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O.. Summary

This paper desls with the distribution of linear functions and ratios
of linear functions of order statistics from an equally correlated set of
normal randam variables. Some special cases of this family of linear
functions are considered. The case of range is studied in great detail
both for the case of equal correlations as well as in the general case.
For the geheral case, formulae for.the distribution of range are obtained .
for sample sizes of two, three and four. In the equally correlated case,

" expressions are obtained for the probability integral; percentaze points
and.momentsbof the linear functiohs in terms of the corresponding ex-
pressions for the uncorrelated cases. It is also known that ratios of
certein linear functions of the order statistics have a distributicn

independent of this common correlation.

1. ZIntroduction C TN

Let Xl’ XE’ ,..,'Xn be jointly normally distributed random

variables with Exi = 0, EX:2L =1, Exixtj = py30 (i+t3=12,2, ..., Ty
Let X(k) be the kth order statistic when Xi's are arranged 1o an
increasing oxrder as follows:

(1.1) x(l) < x(e) < eee < x(1> < ee sx(n).

+  The work of this author was peffonmed under the auspices of the
United States Atamic Energy Camission.
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The distribution of these order‘statistics is of interest, for instanée,
in problems of multiple decisions and life testing. Owen and Steck (1%62)
have dbtgined ﬁhe mcoments of X(k) when 015 = 02 gll i, 3. Gupta (1963é),
discussed the eveluation of the probability integral of X(n)’ and has

given tables of this integral for selected values of Di4 = Po In a separate

J
bibliography Gupta (1963b) gives references to other papers in this area..
The papers by Stuart (1958), Ruben (1961), Steck and Owen (1962), Steck (19%2),

end Thigpen (1962) are of more direct interest.

In this paper, we shall consider a class of linear functions of X(i)

n
given by Y =5 aiX(i)' This class covers a number of useful statistics
i=1
that arise in various problems of statisticel inference. TFor instance,

when a, = -1, a, = 1 and By F 8 = eee =B 4 0= 0, the above linear

function of order statistics reduces to the range of the n randcm
variables Xi. We discussNthe latter case in great detail. Another
special case is that of the Neir statistic (1948) which is discussed briefly.
When 045 = Py We use the reduction first given by Dunnett and Sobel (1955)
[see also Stuart (1958)] to obtain the mcéments of Y and to derive

formulae for the probability integral and the percentage points of Y;

We also consider statistics of the form YI/YE which are used in rejection

of outliers and as a substitute for the F-statistic In testing equality of

variances.

In Section 2, we discuss the distribution of Y for the equicorrelated
case. Section 3 deals with maments of Y. In Section 4, we discuss the
the
Studentized case when/varisbles have a common unknown variance. In

Section 5, we discuss the distribution of certain ratios of Y's. In

Section 6, we discuss the distribution of the range, a particular case ™
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of Y. For n =2, 3, and 4, the distribution of the range is cbtained

~ in the general case when the correlations are not necessarily equal.

2. Distribution of Y when Xj's are equally correlated

It Xi's are equally correlated, then it is well-known that this
ccrmmon z - - . Let us consider the cases .2 0 and. - —EL-s p <O
° n-1 o= ‘n-l ?

separately. Following Owen and Steck (1952b), we generate the random

variables {Xi} frem the random varisbles {Zi} as follows.
- 2 2
(2.1) . X; = (p)l/ Zo + (1 - p)l/ Z;» 020,1=12, ..o, n

where Zgy, ee., Z, are ind. N(0,1) and
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" (2.2) X = (-p)1/2 Zy * L -p)

1/2 Zi ] p<o’ i = 1,2, "o 3 n

where Z; { 1i=1,2, ..., n)are ind., N(0,1), Zy is N(0,1) and

B(3,2;) = =(-0 /2 / (-0 Y2,

It follows from (2.1) and (2.,2) that the linear function Y = Z aix(i> can
be expressed in.terms of the éorresponding linear function £ aiZ(i) (Zi’s uncoy~-

'relajt,ed) and a term involving Z,. Hence, we have for p> 0,

v /2 , n 1
$v o ol = + —L"7'
(2.3) P{r<vi= é._’f ey s G50 (Fa)e T an §
- and for p< 0
| - * c Foo /2 n y 2
| ! = s -l ze + .
| (2.4) P {.Y SV P iii“l 25%(3) < L -:J (ifl ai) 2 @)% )
From (2.3) we obtain by putting! %/2 = ¢,

\1-

fo'>r

(2.5) PJZY syj? = Hiy;o) = gH {"—CX(Eai) * -—L—~7§ 5 0) dx)ax

= (1-p )

where ((x) denotes the density of a standard normal random variable.

. . n

It is interesting to note that if . I a; = 0, then for both negative and positive
: i=1

P , we have one resull, namely,

(2.6) H{yzp ) = H(a—l—)ﬂ? ;Cﬂ-
. - P

Using (2.6) we can evaluate the cdf of Zaix(i) when Za; =0, & case of common
practical interest. We mention the following four cases.

(a) ay = ~13 a_ =1; a; = 0, 1i=2,3, ..., n=L,

In this case the cdf of the range of correlated random variables reduces to the
‘already well-studied case (see Pearson and Hartley (1942), Gumbel (1949),
Pillai (1952), Harter (1960)) of the range of uncorrelated variables. Letting

| Ty (ngp ) denote the a percentage points of the range in the cdrrelated case;, we

see that






(27) v, ) = v (50)/(-p)2 .

S . . n
(b) Quasi Range, a particular case when a, and a ... (1=2,3, ¢ 00, 10[ 5 1)
are equal to =L and +l, respectively, and the remaining’ai’s are equal to zero,

The formulaev(2°6) and (2.7), again, give the distribution of the correlated casea

~

——

(e) Neir’s statistic (Nair, 1948) is obtained by putting an =] - % and

8y Fa, = 00 Fa g = % . Thus formulae (2,6) and (2.7) are valid for

reducing the distribution of (Nair Statistic from the correlated to the uncorre-

~

lated case, the latter being tabulated by Nair (1948), Pillai (1959) and by

others,

(d) Tests for outliers based on X - X (see Grubbs (1950)) or similar
(n) ~ “(n-l)

differences of successive order statistics. These are again special cases of

n ,
1= z‘aix(i) and can be solved by the same formulae (2.6) and (2.7).
i=1

3, Moments of Y

~ Owen and Steck (1962) have given formulae and tables for the moments and

) in terms of the corresponding moments and cumulants of X(k) and

cumilants of X(k
.ZO. More directly, from (2. l) and (2.2) we can write
1/2 2
<§.1> Kooy = & 0072 25+ (1= )2 2,

where in the first term on the right in (3.1) we take + or - sign according as
8] ZO or p< Oo |

Tt follows then

: ) n j
62 369 - slEepe e g s 00V zag ]

; | . .
-z e P2 U2 B {nP (i ))2] O






"Ifp> 0, then we get

(41 . - -

where [x] is the largest integer less than or equal to X.

