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1. Introduction and Summary. Let Al and A, be two positive definite

2
matrices of order p, Al having a Wishart distribution [ 3,7] with fl

degrees of freedom and A, having an independent non-central Wishart distri-

2
bution with f2 degrees of freedom, corresponding to the linear case [1,2] .

Now transform

A/ =CLC
where C is a lower triangular matrix such that
| A +A,=CC
It has been shown [h] that the density function of L is given by

-xe/e £,-p-1 /2 (fg-p-l)/Q

(1.1) £(n) =ke = F, {%(flﬂ’:‘g),%fg, 221- £} |L| |T-1]

where

e P(2-1)/ r[-. (e +et1-0)]/ T -0)] ME(e,1-00] T,
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2.
ka is the single non-centrality parameter in the linear case,,?ll is the
element in the top left corner of the I matrix, and lFl denotes the
confluent hypergecmetric fuﬁction.

In this paper, the first four moments of the trace of L have been
obtained for p =2, and approximation to the distribution of the trace
of L and that of I-L have been suggested. In addition, the latter
approximate distribution is used to show the monotonic character of the
power of the test using the trace criterion (of I-I) where the null
hypothesis equates A to zero and the ugper>fail end of the distribution

is taken as the critical region. Similar results are obtained for the case

of a single non-null population cononical correlation.

2. Moments of the trace of L when p = 2. Let

L=71T

where T is a lower triangular matrix [tij]. Tt has been shown [b] that

then the diagonal elements tii are independently distributed and that

tfi(i=2,3,...,p) follows the distribution

1 1
(+2 )§(f1+l"i)'l(l_t2 )é'fz'l
(2.1 £(t2.) = —ii ii
i1 B {Xe +1-1) 2]
5\t , 2af
2
(0<t3; £1),

while til is distributed as



2
(0<t3;, 1)
Tow, if p =2, it can be shown that
(2.3) 2 Ay Ao ) = 20 2(0)) 2(ay)
waere
2 2 _ .2 2 2,

(2.4) u; = 9y, W, = by, and uy = tal/ { (l'tll)(l'tee)f ,
f(ul)‘e is given by (2.2), f(u2) by (2.1) with 1 = 2,
and

1 Lo .

3" E(*e'l) 1

U (l—u3)
(2.5) :f'(u3) = 3 T R (0 < uy < 1)
| 8 {2’ 5(5,-1)f

Thus, from (2.3) it may be seen that ), u2 and u3 are independently
distributed. Now



and, therefore, using (2.4)
b o 7 f _ - _
.2.5) S Aqp Eaz = +tu,+ 113(1 ul)(l u2) .

Taus the moments of the trace of L when p =2 can be obtained using

+he relation (2.6) and the density functions f(ul) 5 f(u2) and f(u3)

Ziven above, remembering that Uy, Uy and u.3 are independently distributed.
Now dencte ’zll + ”ég by W(g). The first four moments of W(z)

will be given by

2 loo]
(2.7) w0 2) = foe 7276 1) z a, (221
=0
where
(2.8) a; = (v+i-1)/g;
v = (fl+f2) and g =v +21 .

2 @ :
(2.9) up@) = fuz e 22} £ b 2B
1=0

where

2 . 2 2 . . 2 /. .2
(2.10) b, = {fl ve o+ 2(1+1)fl + (i +31-l)fl + (21+3)flf2 +f2+(21-l)f2+2(1 -13Veo

where e, = gi(gi +2).



2
1) we®) < a2 (VB )} ] T o Y
1=0

There
‘2.12) : ¢, = el/e2
and where
. b o, 2 .
e = fix;3+(31+9)fl+(61+21)fif2+(3i+15)f§f2+(3fi211+25)fi
+ (312+3Oi+hl)fif2+(i3+l812+hhi+l5)fi+(9i+18)flf§
+ 3flfg+2f2+(l212+39i+9)flf2+6if§
- 2 3.2

+(6i%301 +181-26)fl+(121 +61-26)f2+81 +121°-201-24

and

- L) .
e, = g, (g, +2)(g;++)

2 (o]
(2.23) @) = 2™ 727 {( V21 (v 43)(v +5)} 1 Z a, (32 /1
where

(2.14) : | 4, = e3/eh



and where

e = ( v+5)[(fl+2)(fl+u)(v +1)( v+3)( vfl+hflgi+23fl+6'v-hgi-30)-
+ h(fl+2)0» +3)hi(fr1 +3flgi+19fl+hv -3gi-1u)
+ 2(£5-1) (g, +4) (8,46) (288,438 v 413846 +6g,430)
+12(fli3(gi+6) (flgi+hfl+gi+3hi+lo)
+ 6h, (n,+2)(3f, v 492, 46y +thi+58)]
+ (g,+5)[(7,-1)(8,%6) [ (£, (8, +5) b, #h) (2, (g, +5)+12h, +6)+hsm, (n,+2) }

