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Surmary

A general matrix representation is given for the multivariate transition
probability generating functions of a Markov Renewal Process with a finite number
of states. It is indicated how numerous derived probability distributions can be
obtained by simple substitutions. Finally an application is made to the distri-

bution of the maximum length of an M/M/1 queue.

Let N(t) = (Nl(t) y o o o Nm(t)) denote a Markov Renewal Process with a finite
number m of states and with a matrix of transition probability distributions
Q= Q1 3 [2,3]. The Qij (t) are non~decreasing left-continuous functions
satisfying

(1) Qij(0)=0 fori, j=1, « ¢« » , I

m
jElQij(m) =lfori=1,...,n

The random variable Ni(t) is equal to the number of visits to state i during the
time interval [O,t]. The stochastic process Zt is referred to as the semi-
Markov process (S-M P) associated with the Markov renewal process. Zt = i when
state i is being visited at time t. We assume that

o o

with £ p, =1
. i
i=1

(2) 3 {zo = i% = p,°



Let k = (kl 3 o e s km) denote an m~tuple of non-negative integers and defins

T»(k} as follows:

3) T(c) = int {t:Nl(t) sk, ., N () = kmg
i.e., T(k) is the random time at which the Markov renewal process emnters the
St&':'-? k = (1(]-, s e o km).
Let 2(k) = Zy ) and T’ (k) denote the time instant at which the S-i P leaves the
state Z(k). We define the following transition probabilities for the Markov re-
newal process.

W) ;e,t) = P{200) < t and 2(x) = 3}
and

(5) D, (k,t) = P{T(k) <t <7T'(k) and 7, = j}

The probabilities defined in (4) and (5) satisfy the following relationms.

(6) Cyleg,t) = Bijpj° I(t)

m
Cj(k,t) = vElc\,(k-ej,t-.) #* ij(t) fork # e

Cv(k-ej,t) =0 if kj =0

D (k,t) [1 - H(6)] % C,(ic,t)

where Hj t) = & Qj \l(t) and I(t) is the distribution degenerate at zero.
v=1
The m=tuple e; has all components but the ith equal to zero and the ith equal to

one.

We introduce the following notations for the Laplace transforms.

(o¢)

¥*
(7) C; (k,s) =5

-st * oo ~st
o © dcj(k,t) Dj (kys) = e dDj(k,t)

@

*% :
Yy (s) = L

0
. o0
e'StinJ. ) Hj*(s) =Jo e-Sthj (t)



The formulae (6) become:

/ = (o)
8) cj*(ei’ s) Sijpj
n

™
-

C .*(k,s) =
J NEL

+* ¥*

- {
c, (k ej,s) ij\s) for k # e,
nj*ck,s) = f1- Hj*(s)] Cj*(k,s)

Wa »ow introduce the multivariate probability generating functions,

" *, o SR ky kn
Y = = T 8 & @ = 8 *» o 9 z - k e o @
(9) GJ (z,8) GJ (zl, R zm,s) k1=0 km=OC3 (x,s) %y Z
and
K *(z,8) = K. i,8) = £ S D) s Y ... oD
. Zs8) = s Zay ¢ 00y F) = « s . Z LRI
3 3t o k) =0 k=03 1 m

and the columnvectors

¥ =[G (2,8), o v 0 5 G (5,5)] K = [K(2,8), + e, K (2,9)]

* #*
The column-vectors G and K now have the following matrix representation.

Theorem
(10) K (z,8) = [I-AWH)]C (z,8)
= [I- A(H*)][K - N\ (z) Q’u]"]‘A(Z)p0
in which

DE) = Diag (1 (s), « « + 5 Hy (5)
D (z) = Diag (zy, « « + , 2) and IziI <1l i=1, ceo,m

¢ ]

and p° is the column-vector [pl s e o 8 3 pmo]

Proof

The first equality is equivalent to the third in (8). Moreover it follows from

the other emalities in (8) that

m
3#* _ o 3* ¥*
Gj (Z,S) = pJ zj + zj yElej (5) GV (Z,S)



L3

which implies the second equality in (10) if the inverse of I -/(z) Q*’ezd,stse
This is easily seen to be so in view of

) 24,5 ()] < Qyy(e0)

The numbers ij (o) form an m x m stochastic matrix which therefore has spectral

radius equal to one. A theorem of Wielandt [4] to ths effect that (11) implies
*

that “he spectral radivs of §(z)Q ’ is not less than one, now implies the result.

