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1. Smmy The moments of the €s-i6, glenentary symmetric function

{esf) in s non~nall cmactamsmc roots; {1—3.,23"”%), of & matrix in

rmltivariate soalysis have been shown to be ﬁer:iwable from those of the it'h
esf., The first four moments of the (s—l)th esf ha.va thus beer. obtained fmm

those of the first esf and an agpmz.dmtmn to the ﬁ.«.stri‘autien of the (Snl)
esf suggested., Further, the momests of the {a- ‘i) es? in the s cherac- |
teristicmots, 9, = i/(w«. )9 have been derived from those of the first
esf in the A's and. tm approxim»ion to the clistribution of the former also
obtained. Similar results have been glven for the second aml (s-2) esf
in the A's but general expv'essions have been presented only for the first
two moments of these esf:'s__., Ia addition, the first moment has been o’otaineﬂ
for the 1™ eof in the A's and in the ©'s, and besed on all these

th esf Iin eepch case -

studies, approximations to the distribution of the i
suggested. |

2. Introduction. Most of the distri‘bution problems in multivariste
analysis are based on the distri'bvstmn of the nonwnull characteristic roots
of & matrix derived from sample cbservations teken from xp:ultivariate normal

populations. This distribution, given by Roy [8] , is of the form

8 | | | |
{2.1) f(hl,h.z,... ,z.sm,n) = Cf{s,m,n) i:l{ A.? /(1+Li}mﬂ?ﬁxi~xa)

0<h Shy v EA, <o,






wvhere
{2.2) C(s,m;n) = 1:9/ 2 1:l [{' (W)ll g‘n(g%‘%"‘ﬂ”) ﬁ%ﬁﬁ) f {1/ 2)}

god n and n are defined differently for various situaticus described in
). (3-

. The studies on the first esf in the 1°s have been carried out by Pillai {2} s
fhj s Ff)j end Pillai and Samson f:'(j . In this Daper, moments and spproximetions
to the distributions of scme of the other esf’s are considered and in partmular
those of the (s-1)°%, (s a)“‘ end the second esf's. Further, the esf's in
the chavacteristic roots, 6, = i/(l-é- A: Js are studled in a similar manner.

3, . Moments of the (B-l) hv esf in the A's. Tirst consider the following
lemra.. ;
temm 1. 2 U,%5)  ama by {U(S) } dencte the 1

i,m,n i.mpn
A.'s following the distribution (2.1) » end its 8 oment respectively, then

| (=) c%‘sgm;nz o(8) |
{3.1) "r {U -i’m,n} e 8,1~ urbr) li 1,n-r,m¢r )

th

th esf in the =

Proof. Let ¥, = 1/, {i=1,2,...58). Then the i
1 1
th

esf in the ¥°s

esf in the A's or,
th

equals the quotient of the (s-i)'® esf and the s

_1)tB

reciprocelly; the (s esf in the A's equals the quotient of the 1°- esf

th

end the s  esf in the y‘'s. HNow note that the distribution ofthe ¥'s

follows the distribution (2.1) with m and n interchanged. Hence the lemma
follows. From lemms 1, putting =1 in (3.1), the 0 moment of the (s-1)'®

esf in the A's is cbtained as

(s) _ _c{s,m,mn) _ ' {s)
(3.2) “r 5-l,m,n T eiB,n-T,mér My Ul,n-r,mi-r )
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The first three centyal moments of Ugs zi ere avallieble in fa} ’ F{j
$4 1 Y ~

and the fourth central mowent in {53. Using these results, the following fivst

—l)th

four moments of the (= esf in the A\'s are cbiained:

(33 o o,y - o fmu

(3 i) ’ f“éifs) % - sgenw;?,} { ({mﬁ?a%ﬂ}g{(maé—h}

. & £y L £23ma | ’i A
l&{sm;?}% {0 imsl) (2m95) Syents 3;? !