In (3.3), one can substitute from the tables (Ruben (1954), Teicuroew (1956) ,

 Harter (1961)) the expected velues of the powers of the i™ order statistic in a |

_ , n
random sample of size n from a N(0,1). Note that if =& a, =0,
| | i=1
CGa) m) = -2 B[ Zez,, Y | -
2R ps soq ()7 5 Zay =0; all p.

In particular, for the moments of range W'n, we: get
o . 1/2
2 = - m
G.5)  EG ) = 2Q=p)7" B2
end, generally,
a . .
2 « = - 3/2 - 7 d
_ (f'6> E(Wn) (x , D) B[ Z(n) (1) ]
- Note that ’

(3:7) . BY = (l-. p>l/2 lila,iEZ(l), all o)

' Le tudentized Case

If Xi are assumed to be equally correlated normal random variables with

EXi =0, EXi2 = 0'2 1= l,' 2, « o o 5 n), and if sf is an estimate of 0-2
. - v n
.which is distributed as 02 }(2/ v and which is independent of I aiX 1) ‘then
_ _ ’ i=1l
we can write
. 7 | 00
0 ozax,. D,
(hel 1D I a1 / :
| = 1_3;__._1 < vt = \HEG'x;0) g (x)ax
' s.v | - G ’

where g (%) is the density function for the random varieble X, A and

~ vhere H(y; p) is the iutegrel defined by (2.5), If Za; = 0, then we have






_ (1;&.2) P z\i._.___ < S g:;—c- 3 O) g, (x)ax , fa; = 0.
) Sv 3 N

It follows from (4.2) that the percentage point yc‘: (n,v 3 p) of the studentized
correlated case is related to the percentage point yé (n, v ; 0) of the

studentized uncorrelated case by

| ' 1/2
C(4e3) vl (mvsp) = v, (msv 5 0)/(1-p 3 r
~ which is analogous result to (2.7).

“We remzrk that the moments of zaix(i )/a;, will exist.only if the negative a

moments of Sy exist. We have

(ho) B2y A, ) = (o X(l)/c)‘] B, /o) it <
g Fesslyy )y
fiez)

It should be pointed out that in (4oly) the first factor in the second line

1
1=
N
(¥
Y
V
/\
V
~
a

s J < Ve

~of (ADA) can be evaluated by using formulae de;ived in Section 3. In particular
we can obtain the moments of the studentized range, studentized Nair statistic

, an_d studentized quasi ranges by using the formula (Lob) and the foﬁnulae of
Section 3. The probability integral and percentage points for these particular

cases can be scvaluated by using (4.1) = (4.3).

5. Digtribution of the.range of correlated nomal variables.

The :"';\cfi«.:;:’; distributjts i X(l)’ X(Z)’ A VI X(n) defined\ (1.1) can be

written in the egn

where X is the colum vector Of the X(. )’ s and\, the matrix of simple correlation

coefficients between pairs of unordered X’s and l Al the determinant of A.






5. Distribution of 3{1/352 when X].".s are equally. correlated

Let W= X(n).- X(l)’ and let Wi’WQ"”’ Wk be independently,

identically disfributed variables with the same distribution as W.

We shall show that the random variables

R = (X(h) - X(i))/<x(j) - X(k) ), (b1, j>k)
S = max wi/(wl Foees + wk),
T = Wl/W2 |

all have distributions independent of p . We shall also find the distri-
v T~

'bution of T in the more general case where Wi(i =1,2) is the range in T

an equicorrelated sample of size n; with p = s

In the case p =0, thése random variables have been discussed by
several authors. Statistics of the form of R are discussed and their
percentage points tabulated by Dixon (1951) in connection with testing the
consisteﬁcy of suspected observations with the whole sample. The statistic
S is suggested and the 5% points tabulated by Bliss, Cochran and Tukey (1956 )
for testing the same ﬁy@othesis in a different situation. For more
discussion of these statistics see Dixon (1962). Link (1950) suggested
the use of T as an alternative to the usual F-test for equality of
varilances and partially tabulated its percentage points.‘ Moré recently,
Pillai and Buenaventura (1961) and Harter (1963).have providedbmore extensive

tabulation of the percentage points.
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The distribution of R 1s independent of p since

P(RS I"p) = P(X(h) - X(l) - I‘X(J) + I‘X(J) + I‘X(k) + = Olp),

P({X,;\ = X/.y - X,y + vX, 1- < 0]0) = P(R < r|0
({ (n) (1) () (k) W D) [ ) ( I )
by (2.6).
The distribution of S 1is determined by the distribution of the maximum
of k ddentically distributed variables of the form UP = Wi/(Wé + oeen Wk)
(See Bliss, Cochran, and Tukey (19%)), and we now show that the distri-

bution of Uk is independent of g . The characteristic function of LA is

0 (tlp) = (t/(1L - p)]0) as seen above. Consequently, the joint
i : i

characteristic function of the {Wi} is

BT W5 e wn(tr torees tylp) = ﬂ@wi(tilo) = ﬂ@wiJ(l-p)(ti'O)= (5.1)

‘Since the distribution of Wi/(Wé Foeee + Wk) and an/(aW2 +ees aWk)
are the same. it follows fram (5.1} that the distribution of U, is

independent of o .‘
The distribution of T in the more general case is argued as Tollows.
The joint characteristic function of W, and W, is
: t, u ; = t,u}0,0 .
Ay, (9 Bl por B o) = g sag ), (g ) (881000
This implies that
Thus the distribution of Wl/Wé in equicorrelated samples can be found

easily fram the distribution in independent samples.






6. Distribution of the range of correlated normal random variables

Let Xl’ X2, X3; X4 be normally distributed variables with zero means,

unit variances and EX,X, (i £ 3). Also, let

37 P45

W =max X, - min Xi,

I
R
Py
[y
b
e}
.
C
S’
\e

Q..
1J
A =1 - - R + 2 »‘
ijk T Piz ~ Pik 7 Pjk P15°5xPik’
The distribution of W 1is given by

(61) P(W sw) = P(W < wand X <X, <X

5 < Xh) +o.. (24 terms).

3

' The othef 23 terms are ohtained from the first by permuting the indices of

the {X}. The first term, call it P, is

(6.2) P, = P(Xl-X

5 <0, XE-XS <0, x3—xh s 0, 0 = X-X; <w)

It

P(u; <0, U, <0, U; 0, 0=, = w/a.lh‘),

where
Uy = (xl-xe )/ale, U, = (xz-x3)/s.23, U, = (x3-x4)/a34, Uy, = (Xh-Xl)/alh.
The {Ui} have zero means and unit variances, and if gij = EUin,
then g, = =1+ 0,3~ 0y, - p?_3)/”"128‘23

B3 = ~(pp3 * P1k = P13~ o0, )/ 21083,

Sa = (1 opy = p3p - oy Veppayy

&
|

23 -(1 + oy - o3 - 031;-)/‘323&3&
S, = ~(py * 03, - 013 - ooy VEpzrny

S3u = ~(1 + b33 = oy - °3u)/allf‘34'






-10-

U, + a34U + a9,0), = 0. This implies, since the {aij}

~ Note that a,.U. + a 3

1271 2372

are'nonnegativerthatin P(Ui < 0, U2 <0, U, £0, Uh < 0) = 0. Noting

3
this, and substituting for U, 1in (6.2) gives

?1 = P(Ul $0, Uy 0, Uy =0, aly + 8,00, +agUsy = - Ww)e

The variables {Ui} can be generated from independent N(0,1) variables.

