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1. Introduction and Summary

At various, equally spaced, time instants orders can be placed to
replenish a supply which is being depleted by demands during the successive
periods between reorderings. Two types of 6fders are allowed, a first type
with immediate delivery at a unit cost of k and a second type at a unit
cost of /Z- with delivery at the end of one period after the 6rder is placed.
Eﬁ each reordering point orders of both types are allowed,

Assuming a linear penalty for understorage and a convex increasing
storage cost, we prove that the optimal reordering poliey, guaranteeing over-
all minimum discounted cost for a process of unlimited'duration, has the
following structure: " At the beginning of each period, if the stock at hand x
is less than a first critical level x* the stock should be replenished
up to the level x¥* by_immediate delivery and an amount u¥, independent of
x should be ordered with one period time.lag. If the initial stock x lies
between x¥ and a second critical level X~ only an amount u(§5 should be
ordered with one period time lag, Finally if x is larger than ‘¥ no order
should be placed. Moreover the amount ’ﬁfx) is a decreasing continuous
function of x with H(x*) = uw* ana W) =0 W,

Various degenerate forms of this policy are also of interest.






-2-.

2, The functional equation for the optimal discounted cost

We introduce the following notations:
f? (s)ds: the probability that the demand in a given period lies
: between s and s + ds ifms @ (s)ds < 2y
J,-g !

x : the initial supply

(y-x)k : the cost of ordering an amount ¥ - X > O with immediate
delivery.

u ,{Z : the cost of ordering an momt u 2 0 with delivery after
one period.

ZeD : the penalty if the demand in a given period exceeds the
available supply by = > 0.

h(y) : the storagé cost for an amount y >0, h{ . ) is assumed
to be a convex increasing, twice differentiable function of
y with h(0) = 0,

a a discount factor applied to future costs, O <a<]l,

f£(x)

the minimum overall discounted cost s starting the orocess
with an initial amount x,
A direct application of Bellman's Principle of Optimality shows that f(x)

mst satisfy the following functional equation, o

(1) f£(x) = Min Min k(y-x) +JZu + L(y) + af(w) . J( ?(s)ds
y>x w0 y

~

4
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3, Structure of the solution to equation (1).

We first observe that ,@ >k implies that there is no advantage to
ordering with time lag, In this case u =0 in the optimal policy and the
problem reduces to finding the optimal ordering policy under the assumption
of instantaneous delivery. This case has been studied in great detail ]:1,2]

so we can concentrate on the case /Z< k. We now prove the following theorem:

Theorem
The optimal reordering policy corresponding to equation (1) is given by

the following rule:

#* 3 #*

y=Xx u=u for 0 x £Xx

3* ~

y=x u=x) for x <xg%
y=Xx u=0 forx_>_/xu

with ’ﬁjx) > 0 continuous and monotone decreasing in X.

Proof, The proof proceeds by induction based upon a seguenté of successive

approximations to f(x). We define fo(ﬁ) by the equation

6,»‘-...7<T) x
(3)  £(x) = L(x) + a£ (0) / . ¢ (s)ds + a Jfo £.(x - 8) @ (s)ds
and for n = O,1,... we define fml(x) by
(4) fn+1(X) = Min Min "Kk(y - x) +,€u + L(y) + of (u) m@ (s)ds
y2xuz20 ) y
, Y
+ a f £ (y +u. - s) P (s)ds f)-
0 | J

We denote the expression contained within the braces in (4) by T(y,u,x, fn).

We consider T(y, u, x, fo) as a function Ml(y, u) and obtain the following

partial derivatives of M, (y,u)e






=

&" ] {')y ' +

(5) 3y Mw) =k + 1) +a J ot (y +u -s) & (s)ds

2 y :
(6) éf;—z W = 1) ¢ e WP @ v [ e eu- 0P (o
@ gL [T @ars g (e
(8) Sf_. M (v, uw) = af!! (u) ("" P (s)ds + a /;'"'y £ (y+u- S)¢(s)ds

Su? J y < o °

2 ~

(9) f;—a; M (y,u) = av,-’ :fc',' (y+u-8 P (é)ds

Now £t (x) > O by a property of the renewal equation, so it follows that
2

32
;—2- M (y,u) >0 (,)-—%Ml (ysu) >0 \udyMl (ysu) >0
y u

and

=

for all y>x and u> O,

For x = 0 and under conditions of non~degeneracy to be specified in paragraph 4

#
there will be a unique point xi 2 Y interior to the domain y 20,u>0

where the function M, (y, u) attains its minimum, We note however that the

- ey . . N
equations 55— M} Su M1 O which determine the interior minimum, donnot

depend on x, Therefore for all x in the interval E o, xl ) the point

(xl ul ) is the unique interior minimum.

