  0.0°407 1.0911 | 0.09295  0.03309 1.0L67
w, 0.0°296  0.0°31k 1.0616 | 0.05112  0.0511k 1.011k
‘/”2 0.1605 - 0.1591 0.9911 0.4730 0.0722 0.9898
By 0.8126 1.0207 1.2561 0.5772 0.6724 1.1648
By 4. 4566 k.9032 1.1002 3.9610 b,1731 1.0535
Moments fl= 100, f2= 20, A =3 fl= 100, f2= 20, » =5
Exact Approximate Ratio (A/E) Exact Approximate Ratio (4/E)
”i 0.5052 0.5052 1.0000 0.6701 0.6701 1.0000
Mo ~ 0.0155 0.0140 0.9031 0.0252 0.0209 0.8292
hy 0.0%116  0.0°106 0.9199 | 0.0°236  0.0°186 0.7886
Hy, 0.0387u 9.03736 0.8417 o.02231 0.02161 0.6995
Vﬁ;; 0.1246 0.118%4 0.9503 | 0.1587 0.14h6 0.91C6
By 0.3578 0.k211 1.1488 0.3L67 0.3782 1.0907
By 3.6295 3.7458 1.0320 0.3631 0.3694 1.0173




moments of the former)and deriving the expressiocns for the moments of

the latter as the product of the respective moments of w4 and Uos -

. For a given size o, using the 3 and 3 values computed for
) g 2 y8

1
fixed fl and f2 for X = 0, the critical region was determined for
each criterion refefring to tables of "Percentage points of Pearson
curves for El and 32 expressed in standardized measure" [7] .
Further, for the same values of fl and f2 and a value of A > O,

the computed values of 3., and were used to determine from the

1 °2
same table by interpolation the power of the test based on the critical
region determined previously. The following table presents the results

of these computations,

Table 3
Powers of tests of hypothesis: A = 0 against A > 0O

based on V(e), U(2) and A .

19

Power

£ £, o A v(z) : U(e) A

50 . 10 = ,005 . 1 .0076. - ,0076. .0113

50 10 .005 2 L0215 .0217 .0k70
100 10 .01 1 .0156 .0156 .0217
100 20 .025 1 .0306 .0306 L0345
100 30 .025 1 .0300 .0300 .0303
100 50 .025 1 0278 L0277 .0280
100 100 .025 1 .0270 .C270 .0270

50 50 .005 1 .0057 .0056 .0056

50 50 .C05 2 .0085 .0083 +0C85

50 50 .005 3

.0151 0151 .0153




20
-~ Table 3 shows that a) there is practically very little difference
uevrean the powers of fests based on V(E)' and U(z) and b) for
8wall values of f2 Wilks' criterion seems to. have marked power compared

to both V(z) and U(z). This point needs further investigation.

7. Power functicns for tests of hypothesiz: ¢ = 0 against p> 0
based on V(Zla U(a), A and the largest roos. In the case of reiation.
between a p-set of variates, xt = (kl’ oo XP)z,aﬁ&Va q-set,

vt = (yi, ..,?-ya)g from a (pfq)-variate-normal~population, where there
is only one non-ﬁull population canonical correlation ccefficient, 0,

and p =2 q, (prq) < n' wvhere #! is the sample size,

v
2 27T 2 2
(7.1) V=0T ) vy /(%)
t=1
where ylt(t=l,...,.v)= are reldted to the sample cbservations of ¥y,
and y, here, is Gonsidered fixed [6]. Furtner, f, = q and

f; =n'-g-1 such that y = fi+fé, If, however, y is not Tixed, then

v
Z:yit in Kz of (7.1) is a chi-square with v degrees of freedom and,

t=1
therefore, for obtaining the moments of W(a) in this case the follewing
changes may be made in the moments of 'W(z) given in section k4.

1, 2

1 v i i
(7.2} e > (13) /2 (32 > (02)  and

)

(a., b., ¢, d.

i By 5 > [v(vi2) ... (v+2(i-1))] (ai, b,y e, d.) .

1
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-Similar changes apply for Wilks' .criterion, But for U g {(r")

. L. o o i y
is replaced by (2p°/(1-97)) r(%v+l)/F(§) . Now for the test of the
hypothesis: p = 0 against p > 0 using V(z), U(z) and A, powers
were evaluated for p = .05 and p = .1 for certain values of 'fl
and fé

largest root)the power was computed using Constantine’s form of the

using the method discussed in the foregone section., For the

distribution of the canonical correlation coefficients [4], [5] in the
following manner: |

First the joint distribution for » =2 and a single nonzero
was obtained as a series of determinents using a lemma by Pillai [12] .
Further taking into account the first seven terms of the series and
integrating out the smallest roct by employing Pillai's method [8, 10] ,
the following expression was obtained for the cdf of the laxrzest canonical

. . . 2
correlation coefficient, r, .