(X} vy
Ul = Xl
A P
2 = 512 512 %o

_ | / 2 / 2 :
U3 = §13X + (523 - 512513)/ N 1- glE Xé + V/A123/(l - §12) X3)

and in terms of the {X } the plane 210Uy + ag3U, + a34U3v+ w=20 can

be shown to be

, 2| T 5 ~
(6:3)- g% = | (g - By 8y )/ J1- o | %o+ A i/ (1 - £5) Xy + w2y, = 0.
The distance from the origin to this plane is w/aih.

In terms of the {Xi} the volume of interest is_that‘of the tetrahedron

with vertices at

o = (0,0,0)

/ 2
. 1 - £ .
= (OJO) - X L )

A

>
1






f W 54 523 §12§13 \,
i > 2 )
a3/ 1= Epp  aps /AIES(l - E15)
;v WE1p v 13 = B10%3 |
A3 = J 2

- 2
’ e
g 8y Byp 1-85 a5 /A123_(l- 512)

where A;,A,,A, lie on the plane vhose equation is given by (6.3).

3
The perpendicular fram the origin to this plane intersects the plane at

R I Rl 1 "

* ’ oz o 2
T I T ey U - By

-

and the coordinates of Ah are given by the following linear cambination

~ of the coordinates of the Ai

a.) & 8548, 2,58 |
AL]. = - M Al+ _Q_Sﬁ A2 + _}:'Z_jﬁ A3 5
a1 1L 1h

where the sum of the weights is unity.

Imagine first that Ah lies within the triangle A (such will

170f3

be the case if the weights are positive). If a perpendicular is drawn

from Ah t0 each of the sides of A1A2A3 then the tetrahedron

AOA1A2A3 is divided into six regions and the probability that (Xl,Xé,X3)

lies in one of these regions is expressible in terms of the S-function
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des.ribed by. Steck (1958). Consequently, the probability content of the

- tetrahedron, P

12 is obtained by adding the contents of the six regions. -

If Ah lies outside Al ohsg then Pl is obtained as a linear combination
of the contents of the regions, the weights being 1.
The process of finding the requisite lengths is a tedious but

- straight-forward process, though it helps to note equalities of the

folquing type |
Sy * 108y + Fa3al F B3ty - o

5 o
aq), By = B3uByose

Let
W
51l 52)4_ g
ay = = a, = > ag = 3t s
'\/l-gl)-r ‘ A/l'gz)_,_ \/1"8311_
531 = 51351y Bk~ 51050 51 g13§3l+
byy 21 gy =
51y / P13k Boy + Bypy 531; Vv ygy
Sl - T o -k B 423534
12 22 . 2=
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and let

. . ,
W(h,a,b) = grctan b (c(n) - 3 ) + 2 arctan : - s(n,a,v).
am X v(l + a2 + a2b2)

Then W(h,a,b) is the probability content of a region of the tetrahedron

and .2
, B = Zi 2: .W(h,ak,bkj).

1 =1

Corresponding results for the trivariate normal distribution can be

obtained by_letting' Xé = X Then

Puy = P13 By = 83 S1p = ~(BFPy3 - 0yp - Ppa)/apByg = By (say)

Pag 2oy = %3 51 = ~(L ¥ Pp3 = Prp - Prg)fagiyg = 85 (say)

1
©

Pgp =1 By =0 By = =(1 ey - Pig - Ppg)/a gang = By »(éay)

E =& = §34 = 0/0 = 0,

13 23
and it can be shown that each 6 is no larger than the product of the other

two and that no more than one € can be positive.

Also,

C 2 - _ _ 2 .

bigy =1 - 83 Bioy =0 Bogy =1 - 855
] 8
a = 13 a = 23 a = 0
1 ,J o 2 V’ 5 3
(1 - 833) (2 - 83)

bll. =0 b21 = - 00 sgn 923 b3l = to0
bl2' = - 00 sgn 913 byy =0 b32 = * 00,






c-o(.l.}-

- Further,

W(h,a,0) = 0

W(h,0,b) = 0

W(h,a, ) -W(h,a,-c0)

W(h,a, o) %_ V(h,la]h)

V(h,la’lh) sgn _a
-sgn a W(h,a,00).

V(h,a)
W(h,a,-00 sgn a)

where V(a,b) is the V-function described by Nicholson (1943).

Consequently,

P = -3

w w 813 W W 623 )]
al3 |

%_V( > ) )+ V( » 5
L %3 V@ - 913.> %13 %13 va - 623)

Any permutation of the integers 1,2,3,% which does not have
3 and L adjacent will have the corresponding Pi = 0, since

,P(X3‘s X < Xﬁ)‘= 0 if X3

3 and & adjacent and these yield three sets of four equal P, .

i

Xh' There are twelve permutations with

Thus, in the trivariate case,

W w6 W w6
B(W = W) = -2 | V(—, =) v(—, =
85 ap, /(1 - 83,) 8)p 8 V(L - 613)
w wb W wh
H(—, 13 — )+ V—, ZENEEY
, 2
813 al3'J(l -613) 213 al3 ML - 623)
W WO, W wb E
+V(—, =) V(—, 2 1.
83 Bpg v (L - 67,) 853 Bp3 ML - 623) |
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Finally, in the bivariate case one has
P(Wsw) = 2@(w//{2(1-0)}) - 1, (0<w<oo),
where é(x)i is the distribution function of & N(0,1) rendom variable.
This follows since for n=2 the general caselaﬁd the eqpally correlated

- case coincide and (2.6) applies.
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On linear functions of ordered correlated
normal random variables

By SHANTI 8. GUPTA* anp K.C.SREEDHARAN PILLAI

Purdue University

1. INTRODUCTION AND SUMMARY

Let X,,X,,...,X, be joir_mljf normally distributed random variables with EX, = 0,

EX2=1and EX,; X; =p,;(i+j=1,2,...,n). Let X, be the kth order statistic when X,’s
are arranged in an increasing order as follows:

Xop<Xp<... <Xy < ... < Xy (1-1)

Many problems of statistical inference, notably the ones in multiple decisions and life
testing involve the use of ordered X,’s. In an earlier paper Gupta, Pillai & Steck (1964)
considered the distribution of linear functions of X’s and gave closed form results for the
case when the random variables are equally correlated. Also in the same paper closed form

expressions for the distribution of the range W = X, — X;, were obtained for n = 3 and 4 _

for the general case. In this paper we study the characteristic functions of individual order
statistics and also the linear functions for the hivariate and trivariate cases for the general
correlation matrix. Formulae for the expected values of X, X, and X X(; and the first
and second moments of a linear function of the X,’s are obtained. The joint distribution of
the range and the mid-range is given in a closed form in the trivariate case, from which the
distributions of the mid-range and the mid-range/range ratio are derived, again in closed
forms. Best linear unbiased estimators of the commor mean of three correlated normal
variables have been obtained and tabulation of the coefficients made for different sets of

values of p;;’s. Applications in the fields of life testing axd time series analysis are discussed.