Now for some range of values x, greater than x;_lf the unique minimum in the
domain y > x, u > 0 will be attained for y = x and for u = W (x). The
<.

7 . . .
value u1 éx) is the unique point for which YT

Since 3‘%7’

M, (x, u) vanishes,

M, (¥, w) 1is greater than zero, we conclude that ’ﬁlj (x) is a






=5
decreasing function of x. Let Sc’l be the value of x, if any, for which

’ﬁi (x) reaches zero. It is clear that for values of x larger than /3?.1 the
function Ml(y, u) attains its minimum for y =x and u = 0,

Sumnarizing we can state that the minimum peints of T(y,u,x, fo) are

located as follows:

* * *
y= x5 u= u for 0< x £ X
i~ o % % —~
y= x u='uy (x) ul(x) \Y, for; x <x<'x
y= X u= 0 for x> /JE:
and hence
¥* %* o %
T(x; » Uy, X, £,) for 0<x<x
v ¥*
(10) fl(x) =  T(x, ) (x, x, fo) for x <x _<_/J?1/
T(x, 0, x, £) for x _>_er

We now supply the essential tools of a proof by induction by showing that
fl(x) has all these properties which enabled us to deseribe the set of

minima fer f(x),

1
Lemma 1t f;. (x >0

# 1 T

In the :interval [O,- xlj we have fl(x) = -k, f; (x) = 0, In the interval
E x;, 5&1 j we have:
@ L r@es [Sore T -0

1 (x X a(/:ovox ulx-s?ﬁ s)ds

b ¥* !

But ??S;Ml(y, u) >0 for x <7 s_”x;: so fl(x)?_-k and
furthermore

P . - . B . .
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- |
“x du.l
(12) f "(x) =1 (%) + ar (ul) (%) + [ a | 0 f (x+u;(x)~8) ¥ (s)ds l’\l =
Y,
We have f (0) =<p so p+ af (u ) will be strlctly positive for ul >0

since fo(u) is strictly increasing in u. So, éxa wiii pg® s%rﬁ%&y

du
ppsitive &f we cam show that 3 + dxl 2 0. In order to show this, differentiate

- M (%, u) = 0 with respect to x. We obtain:

-

. | S R X " o dul
. P ; - {‘..“j ———
(13) i af (u,) o F (s)ds + a oy £, (x+u ~s8)¢ (s)ds]_ = *
T w -
a o £, (x+u =38) % (s)ds =0

Equation (1s) and f (x) > 0 imply that

dul du1
(14) T <0 1+-dx >0

Finally in ’ x1 s &) we have

(15) f]'_’ (x) = L' (%) + af; (0) 1. (x) + a x f: (x ~ 8) : (s)ds

o

but this implies that f (x) > 0 since fl(x) = fo(x)

Lemma 2: f;L(x) > f; (x)

Im |o,x have =2 I (y, u) <O
n L,xl—l we ave@y Mly,u < 80

t X
~k> L(x) + a | f(x +u - s)‘-iﬁ(_s)ds > f; (x)

]

k,"‘ O
1
since f_ (x) 3= monotone increasing

o e
In !x;: s xl ! we have:

f;_(x) = L'(x) +a ;}xf; (x +’ul ~ 8) f}f" (s)das > f;(x)

“ 0

and finally in l ;c;., o0) we have fl(x) = fo(x) .
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We have now shown that fl(x) has all the properties of fo(x) which were
essential in the proof of the structure of the set of minima a&f T(y,u,x, fo).

The set of minima of T(y,u,x,fl) will have the same structure and

¥* —
u.

- o . 1 1
13 X< x;, u"z(x) _<_/u1(x) since fl(x) > fo(x) .

% % %
XX > U8

A direct induction argument will now establish the existence of sequences

¥* 3* -~ vy
X, 0 % s x; and non-increasing differentiable functions run(x) defined on

S —~/
n ot X and ‘u_(x) will

. Coox )T * %
the intervals L X an . The sequences X_ , U
be non-increasing in n and therefore passage to the limit is in order.
In the 1limit we obtain the structure of the optimal ordering policy, which is

as described in the statement of the theorem._

La Some particular cases,

hd ~

3

#* 3*
We have already argued that u =0 and x = x when [ > k.