+ 105k, (b, +2) (n, +:]]
and
ey = g;(g;+2)(g,+4)(g;+6)
and where

h, =f£, +21i .,
1

It may be observed that, if we denote the trace of I-L for p =2 by

V(e), the moments of V(2) can be obtained from those of W(g) using
the relation V(2) = 2-W(2), vhich agein in terms of the u's equals

(l—ul) + (l-uE) - u3(l-ul)(l-u2).



7.

()

3. Approximstions to the distributions of and V(e). On the

basis of the moments presented in the preceding section, the following

enproxmate distribution for w 2) is suggested.

2'.-? ..l - 2

Le 2
(w(g))zlfl er)/ge [re” 7, {£y, L¢ 221wt 2y}

. (o Zv, -
3.1) f(W‘“)) = - Lg) 171 45V, 35 2
/ -a 1 2 £

6‘2 l’l‘ 2) (
(0 <u'® <oy .
X5 may be pointed out that the apnrox1matlon has been obtained such that the

difference betwveen the coefficients of Gz ) /i in the series for the

exact and approximate first moments is

(3.2) 212/{(v-1)v (v +21)}

while the exact coefficient itself can be written in the form
{2fl/(v +2i)}i‘ + 2ifl/{ (v -1){v +2i)}

which shows that the difference (3.2) is ne$¢ég1ble when fl cr f2
A
is large. In fact, the coefficient of e 2 hg) /i!  in the series for

the exact and approximate moments can be shown to tend to

dLl)j/ {gi(gi+2)...<gi+2(j-ll}}

for the Jth (3=1,2,3,4) moment for large values of £, or £, -



Now transform V(z) = 2-W(2), we get from (3.1)

(=) %f2‘1 {2) %fl"l ' ‘%h_ I 1 2 1.(2)
( (v~ (17 f2) [1t+e S i, 3, L2 1y "}]
r3,3) f(V'a))- 1718272 o272 o7 5
3020 = N
1., Hfy+2)

(07 <a) .

l..  Monotonicity of the pover of a test based on V(2). How define a test

az follows:

HO: A=0
Hi: A>0,
(o)
rzject H, if -2 >Vy, where Vy is such that SE f(V(E)/x=O)dV(2)= a,
’ v
\2) 0

accept HO if v < Vo .

To show that the power function of the test is monotonic increasing,

aifferentiate with respect to A

I0) = (2 £(v(® pr)av(®)
v

0]
or since A 1is positive, with respect to Y = é%e. Now put x = V(e)/2,
then
ar d 1
(k1) _ébi = ¥ 5 £(z/y)ax
Y dy V/2
° %f -1 %fl-l 101 »
x© 2 (1-x) F {:V s 8., 7X}
= (ZT7) ¢t 112’22 ax
2 Ry /s B(3f,, £,
0 272’ 271

%(f2+2)-l o
x (1-x)

-1
sl . lFl {':'L'(V +2), %(f2+2))7x} ax ]
Vy/2 s(%{f2+2), %—fl)



Now it can be shown (see Appendix) that

P g=1 -1 g-1
{k.2) ‘1~ sy dy - gl all {'."‘"Y-} dy >0
| o BT, Q) x  P,a)

mless k=0 or 1 in which cese obviously the left side of (4.2) equals
Zero.
e? i
Now consider the coefficient of =7 /i! on the right side of
{4.1). An application of (4.2) to this coefficient will show immediately
that it is posi‘bivé and hence %7—) > 0. This proves the monotonic
character of the power of the test defined above.

5. Canonical correlation. In the case of relation between a p-set of
variates, x' = (xl,...,xp), and a g-set, y' = (yl,...,yg), from a
(p+q)-variate normal population, where there is only one non-null population
canonical correlatlon coefficient, p,, and p <4q, (p+q) < n where p

1s the sample size,

(5.1.) AT =] Z yr/(1-e])

where ylt(t=l,... »v ) are related to the sample observations of ¥q>

and y, here, is considered fixed [h] . In this situation, the approximation
to the distribution of the sum of squares of two sample canonical correlation
coefficients is given by (3.3), where f2 =q and fl = k-g-1 such that
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<

If, however, y 1is not fixed, then y?_t in >.2 of (5.1) is a

t=1

chi-square with Vv degrees of freedom and, therefore, the density function

PrANN

of u, will be given by [u]

1l 1 1
5V 5f,-1 5£,-1
{5.2) f(ul) = (l-pi)a uifl (l"u1)2 ° oy {%": 12'-\1, ~lf2’ pi(l-ul)} .