2. THE BIVARIATE CASE
In the bivariate case, the characteristic function is given by
Dxy Xeoy(t1 ba) = B{exp (i) Xy +thy X)) = 2E{exp {1, X; +it, X}/ X, < X5} (2°1)
Hence

G
Pxq), Xyt ) = W[ - f _, Pk Xty X,)

P 2_9p] .
X eXp [—X1+§(21 _i’z)Yl X2] dX,dX, (2:2)
Now we state a lemma which simplifies (2-2).
Levma 1. For any real numbers a and f
‘ 1 ® {8
—_— —ixz = —_ .2
Jom |, deT R = o 5ty (2:3)

where O(-) denotes the ¢.p.F. of the random variable N (0, 1).

* The work of this author was supported partly by a contract with the Acrospace Research
Laboratories.
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After completing squares, performing integrations on X, and using the lemma (2-3), one
obtains from the moment generating function corresponding to (2-2), the following explicit
closed form for the characteristic function.

B x 0y, x(sybr t2) = 2€XP {=302+ 20t £+ 3)} O} V(1 - p) 22— tl)‘}' (2-3a)

(The function ®(z) is well defined and analytic in the complex plane.) Note that the formula
(2-3a) gives the answer for the characteristic function in an explicit form and has been
obtained direcily. The formula (5) in the paper by Owen & Steck (1962) after evaluation of
the characteristic function of the two ordered random variables (arising from independent
case) reduces to the right hand side of (2-3a).

It follows from (2-3a) that

Pxe(te) = 2exp (—13) (F (1 —c)ity) (2-4)
and by substituting £, = £,, we get the characteristic function for X(. Note that the
characteristic function of a linear function of X;, and X, can be obtained from (2.3a) by
substituting ¢, = a,¢(¢=1, 2) and is given by

¢a1 Xa)ytaz X(z)(t) =2 exp{ - %t2(a§ + 2pa1 y + a’%)} (D(% "/(1 - p) it(aZ - al))' (2'5)

From (2-5) one can obtain all the moments of a; X+ a, X and verify the usual formulae
for @, = a, = 1, i.e. the case of the mid-range. The characteristic function for a; = a, = 1is

bxay+ xelf) = exp{—E(1+p)}, (2-6)

and hence mid-range follows the normal distribution N (0, 2(1+ p)).
From (2-5) we obtain the density function f(y) of ¥ = a; X+ a, Xy as

fly) = %J: $y(t) e~ dy @1
which after some simplification gives
= [Zexp(-L :
f) = [ zexe(~%) o) (28)

where £ =ad+ai+2pa,0, and 7= [V{2(1 - p)} (ay—ap))/[(1 +p) (@2 + a4)].

By substituting @, = 0 and a, = 1 in (2-8), we obtain the density function for Xy,
which is,
' 2 21—p

: f(X@) = A/;TGXP (- 3X%) Q(%TB X(z)) (2+9)

which is a special case of the distribution of the maximum of several equally correlated

normal random variables and is discussed and tabulated by Gupta (1963). Now we discuss

the evaluation of the density function of the statistic a, X()+a, X=X, where X, is

N(0,1) distributed independently of X, and X,. This statistic arises in connexion with some
multiple decision problems (Gupta & Sobel, 1957).

A convolution of the earlier derived distribution of a, X +a, X5 with X, gives the

following result for the density, g(Z), of Z = a, Xy +a, X»— X, ’

2 z? Z
0= Jorreey| “sive) (aramea +?72)]}*) - e
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3. TRIVARIATE CASE
Elexp {i(t, X+t X+ Xa)}]

J'J:J‘ exp{?, tl.X +to.Xo+te;X )}
74.7/

Xi<X;< Xk
where (4,7, k) represents a permutation of the posﬂnve integers (1,2,3) and where the
summation extends over all the six permutations of (7,7, k). We shall evaluate.the one term
of (8-1) corresponding X, < X, < X;. We transform from X, X,, X;(X; < X, < Xj;) to
W=X,-X,,
M=X3+X1, ) (31(1:)
U=X,+(4%X,+42X,)[/4%,
where 412, 422 etc., are elements of A~ (a 3 x 3 matrix) whose positions are denoted by
respective upper suffixes. Then

exp — %(X’A—lX)
|4]#(2m

dX,dX,dX, (31)

rq-1
I= fff exp {i(th1+t2X2+t3 }{e‘{P X A X)}Xmd-X2dX.'3
(2mt 4|}
X, <X<X,
; de ) 4 [C"M+d”W b (M- W WM-Ww
" 2[AfE (2n) exp (it 3 (M — W) + ity 5(M —
2|A|i(277)%f0 f_w Jeatramw p [4,4( )+ 385 3( )
W2 M2 A22[72
+ity(U +ay I +bW)]ex [_ _ _ ]dU .
a( 0 )]exp 4(1=p) 41 +p) B (3-2)
AR AR pu—py Al g3 pro+ Pag
where o, = 247 T T (14 pgy)’ =—gm = m’
0():%‘—“0, d1=-—%_b’ d2=_§_ b
b (3+3)
= 1P P Py _ —ltpitpP=pPyn _ l1=pi3tpra—pu
2(1+p1s) 7 2(1~-ps3) (‘1 P13) ’
|A| = 1—P%z-P%s“PgsJ"QPlszst- J

After some simplification (completing the squares) and integrating out U, we get

;E{f[_—t_ﬁl(%l”)fo ¥ de [ VA™(Co M +dy W)~ jizzz)

4o |A|F J422
- cp( A®(C, M +d, W) — \/2222)] W (M)AM,  (3-4)
. M2 .
where V(M) = exp [ ~ltra) + Mt +t+ 2a, tg)} ,
13
e (3:5)
\] — —_— LW — ;
V(W) = exp [ Hi—pm " WW(—t,+6+ 2bt2)] .
Now integrating out M by applying the Lemma (2:3), we obtain
1 1 12 (1+p13)
where I = f exp [ 1 P13) +3W(—t +t,+ 2bt2)] [®(dy) — P(d)1dW (3-7)

22 +2 ; 22 22 7 '
and ®(d;) = (0 o VAZR(L + pya) (8 + By + 2aty) — (18] JA22) + /4 cle). (3-3)

\/{1 +24%(1 + pyy) O}






4 SEANTI S. GupTa AND K. C. SREEDHARAN PILLAl

Thus, formula (3-6) provides the characteristic function ¢(#y, £y, ¢3) for X1 < X,< X, By
permuting the indices 1, 2, 3 in (3-6), we can obtain the other cases. Note (3-6) involves an

integral 1.
It should be pointed out that the characteristic function for the linear function
ay Xy +as X+ a3 X

P ; _ .
Is given by P Xy 1y+az X(2)+as X3y — ¢X1, X2, X3 (al t, aZt: @3 “’) ) (3 8“)

Special case
If we are interested in @, (£) we can find this by substituting ¢, = £, = 0 in the six terms

of ¢ Xy Xy Xeay s o t;). Thus B .
bxo)b) = X Ib3%(,,0,0), (3-8b)

T, 0k

where It ) k(¢ 8, ;) = integral similar to I of (3-6) (3-9)

which corresponds to the permutation (4,7, k) instead of (1,2, 3) appearing there, the sub-
script 1 in ; remaining unchanged. Now we write one term in (3-85), viz.