Consider

[ ;}; M (y, u)JF}FO =k-p

and
.3 0 ! ) 1 £
pralil (v, u)] gm0 T At af (u) > Ai+ af (0) = 4, ~ap .

then it follows that:

. o .. ¥ -t 3* . .
3. if k> p and /-a 1 2p then x =x=0 u =0 i,e. nothing is orderéd,

Iy

) 7w #
b. if k>p> {a 1 then x =0 i.e. one should not order with immediate
delivery.
Y AP, %* ¥*
Ce if ta 1 >2p>k then v =0, x =% i.e. no delayed order should

be placed.,
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AN INVENTORY MODEL WITH AN OPTIONAL TIME LAG*

MARCEL F. NEUTSt

1. Summary. This paper deals with the following model in Inventory
Control. At various, equally spaced, time instants orders can be placed
to replenish a supply which is heing depleted by raridom demands during
the successive periods between reorderings. Two types of orders are al-
lowed, a first type with immediate delivery at a unit cost of k& and a second
type at a unit cost of [ with delivery at the end of one period after the
order is placed. At each reordering point orders of both types are allowed.

Assuming a linear penalty for understorage and a convex increasing
storage cost, we prove that the optimal reordering policy, which guarantees
over-all minimum discounted cost for a process of unlimited duration, has
the following structure. At the beginning of each period, if the stock at hand
x is less than a first critical level =¥, the stock should be replenished up to the
level ¥ by tmmediate delivery and an amount u*, independent of x, should be
ordered with one period lag. [f the initial stock x lies between " and a second
critical level &, only an amount %(z) should be ordered with one period lag.
Finally if = s larger than & no order should be placed. Moreover the amount
%i(z) 1s a decreasing continuous function of x with 4( z*) = w* and 4(z) = 0.

Various degenerate forms of this policy are also of interest.

This model is essentially a merger of the ordinary Arrow-Harris-Marshak
dynamic model, discussed in [2], and the Karlin-Scarf model with a time
lag, discussed in [3]. Our arguments parallel those of [2] and [3] but are
slightly more involved due to the higher dimensionality of the problem.

2. The functional equation for the optimal discounted cost. We introduce
the following notations:

e(s) ds the probability that the demand in a given period lies be-
tween s and s + ds,

z the initial supply,

(y — )k the cost of ordering an amount y — z = 0 with immediate
delivery,

ul the cost of ordering an amount « = 0 with delivery one
period hence,

zp the penalty if the demand in a given period exceeds the
available supply by an amount z = 0,

h(y) the storage cost for an amount y = 0,

* Received by the editors April 18, 1963, and in revised form August 5, 1963.
t Department of Statistics, Purdue University, Lafayette, Indiana.
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182 MARCEL F. NEUTS
fi" (z) = () [K'(0) + (L — a)p] + ] L"(x — 8)o(s) ds
0

+a [ J (s = s)e(s) ds
) (i
This is an equation of the renewal type with ¢(s) = 0, and

o() I1(0) + (1 = wpl + [ Wz = $)els) ds = 0.

This implies (see (1, pp. 177-178]) that f,”(z) = 0. Direct inspection of
the renewal equation shows that f,”(z) cannot vanish under the proviso
of the Remark. The fact that f,”(z) > 0 implies now that

2

% Mily,u) >0
u

and

62

M '
I ()yl (y,u) >0

and

62M1 (')25’1/[1 _ 623/[1 )2
ay?  ou? dy du

2
The strict positivity of a—ay—z My (y, u) will be established if we can show that

L”(y) + ofy (w)e(y) > 0.
However, since f,”(xz) > 0, we have

L7 (y) + afs (we(y) > L"(y) + afy (0)e(y)

,
= K (0)(y) + f W (y — $)e(s) ds + (1 — a)p o(y)

0

v

0.

For z = 0 and excluding the degenerate cases to be discussed in §4,
there will be a unique point z,*, u*, interior to the domain y=0,u =0,

where the function M;(y, ») attains its minimum. We note however that
the equations

J . Y J 5 -
a—y'l-‘.[}_(y, u) = 0, ﬂ.l[l(_y, u) —O_,
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which determine the interior minimum do not depend on x. Therefore for
all z in the interval [0, z,*) the point ( ", ul*) is the unique interior mini-
mum point.

Now for some range of values z, greater than z,", the unique minimum
in the domainy = z, % = 0 will be attained fory = z and for v = @ (x).