A Particular Case: Discrete time finite Markov chains.

If Cj (k) denotes the probability that in kl L km-l transitions a discrete
Markov chain reaches state j and has visited state Vexactly k,, times (v = 1,...m)
then

- + ., e 0 + k "'l
Cj*(k,s) = ¢,() e ! )

Q =% Gj*(z,s) = ¢%;(26™) inwhich G,(g) is the

generating function of the Cj (k). After setting z.ie"s = E_.i we obtain

GE) = [T - AP T AG)R°

which was proved earlier by Neuts [1].

Generating Functions derivable from formula (10)

Generating functions for many related probabilities can be derived from K(z,s) by

an appropriate choice of the variables Zy e

If we set some of the 23 equal to a same variable u we find the transition probabil-
ities of the S-M P which specify only the number of visits to certain but not all
states. If we set certain variables Z in (10) -equa.l to zero, we find generating
functions for taboo=probabilities, i.e. trensition probabilities of events in

which one specifies that certain states should not be visited,



Finally if we perform the substitutions

cr.yiv
Zy= 7 e 0< (<1

for all or some of the variables z in which a; is equal to zero, plus or minus
one we obtain generating functions for events defined with respect to algebraic
sums of the random variables N, (t)e ‘

Some detailed examples of these substitutions have been worked out in the case of

finite Markov chains. Neuts [1].

An application

We consider a single server Poisson queue with input rate A and service raté T
We wish to evaluate the probabilities nr;_j (t) that in the time-interval [0,t]
there have been n transitions in the queuve, the queue lexﬁgth at time t is j and
neither of the queue lengths zero and b have been attained, given that the

initial queue length was i. 0 < i, j<b,

Let us consider the b + 1 state S-M P in which

Qij(t)=1-e"‘t i=0 j=1
AA ‘ [l-e-(a'm)t] J=i+l i:l, t-.’b“l
*p
K—"'Ll; [l - C-(Am)tl j =3ji=-1 i= l, ce ey b-1
- I(t) i=hn j=b-1
0 elsewhere,

If we substitute Q into formula (10) and set p° = e, and %y = %y = 0] Zy e e
Zp.] = 4 We obtain

©® n -st
Kj*(O,u,...u,O,s)=u Zu e dn

n=0 “0 1J



f'rj=l’ -..,b“l

[0,

Set 0 3
T S dni.n(t) =P, (u,s)
n=0 J J

then

Pij*(u,s) = %K*(é,u, v e ey U0,8) =2 [1 = Hj*(s)][(l w&'l*l)ol]ji

where = Diag (o,u, «. ., u,0)

+*
After inversion of the jacobi-matrix I - AQ @ we find

s (e & _ g Lyge b=d _ , b=]
Pij*(u,s) = s A (I (€7 = 2,7)(E & ) for §>1
SFAHL SHAtY b b =
(B8, -8 -&;)
_ i-j (5,9 - 8,06 " - 2
= ) jTRS) 1 2 © 2 for j < i
3+A+“' S+A'+u (El - Ez) ('Zlb - gzb) -
where . l/
|~ 2 2
g o " % 1+ (1= M"‘E
’ (s*+A+u)
If we set LA = L we find for i < j (j < i is analogous)

S+¥Atp cos g’

juiel  i=jel |
2 2 -1 sinia sin(b=j) a
s A b u sinag sinba

*
Pij (u,s)

ol sinig sin(b-j) a
sino sinb a

is a rational function of u with b-l distinct poles at

u, = Ccos 1 q’l,;oo,b-lc

Partial fraction expansion yields:



I b1 2 sin dign/b sin(o-3 /o
RO RN ORI
s "ij *7? i § =1l s+A+p-2uy A cos .fb_’E
whence
n+ij=i ntiej b=l
n _ Aan 2 2 1 .n =(A+u)t 2 . _ien . _(b=j)en w3

.. (B) =2 —_— =
5 5 (t) A I Y e I ¢ osin = sz.n‘ & (cos%)

g =
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