1 1
n23(4,0,0) =3 (7o) exp - 10 4o B1IE0,0,0, @10
where
_ e We it W, (iC) AR +pyg) by + JA22d a))
1,2,3 — a3 A A B N ) 0 13/°1 2
™0, 0,0) f “P[ M-pg) 2 H ( S+ 2421+ py;) O3}
iCy JAZ(L + prg) by + (A2 d W)]
— (% 13) 11 1 ) an
( V{1 +24%(1 4 p,3 O} aw. (311)

From (3-11), we obtain
oIL23(t, 4,0)

EX,|X, s X, < Xy) = o, ) (3-12)
1-—- 1 1
E(X1]X1 < X2 < XS) = ——;-/\/g——%pﬁklé’z’z‘i'éN/(m) Ii"z’s, (3'13)
- -3
1453 =~ 300 |5 O]+ 30 [ | 319
2(1 = py3) 2(1 = py3)
Otda) = d; A/( +9A°2 1+P13) 02) =12
-3
and L}zs = G (1 ;pla) [0( { }2 2(1 P )} )
13 )
9 d 1 -
i o) 19

Again from (3-13), by permuting the indices 1,2, 3 of p;;, one obtains the other five terms.

Special case
Ifp;; = p,i +j=1,2,3, we have
1-p |
2(1+p) . (3-16)
AT = A% = 4% = (14 p)[[(L—p) (1+2p)]; A1 = A = 4B = —p[[(1-p) (1+2p)]

d1=—d2=—%’ Co=
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so that ILik=0 and [¥hk=1} foralls,j,k, (3:17)

BXyp = 6B(Xy|X, < So< Xg) = —> A/ (1_'_p> (3-18)

. T

—

which checks with the result obtained directly for this case and further for p = 0 checks

with the well-known values.
From (3-8a), followmg similar methods as for obtaining the £( (X4 X; € Xy g Xy), wecan

obtain

1-p 1 1 o .
Blay X, +ay Xo+5 Xo| X, < Xg)*,—N/( 13)1123 2,/(77—“(1_,)13)[%"'3’ (3-19)
where 1123 = (—q, +ag+ 2bay) I3 %8
@ Yoy
wnd 120 = (oo et ooy ) 140

From (3-19) we obtain
B(X,| X, < X, < Xy)

1- P13)1122 IA/<_1__)(2 —— L%3 (32
b’\/( " (L —pgs o~ C(1+Pm) ) (3-20)

Z ﬂ 1,2,3 lx/(—l_) 1,2, 2.9
s () ey [ ) B )

Again, putting —a, = a; = 1 and a, = 0, we get

and B(X,|X, < X,

N

Xa) =

BX,-X|X, <« X, < Xp) = A/(1 p“ 11 2.3, (3-22)
Similarly, BX,+X, X, <X, < X)) = Iy2s (3-23)
! 7r(1 —plo

Covariance between X(j and X, j = 1,3

From (3-8) proceeding as usual we obtain

BX; XX, < X, < X5 j=1,3) =T, (3-24)
where
1 H(d,) — B(d
= 57 (@l +p13) +07;(1 = prg)]arctan | — - 2) : (dy) -
'\/{2(1 —P1a)f [)fp_) +0(d,) H(dl)J
1+ d
+ 1 T [bq/](l Prg) + 2 bCy( 6/1913)0( 2)

221 =puo} gy =+ 10T

Yido  GylO(do)]* (1 +p15) A
75 a;

. 1 a(d
- - : [b V(1 = pr3) +b6Cy(1 +pys) _((l—l—l)

. ] .
27 J(2(1 = pg) (m) + (AT

+«/}.‘),\0 (,[(} d )] dl +P1J)’\ ]’ (3-25)

=~ 1
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where A, is obtained by putting ¢, = a; = 0and a, = lin A defined in (3-28) below. It should
be noted thaty; = — L or + 1 accordingasj = 1or 3. Further, in the casc of equal correlation,
we obtain from (3-25)

(X, Xo| X < X, < Xp) = B(X, X,|X, < Xp < X)) =p+({32m) (1—p).  (3-26)

Now we obtain E[(a; X;+ay X, +a, X5)?| X, < X, < X;]. Starting from (3-8a) and dif-
ferentiating the function Efexp {it(¢, X, +a; X, +w,, X,)}] twice partially with respect to ¢
and putting t = 0, we obtain after simplification (details omitted)

El(a, Xy +a, X+ a3 X5)2| X, < X, < Xj5)

= 7%[/)’+52(1 — pys)] arc tan 0%) _if)(dl) '
V{2(1 = py3)} [ ‘(‘1 —p) +06(ds) 0(d1)]
A/ (1 ”13) [2(1 = pyg) 82 0(dy) + A28 — AD(da))]
}2(1 P1a) +1] 18 2 -
L (P2 i 2L B0 + A28 20, (32)
where g = 208 + (1 +P13)A;(“1T“3 + 2ay a5)* ’ |
0 = L(—a,+as+ 2ba,) (3-28)
Coy NJAR(L + pyg) (g + a5+ 200 @) — (o] /A™) J
a,nd A 113+ 2;129(3 +p1:) 62'(2)} 2 )

where a,, Cy, b,d;, ds ave defined in (3-3), 6(d,) and A(d,) are defined by (3-14) and where
A% = (1-p%,)/|4|. As a particular case take a, = 2, =0, a, = l and p;; = p (all 7,5,¢%+7),
then we obtain

BX3, = 6B(X3|X; < Xs < Xy) = 1+(1—p) [1+ 4(3)/2m)] (39)

which agrees with the well-known result for this case (see, for example, Owen & Steck, 1962).

4. DISTRIBUTIONS OF THE RANGE, MID-RANGE AND THE
RATIO OF MID-RANGE TO THE RANGE
The distribution of the range for n = 3 and 4 normal random variables for the general
case has been ohtained by Gapta, ef al. (1964). Now we shall obtain closed-form expres-
sions for the distribution of the ratio of mid-range to the range.
Tor the casc of n = 3 correlated normal random variables, it is easy to show that the joint
density function of W, M, U, defined in (3-1«), is given by

e‘p[_ R M A= Uz]

I H1=pn) Hl+pyg) 2

W, M,U) = 13 13 4-1
fn a0 22yt [AJ¥ o

Integrating out U in (4-1) and writing

iy = EJARW and 2= FVARM(L +p13—p1a—Paa)/ (1 +P13)

we obtain

- w3 D=3 .
fOv,z) = C‘exp[ = Pm) e ———l] [Pz, 4+ W {a+ 1)) — Oz, + Wi(a—1))] (4-2)
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27-1
where a = (pra—pPaa)/(1—prz) D= 2[1422(1 +P13) (1 _l_’g_,ogq) ] )
L+p13
C = 1/m J{D|(24%(1 — py3))}. '
From (4-2) we obtain (by putting z,/W, = U, and W, = I}, and integrating out W), the
density function of U, as

(4-3)

o {‘D(J Sz
_C {1+A/(a+1)% Y S S
fO) =3 =T hja+ 12 exP[ P (1 T+ Agfa+ 1')2)}
_7,
of el )
VL +4/(a— 1)2}) Ui 1 :
s o -3 (- e @
where A, = DU+ 2[{A%(1 ~ pyy)}.
Equation (4-4) provides the density function of
_ M (1+py3— P12~ P23) .
b= w (1+p1a) ' (4:5)

Again from (4-2), we obtain the distribution of z; by making use of the following lemma..