The value %;(x) is the unique point for which 501;]1/[ 1(z, u) vanishes.
2 .

.)'f 2 Mi(y, u) is strictly positive it follows that %, (x) is a decreasing
U I .

function of z. Considering (7) it follows that for some value &, of z, @ (x)
must reach zero. It is clear that for values of z larger than #; the function
M\ (y, w) must attain its minimum for y = z and v = 0. Summarizing we
can state that the minimum points of T(y, u, z, fs) with respect to the
variables i and « are located as follows.

Since

* * *
Y=z, u = U , forO0 =z =m0,

-~ * - .
Yy =z, u = i(z), forz; = xz £ Z, with
i, (z) decreasing and
~ * ¥ ~ ~
'Ll,1(x1 ) = U and 'Uq(ﬂ?l) = 0
y=z - u=0, forz = &’

We now supply the essential tools of a proof by induction by showing that
fi(z) has all these properties which enabled us to describe the set of minima
of T(y, u, z, o). It will follow that T'(y, u, z, fi) has a similar set of minima
and so on.

LEevMa 2. fi”7(z) = 0.

Proof. In the interval [0, z,*] we have fi' (z) = —k, fi”(z) = 0. In the
interval (z,*, z;] we have, by (7) and the fact that a_au- Mi(z, #(x)) = 0,
that
(10) f@)= L) + o [ fie+8x) = s)e(s) ds.

0

But 5% Mily,u) > 0fore,” <y £ &,s0fi'(x) = —k. Furthermore,
” ” 1 o s diiy
fi”(z) = L"(z) + afy (G)e(z) + |1+ e
(11) .
o [ 7+ Ta(@) ~ s)e(s) ds.
0
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We have f, (0) = —p,s80 p + afs (%) will be strictly positive for %, > 0
since fy (u) is strictly increasing in u. So fi” (z) will he strictly posrtlve if
we can show that

L s,
dz

In order to show this, differcntiate 5% M (z, w) = 0 with respect to z. We

obtain

I:afo” ul)/ o(s) ds + a/ Jo" (z 4+ @(x) — s)p(s) ds:l (iul

(12)
+ “fo " (z + t(z) — $)p(s) ds = 0.

Equation (12) and fi” (z) > 0 imply that

ity du1

(13) =0, 14+ —=0.
dz

Finally in [Z;, =) we have
(14) (@) = L"(2) + afi (0)e(z) +a [ ji"(z — s)e(s) ds,
0
but this implies that fi”(z) > 0, since fi(z) = fy(z) in this interval.

LevMa 3. fi'(z) = fi (z).
Proof. In [0, z,*) we have ?j% My, ) <0, so

k> L(z) + af 5 (x4 u— $)e(s) ds = fi (z),
n

. ’ . . .
since fy () is monotone increasing.
* .
In [z,", %] we have

Aw) = L@ +a Rz (z) — s)e(s) ds = 5 (2),

since f, (z) is monotone increasing.
Finally in [Z,, =) we have fi(z) = fo(z), and hence £, (z) = fs (z).
We have now shown that fi{z) = T(y, z, u, f,) has all the properties of
fo(z) which were essential in the proof of the structure of the set of minima
of T(y, z, u, fu). It follows that the set of minima of T(y, z, u, fi) will have
the same structure and moreover, in view of the analogues of (5) and (7)
and Lemma 3, that
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A direct induction argument will establish the existence of sequences .,
Un", ., and nonincreasing differentiable functions %,(z) defined on the
intervals [z.*, Z.]. The sequences z,*, u.", T and i.(z) will be nonincreasing
in n and therefore passage to the limit i3 in order. In the limit we obtain
the structure of the optimal ordering policy, which is as described in the
statement of the theorem.

4. Some degenerate cases. Under certain conditions on the parameters
of the inventory problem various degenerate forms of the policy described
in Theorem 1 obtain. The following are some of the more tractable. We
have already argued that »* = 0 and z* = % when [ = k. Consider

5 -
‘M =k —
(2w | =k-p,
M) | =) 2 1 e (0) = 1 ap,
au =g} :
Then it follows that:
a.if k = pand la 2, the nz* =z =0,%" = 0,ie., nothing is ordered.
h.if k g p > la”', then z* = 0, L.e., one should not order with immediate
delivery. '
c.if lu™ = p > k, then u* = 0, z* = %, i.e,, no delayed order should
be placed.
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