6
Brfaf < 5 = g, {1 () 10mn)l [ (2087 (aems8oy)) )
j=o
L
~xI(x;m+l,n){ z:( J.::LL"‘:‘/(1:1.-f-1r1+7.-,j))}
j=o
2
CI(xsme2,n) ) (0,587 (mrni6-9)))
j=o

_x3I(x;m+3,n)Eo/(m+n+5) ]
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+2I(x;2m+7,2n+l)[{Bo/(m+n+8)}-{Co/(m+n+7)}-{Do/(m+n+6)}-{Ec/(m+n+5)}]
421 (x32m46,2041)] {3,/ (mensT)}-{C,/ (mnt6) 1 (D, / (mems5)}
+21(x;2m+5,2n+1)[{32/(m+n+6)}—{02/(m+n+5)}-{DZ/(m+n+h)}]
+2I(x;2m+h,2n+l)[{B3/(m+n+5)}~{C3/(mﬁn+h)}]
+2I(x;2m+3,2n+l)[{Bu/(m+n+h)}-{cu/(m&n+3)}}
+2I(x;2m&2,2n+i){B5/(m+n+3)}+2I(x;2m+l,2n+l){B6/(m+n+2)} }

where

£, =2n+3, £

1 p = 2m3,

5 = (o) /2 (2, m, n)

c(2,m,n} = P(em+2n+5)/{Ul (2m+2)T(2n+2)]} ,

I (ml,nel) = xﬁ+l(l-x)n+l , T(xpe',d!) = jjec'(l-e)d’as ,

By =23145,B, =63 +(mt7)B / (mtnt8),By=354) +(m+6)B, / (m+n+T) ,
By = SAy+(mt5)By/ (mint6), By = 3A,+(mh)By/ (mm+5) |

By = Al+(m+3)Bh/(m+n+h) » Bg = l+(mﬁ2)B5/(mﬁn+3) ,

C, = 1054, Cl=28A5+(mﬁ6)Co/(m+n+7), C2=15Ah+(m+5)cl/(m+n+6) R
Cy = 2Ap+(m+h)C,/ (min+5) , C)=An+(mt3)C,/ (minsh)

D, = 21A, Dl=5A5+(m+5)Do/(m+n+6),D2=2Au+(m+h)Dl/(mﬁn+5) ,
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E

2 2,,2
o = Ags Ay =V /25t ,

o = Du(w2) 1%/ e (242027
a3 = Ay (w)%%/l (2,402,310,

A)-l = A3(\)+6)2p2/{26(f2+6)} s

hs = by, (v8)%%/(2%.5(2,48)) , ana

A

Ag = AS(v+lO)2p2/{23.6(f2+lO)} 3

For p = O, upper 1% points of the largest root were taken from
Pillai's tables [11] for values of m=2 and 5 and n = 10, 15,20,25,

30,40 and 60, Using these values to determine the critical regionm,

:{‘ 99
the powexrsof the largest root test were computed for o = .05 and p = .1

for values of m and n given above., These are shown in Teble U4,

Table b4

Powers of the largest root test for testing p =0

against p = .05 and p= .1 and o = .01

Pover
p = .05 p=.1
n n=2 m=5 m=2 m=35
10 . 010321 .010247 .01125k4 .010393
15 .010365 .010311 .011793 .0112gk
20 .010621 .01036% .012612 0117238
25 0107k .010518 .013310 .012226
30 .010779 010611 .013927 .012705
ko .011437 .010812 .016011 .013735

60 .011625 .011248 .019072 .016063
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Now, a comparison of the powers of the test of hypothesis:

- (e .
p =0 against p > 0O basad on V‘a), U(2), A and the largest roct
may be made from Table 5.
Table 5
Powers of the test p = 0 against p >0
based on V(2), U(z), A and largest root

for p=.05 and 9o =.1, and o = ,01

Power
p = .05
) - =7 Tp =13
‘ largest largest
V(g) U(g) A root V(e) U(E) A root
53 .0108 ,0107 ,0118 .0107 .OL06 0106 .0110 .0105
83 .0115 .0115 .,01ko .01k ,0112 ,0109 .0122 0103
123 .0123 ,0120 .0155 .0115 .0115 .0115 ,0130 .0li2
g = .1
53 .0135 .0135 ,0150 .0133 .,0125 .0125 .0135 .0122
83 0165 .0165 .0280 .0160 014k .01k2 .0180 .0137
123 0202 ,0200 .Ohko .0190 .0170 .0170 .02LO .C161

Table 5 shows that a) the largest foot has comparatively less power
than the other test criteria b) V(g) and U(z) practically have equal
power and c) Wilks' criterion as in the previous case seems to have greater
power for the (small) values of‘ f, considered here. Further investigation
is being made to clear this point,

The author wishes to thank Mrs. Louise Mao ILui, Statistical Izboratory,
Purdue University, for the excellent programming of the material for the
computations in this paper carried out on the IBM 7094 Computer, Purdue

University's Computer Science's Center.
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