Levma 2. For any real numbers o, and §,

. - ) —3z? =1
\/27,.‘]‘0 O(a, + fyx) e dz = (o, /(1 + 53))
+ (arctan 8,)/(2m) — Viea/ (1 + A1), a1 fof (1 + ), (4:6)

where V(h, q) is the V-function of Nicholson (1943). Applying Lemma 2 to (4-2) for integration
with respect to Wy, we get

falzy) = {JD e4DA] \J(8m)} {D(2y/ (1 + B})) — ®(2,/ /(1 + B3)) + [(arc tan B,) — (arc tan By)]/m
—2V(2y/ (1 + B%), 2, By[ (1 + B})) + 2V (2,/ /(1 + B}), 2, By (1 + BY))},  (4:7)
where B, = (a+1){}(1—pya) Azz}f‘z and By = (a—1){3(1 _Pla)Azz}{"

5. BEST LINEAR UNBIASED ESTIMATORS O¥ THE COMMON MEAN OF THE
THREE CORRELATED NORMAL RANDOM VARIABLES

Now we consider the use of the results in the previous sections for the construction of the
best linear unbiased estimators of the common mean g of three correlated normal random
variables. Let X}, X3, X; be normal random variables with the common mean x. common
variance unity and B(X} X}) = p;; +#*. Then we are interested in finding the linear function
based on X{,, which is an unbiased estimator of 4 and which has the smadlest variance in the
class of all linear unbiased estimators. Let Za; X{; be the estimator that we are looking for.
Then the condition for unbiasedness implies

Eai = 1, E(l-i EX(AL-) = 0. (5'1)
It should be pointed out that (5-1) gives two necessary couditions for the unbiasedness

of an estimator based on any number of random variables. Now we have to minimize the
variance of Sa; X{; which is the same as the variance of Za; X, and can be computed by
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using the formula (3-27) for all the six permutations of the subscripts 1, 2, 3. Thus one
minimizes the variance of Za; X, subject to the condition Za, = 1, and the condition that
the sum of the terms obtained by interchanging the ‘:L‘lanI‘ll)tS of p;; in (3-19) equals zero.
The equations that determine the coefficients correspondnw to the minimum value are given
in the Appendix. Table 1 gives the values of a3 for selected sot of values of p,,, p1a, Pag. The
computations were carried out on IBM 7094. It should be pointed out that the selected
values of p;; have to satisfy certain lincar restrictions.

.

6. APPLICATIONS

(1) Test of equality of the means of u multivariate population having a common
p and a common standard deviation
Let X < X(’,) < ... < XP\(j=1.2,...,k), be the n ordered random variables which have
come from a multivariate nor mal population with mean vector (s, sy, ..., 4,,) and a common
correlation coefficient p and a common standard deviation, o. Suppose we are interested in
testing the hypothesis H against the alternative 4, wher:

Hopy=py=..=p,A: not H, (6-1)

then the following simple test can be applied. Let W= X)) — XBand W, = manc W,. Test:
reject H if

Vinax }_‘ W, > Cla,n, k),

where C(«, », k) is a constant which depends on the size of the test and on n and &. In fact
C(a,n, k) is such that

P Ian/ ;= Cla,n, k) jpu, = ... = /L,;} = . (6-2)

It should be pointed out that the fact that the distribution of W, / ( IK) is independent
\i=1

of p has already been shown in the paper by Gupta et al. (1964). The upper 5 9, points for this
test are tabulated by Bliss, Cochran & Tukey (1936).

It should be noted that the above has an important application to the situations in life
testing where the observations are ordered and we can perform the test without knowing
the unordered random samples from the multivariate normal population for which the
common correlation coefficient and the common standard deviation are unknown.

(i) Confidence interval for the common p in « multivariate normal populution
with common inegn and common known staiderd deviation
It is clear that if X, and X, are the largest and smallest of 2 equally correlated random
variables with a common mean and common standard deviation, say unity, then one- or
two-sided 10029, confidence bounds for p are obtained from

G \’/(‘[ __/)) < “1(11)C A(l”

2 1
where C) and C, are the percentiles of the distribution of the range of n independent and
identically distributed normal random variabies. It may be pointed out that in life testing
where the observatious are naturally ovdered. use of (6+3) gives a confidencs interval state-
ment for p ¢ven when the unordered sampic is not known.

‘*(n,) _‘\ll)

(6-3)
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(iii) Test of equality of two oscillations in non-overlapping intervals of
equal length in time series

Tests based on the ratio of differences between peaks and troughs from two non-over-
lapping intervals of equal length might be indicative of the nature of the oscillations involved
in the time series. If we assume the variables to follow a multivariate normal distribution
within intervals of equal length, this test would amount to the one based on the ratio of two
independent ranges in the correlated case. (The distribution of this ratio for common mean
and common standard deviation can be obtained as a series of beta functions using the
distribution of range developed by the authors as a series of gamma functions which is
available in Mimeograph series no. 13 Department of Statistics, Purdue University. For
the case of means not necessarily equal the distribution has not been worked out.) To
establish the equality of two oscillations, in addition, tests based on the differences of mid-
ranges may have to be carried out. However, since tests based on the differences of
mid-ranges cannot be easily performed, the ratio of mid-range to the range can be used
to test any assigned value of the average of two population means (corresponding to the
peak and trough) and this test can be repeated for each interval. In all the discussions above
it is assumed that the variables have a common standard deviation, otherwise adjustments
have to be made at various stages. Also the assumption of a multivariate normal distribution
means that the set of correlation coefficients are known or otherwise have to be estimated,
possibly through the use of serial correlation coefficients. However, if the correlation
coefficients are neither known nor evaluated, some simulation process could be adopted for
the performance of the tests.

The authors are grateful to the referee for bringing to their attention the resultin Lemma 2.
They also wish to thank Mrs Louise Lui, Statistical Laboratory, Purdue University, for the
excellent programming of the material in the Appendix of this paper required for computing
Table 1 on IBM 7094 computer, Purdue University’s Computer Sciences Center.

APPENDIX
The condition Su, BX; = 0 given in (3-1) reduces to the following equation by using (3:19) and Za; = L.