(05w, <1)

where éFl is the hypergeometric fumction.

In this case, the first moment ofy 2W(2) can be obtained from the
-5\ i
.2 5
right side of (2.7) by replacing e by (l-pi), (A.z) by (p?_)l and

ai by Ve o( v+2(i"l))ai .

2) in this case is obtained from (2.9)

Similarly the second moment of W(
by the same changes as above except that instead of a; the eppropriate
coefficient, i.e. bi should be substituted. The third and fourth moments
are obtained in a similar manner from (2.11) and (2.13) respectively.

Further, an approximation to the distribution of W(2) will be given
by

(2) %fl-l (2) ;2L'f2'l 2%" 1. 1.1, 2, (2)
.(5 N f(W(a)) (=)= = (1-w'<’/2) [1+(l-pl) 2Fl{§v,§v 158000 (1-H /2)).]
. = -
1 1 )2§(f3_

B3y, 3%,

+2)

(0 <w® <2y |

(2)

Again, transformation in (5.3) of V( =2 - W(2) gives



11.

%fe'l L 1
, o 0 @)1 [Hlol {l , Lr,0 0@ 2 }]
5.%) £V = T
1, , 3%

. 1L
(ogv<’ <2).
In the null case (i.e., when (A=0 or pl=0)), (3.1),(3.3),(5.3) and (5.4)
‘educe to beta distributions. However, the approximate distributions suggested
)y Pillai under the null hypotheses [5,6ﬂ‘in the respective cases have degrees

£ freedom Efl and 2f2 in place of fl and f2 respectively obtained here. In
‘he null case the approximations seem to be better with’ 2f, and 2f2degrees of freedom.
Now consider the test of section 4 replacing )\ by pl In order to

show that the power function is monotonlc increasing, follow the method used

.n the preceding section with (5.4) instead of (3.3) and we get

1 1
de.y) l %V -l l §f2(§:- )-2‘.612%‘-1{ AV )2 v );— 2’7x}
(5.5) —d':)— =gv(rn)* [ N dx

vo/2 B(Efa’ 5t

l

—(f +2)-1 5F 1

1 % (1-x)

-1

+H(1-7)(
Vo2 B(5(z,2), %fl)

Jere ¥y equals pi and X, as before, equals V(E)/Q. Now, the coefficient

f 71 within the brackets in (5.5) is the integral with respect to x between

he limits VO/2 to 1, of

f502),5042) 38, +2),7x}dx

2(r +2(i+1))-1 e -1 Lep +p1)-1 Ze -1

f { (v+21)x2( 2" (14 (1- x)2 1 (v+2)x2 2 (1-x) 2 1 Y

5.6) jb+2) ..., (v+2(i-l))/2}{ - ‘i
5-[ i(f +2(:.+1)), 5f )r ' s{%(f2+2i),22'-fl} J

(1=1,2, covees )



and vhen 1 =0, of

(5.7)

1 1l 1

1

(g +2)-1 Z.-1  ZF.-1 = -1

X2 2 (l-X)C 1 x2 2 (l_x)e l
1 1 1

B(5(2,42), 3,) B(z£0, )

By virtue of (4.2), expresssions in (5.6) and (5.7) can at once be shown

to be positive thus proving the monotonicity of the power function of

the test.

The method used above for showing the monctonicity of the power of the

test can be gpplied to similar tests with multiple correlation coefficient.
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Appendix

Two results on incomplete beta functions are obtained below:

1 ,p q-1 1 -1 q-1
(1-x) ) " (1-x)
t sk B, Sk e, 70

except when k = 0 or 1, in vhich case the left side equals zero.

To show this, expand (l-:'.')q'"l in the above integrals and integrate

term by term. We get the difference of the two integrals to be

- (el | (el(e2) B 7
B{p+l,q) *“ p+l p+2 o1 743 cee

& 1 (g-1)k q-1)(g-2) .2
+—(—)-6P,q [p - +$—(-lngE§P+2 N

Now combining coefficients of like powers of k and taking the sum

(A.1)

12
(A.1) reduces to k_PQ(._kl_y >0 unless k=0orl.
pB(p;a

1 1
:n:p"l(l-x)g"l xP‘lg l-x;q
2 Sk Blp,a) - Sk B,y 7O

except when k = O or 1., 1in which case the left side equals zero. As

before, we can show that the difference between the two integrals above equals

K (1-k)¢ |
- > 0 = L4
82,3 unless k=0or 1l