_ kyay = kyay+k, (A1)

—_— 1 _ _
where ky = A/(—1——/251) I;;”-*-/(——’“) Ifj”+~/(—l st) I,
m Vi T
1- 1-p1s -
ky = — ‘A/(_ﬂpi’) ¢121131)+J(__%&-) dﬂ]g.’.)_‘_A/(l ”st) gy I

F[7(1 = pig)E + [Coy + (2422Cy (1 + p1a)) 2] I
(1 = p15)]# [Cpp +(2433Co5(1 4 py2)) 11 1P

+[7(1 - Pza)]"} [Coa+ ((2411C (1 sza))_l] 1(43)} ’

1 1- 1- — P2
et (2 (2

+ (L= pi)] 7 I+ (1 = pra)] TP + [7(1 = pi) ) I] :

where I is a simpler notation for Ij** in (3-14), dyqy Bags Aoy Cor, Hdyy) and O(d,,) being the same as
dy, dg, Cy, 0(d,) and 8(d,) respectively in (3-14). I is obtained from I by interchanging in the latter pg,
and p,, and so also d;, from d,;, dyy from dyy, C, from Cy,, ete. Similarly, IV is a briefer notation for
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I:*3in (3-15). I? is obtained from I'" by interchange of p,; and p,,. Further, I¥ is obtained from I by
Lnterch&namg in the latter p,; and p,; and qlmxlarly IY from I'M. d,, dz,,,O’m, ete., aro obta,med in a

similar manner.
The value of a, corresponding to the minimum variance is given by the equation

Lay =1, (42)

where
([133 -1

(421
L, =2 I:Al(__z——+0.;1(1 +p13)) +4, ( 5 +C’az(1+P12))
Aly-1 , k,\2 , Ky v k
82 o) ) o ) s
1

2
98w (50 L ks | o i)
+0— 2051<1+pu)+;12—2) (d21+k~1)+0 a, (2032(1+p12)+ AM)

ky O(d13 . 1 k
(d°2+ % ) +GC; 4y 2034(1 + pas) + Au) (dzs kl) .

0d) (5 L\, Bldy) :
+0, 7 (200004 35) -+ . T (3081400 + 1)

62(d 1\2
+D, 113) (205,(1 +P23)+An) ],
= Ay(1+p13) Cop + Aol +p15) Cpa+ A3(1 4+ pgy) Cog
: 2k, , ko , 702 , ks,
+(1_T) {B (d21 k)+B (df,2 L1)+B3 +k—1)}

d:zs
1 .
e(du) 2]‘73 2 O(du) o(du)'
w3 (=) e )

Oldys) | B(dsa) ) }

k')
+C, {Cnl(dzx +i) (14+p13)
1

dyy 2

k) Oldye) 1 (. 2k5\ [ .

+02{(1+P12)002( 22+/c) 4, +?z (1“?1) (-602(1 +P1z)_dl“2— Fa, A%
8(dys) | 1 2k, 0(d13) 0(d)

e e e [ [ )

62(d12)

0%(dyy) 1
+2{D1 Co1 dzu (L +p13) (760,(1 +p1a) + 422) +D;Cp, &= (1+p13)
11 12

1 92d 1
()Oo‘)(l +p1z) + ) +D;Cyy ‘(ix;a) (1+p2) (9033(1 +p"3)+A11)]

and where AI = 7£ra,rc tan T e(dﬁl) - 0(d11)
l:(l—) +0(da) 6((111):] V{21 —p)}
3

s

fe]

_ O(des) B(dyy)
““ o) s+ (1-py9t [{202( =P+ 1 (205 (1= pmw']}

C — ‘L\/fﬁ { ______ l — —_ 1 }
v = VP G (= 1) (389 (1P £ T

D = EA/(I _pls) : '9(du) _ 0(d21) }

t 2 20%(dyy)(1—pyg) + 1 20%doy) (1 — pyg)+ 1~

m 2

Finally, interchange p; and p» in 4, to get o, and pyz and py, in A, to get 4,. B; and B, are obtained
in a similar manner from By, (, and C; from C,, and D, and D, from D,.
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Table 1. Values® of a;’s(i=1,2,3) corresponding to the minimum variance
for given values of p;’s

Pz P P a 2] s Pz P P ay @2 3
-9 —5 -1 04299 02873  0-2828 -1 5 —3 -5433 -0400 4167
-9 —5 1 6175  —-1348 5173 -7 7 =9 4659 —-0227 -5568
-9 —3 —'1 4259 -2745 -2096
-9 -3 3 4874 2140 -2986 -7 7 —-1 10204 —0-6742  0-6538
-9 —1 -3 4283 2468 -3249 -7 -9 —-9 08423 —1.0081  1-1658
-5 -9 -1 4145  0-2426  0-3429
-9 -1 -5 0-7431 —0-3505 0-6074 —5 —-9 5 4759 1479 .3762
-9 ‘1 -5 4371 -2034 -3594 -5 -7 —=-1 .3761 -3030 .3208
-9 1 -1 5131 ‘1316 -3553
-9 -1 -3 -7587 —-3260 -5673 -5 =7 -7 0-4819 0-1803 0-3377
-9 3 -5 -4846 -1244 -3909 -5 -5 —-3 .3501 3301 .3198
_9 3 1 07884 —03451 05567 | _.5 .2 3 l7e 2001 292
-5 —5 9 -4905 2424 2670
-9 -5 -7 4982 0639 379 | _ .5 _.3 _.5 3367 3266 3367
-9 5 -1 -8467  —-4186 5719
—Y T o s e 4996 ) _5 -3 1 0397 03126 02017
o ° 9 -5 —3 9 6287  —-3132 -6845
o .9 —.7 11658 —10081 os4g3 | —8 —1 -7 3387 2877 8736
"5 _7 71 odoe0 02085 2955 | —5 —1 1 -4l09 2939 2958
—7 - 7 -7 ‘4723 .2512 ‘2765 - 5 —'1 [} '4803 '2322 '2874
-7 =7 9 4917 2422 -2661 3 .
7 —5 —-1 3862 3177 2061 -5 -1 —-9 03594  0-203¢ 04371
-5 1 -3 -3851 2714 -3435
-7 =5 ) 0-6187 —0-3001 0-6814 -5 -1 -3 -4893 -1931 -3175
-7 —-3 -—-3 -3750 3145 .3105 -5 -3 -9 -3909 1244 -4846
-7 =3 .3 .4819 2361 .2820 -5 3 -1 4564 -1873 -3563
-7 =3 T 6257  —-1436 -5179 '
-7 =1 =3 .3736 .2877 .3387 -5 -3 -3 0-8163 —0-4455 0-6291
-5 53 —9 4279 -0204 5517
—~7 —-1 —-1 04184 02718  0-3098 -5 3 3 0 0 1
-7 =1 7 7707 —-5040 7334 -3 T =9 5333 —-2730  0-7397
-7 1 =T -3834 2331 -3835 -5 1 -3 5483 . —-0003 -4520
-7 1 -l 5013 1610 -3377
-7 3 =1 4154 11692 4154 -5 -7 -1 10259 -—0-6835  0-6576
-5 -9 —-7 08136 —-9542  1-1406
-7 -1 03213  -01034  0-3731 -5 9 —-1 —31259 90862 —2-9603
-7 3 3 7979 —-3773 -5795 -3 —-9 —-1 03929 02379  0-3692
-7 5 =9 4379 -0638 -4982 -3 -9 3 4644 -1286 -4069

* For py = pli+j=1,2,8),8, = a, = a3 = .
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Table 1 (cont.)

P12 P1a P ay Qs Uy Pz P13 Pas @y 22 O
—3 =T =3 03479  0-3041  0-3479 -1 1 =7 6538 —-6742  1-0204
-3 =7 5 4713 -1465 -3821 -1 7 =1 4616 0768  0-4616
-3 -5 -5 -3198 3301 3501 -1 -7 5 10843 —-8164 7821
-3 -5 1 -3848 -2930 3221
-3 =5 7 .4785 1789 3496 ! 9 =5 —2-9603 30862 -—5;333
-1 -9 3 81657 —11-5549 4
-3 =3 7 0-3105 0-3145 0-3750 1 -9 —5 0-3429 0-2426 0-4145
-3 —.3 -1 .3770 3173 -3057 1 -9 3 6347 —+2756 -6409
-3 -3 -9 .4890 .2499 2682 1 -7 =7 -2955 -2985 -4061
-3 —1 -9 -3249 -2468 -4283 _
-3 -1 -3802 -3197 -3000 i —'; -1 O'gggg 0'3282 Oéégg
: . 5 . —.3395 )
-3 —-1 -9 06415 —0-3300  0-6885 } —'Z - fl’ ;g;g fgzg '3322
. _ .35 -1783 -46 - - 15 <2 .
— g i _ ? g;ig .30?1 .3232 1 =5 7 -7003 —-4985 -7982
-3 1 5 4787 2261 -2951
Soa s G w3 o3 ooy omm o om
-3 -3 —-1 04036 02445 03520 O SRS o S
-3 -3 3 -4925 -1739 -3336 L 4 3 Do 3176 3419
-3 5 —9 4972  —-1915 -6943 -
-3 5 = 4576 1504 3920 1 —-1 -7 04668 01778  0-3535
-3 5 5 8932 —ehd9E 6560 1 -1 -9 4772 —-1363  -6581
~3 T =T 05286 —0-2680  0-7394 G oy S A S
- ‘5405 ‘0185 4410 1 3 -9 5567 — 3450 7884
-3 7T 3 10421 -7180 6758 ' -
-3 9 -5 07838 8989 1115 1 3 —-1 03304 02839 03856
-3 9 —-1 10896 —-8427 7531 A ] 4670  —-9546 2785
-1 ~9 -3 03692 02379  0-3929 i 5 gg‘;g ,;zgg gg’gz
- } —'3 *’5’ ‘g;gg “'gggg gfg‘;’ 1 -5 -9 15250 —2.9382  2:4133
1 -7 _ ) ) 37
-l =7 3 4570 *1290 4140 1 7 —5 06576 —06835  1-0259
-1 -5 =7 12961 3177 -3862 1 7 1 -4407 1185 0-4407
) 3 ‘ 1 7 7 12195 -1-1603 9408
-1 -5 -1 03845 02617  0-3538 1 9 —-3 —22-5518  4:0420 — 40-4902
-1 =-5 9 -8430 —1-4003 1-53575 1 .9 -3 4-3413 —5-9373 2-3960
-1 -3 -9 29096 02745  0-4259
-1 -3 -1 3387 -3226 -3387 3 -9 .5 0-3528 0-2039 0-4433
-1 -3 7 4738 177 -3484 3 —.9 -1 6409 —-2756 6347
o S S -2892 -2825 4283
-1 -1 -9 0-3201 0-2209 04590 3 -7 .3 6576 —-3152 6576
-1 -1 -1 -3570 -3275 3155 3 —5 —.9 2776 2673 -1551
-1 -1 9 4867 -2436 -2696
-1 1 -9 -3553 ‘1316 5131 3 -3 —-1 03631  0-2156  0-4214
-1 1 -1 -3398 3205 -3398 3 -3 5 6839  —-3872 7032
3 -3 -9 -2986 -2140 4874
-1 1 9 06587 —033527  0-6940 3 -3 —-1 -3256 -2769 -3976
—-1 3 -7 3751 -1034 5215 3 -3 7 -7380 — 3875 .8295
-1 3 —-1 3617 2766 3617
-1 3 5 4774 2157 -3069 3 =1 —-7 03066 02055  0-4879
-1 5 —-9 5719 —-4186 8467 3 =1 -1 -3332 -2910 -3759
3 =1 -9 10315 —1-8878  1.8563
~1 -5 -1 04369 01951  0-3680 -3 1 —-5 03175 01931  0-4803
-1 3 T 9636 —-T794 -8158 3 1 1 -3121 -3247 -3632
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Linear functions of ordered correlated normal random variables

Pas

|
St =

G D

|
—

o | |
O D A e DD D G0 © Dk I

- © = D

aq
0:4556
5795
3106
-4781
6040

0-3390
7239
-4024
-7517

4-3892

1-0234
0-3176
6685
-2679
-6827

0-2779
3244

0
-4877
-3289

0-7372
-2874
2914
-4071
6156

0-2970
1-3231
0-6291
2892
6491

0

0-3270
-4681
7321

2-3960

y

0-1800
—-3773
-2656
-2478
—-4708

0-2482
—+4400
-0879
—-2960
—11-5549

—0-6864
2234
~-3088
-2704
—--3395

0-2388
-2310

0
—-1190
2376

—0-4743
-2322
-2884
-1506

—-3880

0-3018
—2-6337
—0-4455

-2973
—-4010

0
0-1958
2539
—-8164
-5-9373

Table 1 (cont.)

g

0-3644
<7979
4238
2741
-8668

0-4128
-7161
5098
5442

81657

0-6630
-4590
-6402
4617
-6568

0-4833
-4446

1

0-6313
-4335

0-7372
-4803
-4202
4422
71725

0-4012
2-3105
-8163
-4135
-7519

1
0-4773
-2780
1-0842
4-5413
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ay
1-0259
0-2752
5526
-2624
7777

0-5173
7982
-5179
-8295

7334

0-2822
-8854
-7478
-2853

1-0264

0-7711
-6203
-8158
7003
5442

0-4433
1-2195
0-2652
-2660
-2670

0-2682
1-5950
0-2696
1-8563
2-3105

1-9207
0-2741

-2780
1-0264
0-9408

22
—0-6835
2493
—-1218
2532
— 4547

—0-1348
- -4985
—1436
~-5675
—-5040

0-2631
—+6973
—+556563

2714
—1:0527

—0-6346
—-2405
—-7794
— 4985
—-2060

0-2714
—1-1603
-2421
-2422
-2424

0-2429
—1-5320
0-2436
—1-8878
—2-6337

—2-0968
0-2478
-2539
—1-0527
—1-1603

13

0-6576
4755
-5692
4843
-6770

6-6175
7003
6257
-7380
7707

0-4547
-8119
8075
-4433

1-0264

0-8635
-6203
-9636
7982
<7517

0-2853
9407
4927
4917
-4905

0-4890
9370
4867

1-0315

1-3231

1-1761
0-4781

-4681
1-0264
1-2195