. TS g,miw” Zmriel
whe“ﬂe A «in Bt 515 %’E%-‘f’%’g
{s) s{gnts-5) _({an%%s@-l%(’\ ot )
«3 5) n3{ «J.,m,n ' 8(5]?.’9'3)3 ] z ' Km-%‘a 2]

00 % fitles] - {22

where

3, 63
._Caﬁil)fsp g






£

e 35(@%-?3)

+ s2{enta-7)% } ,

. 8 [(2meie7)(2meies) (Gunide3}(Dmeden)
F=g m a:~1=-1)€2mi-3E%a’@mﬁﬁ}ﬁi&mq;

, 3
gnd s znd g°s are polynomleis in s givem in gﬁa
N 4
b Moments of the (s-l)th esf in the ©%. As in the previous section

2 lemma may be stabed.

{s} ¢ {s) th
lemma 2. IT zi,mgn and ®, vi,, 2,1 denote the 1 e3f in the
B

g ©% sand its 7 moment respectively, then

' ' fyls) _%&%&aly Fry 7§ ¢ { {s) 3
(4.1) By vs-l,m,n} azcs,,,ra.‘azwr ‘%;5(3)5, “j Ul,ngm‘l-r

Proof, For proving (4.1), it is enough if we note that

{s) . 8
(4.2) Vooi,mn = (5¢ %i' 713/121‘_1(1*71) where 7°'s.,

as stated above, follow the distribution (2.1) with m and n interchanged.
The rest easily follows.
The first four moments of the (s-l)th ‘esf in the ©’s thus obteined are

glven below:

, v J.As) szmtentst3) o {2mi+1)
(&3} #y vs-l,m,n} T 5 ) i1 (Gwvenes+12) /
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(b)) {V(fi m n% «an¢§¢)) { + s(azmvamsﬁ)} oA
P daaty b(w@;%

° omeie3)(Pmiiol)

= 7
where A; 1, (Buigneseizhj(ontonts i)

3(23‘5*33

: {
* jsiB) » 9-&-1 ) {2n+s+1)(Emes+6) | hg
{1.5) g § vs-l,m,n} 5"“& { =2} (2]

3s(omonis+7} 1 4+ g“(;m%-"n-e-«q}ﬁ B,

vhere B :} (Emrirs)iomeiea) (2utid)
| 17,7 (BniEnis+i 1) (Enstnte i) (Bntnts+i 1)

and

{2n:2n+s49)
{%.6) ), 5"5553. m,nk 53 15(1113)

L 3s(2m+2n+s+9)j

E, = s{2m¥2n+s+9)

b
+ 82(2m€-2n+87&9)2f

end F _i é@gﬂ+7)((2m+i-t5)((an+i+3)&2m+i-a-1)
17,7 (2n¥2nts+1+8){2mt2nts+i+b) (2ut2nta+ith ) Buvents+1+2)

o)

yls? e
It may be noted that u ?{ s-1,m,n can be obtained from sa s-1,m,0

by attaching negative signs to all terms except that in n in esch linear
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factor involving n aend further chenging n to mints+l. This method was

noted by Pillsi earlier @ in cézmection with the moments of the first esf.

Se Moments of other esf’s in the €°c and A's,

It hes been shown (2} s {h} 2 [’Sj that the distribution of 8°s obtaineble

from (2,13 by the transformstion A= i/{l -5 )(iolga,...,s) can be expressed

“in a dcterminantal form and vhen integreted within the limits, 0 <0 Keoo 63 € 1,

is given by

, €5°l) Q({s;mgn) V(S“lHS"ageee,l:G} = g&s,}’_ﬂ,n)

Further,

i,myn

1

@«ﬁ*

s % ((L@ H

9 {1-0 3&9 AL B
o JO
Q ¢ .9 B & °o € ¥ € 9 ogo ¥ © 8 © 2 e
? mts-2 n y m n
e, (1-8,)%s, .... | g, (1-0,)"ae,
LY Q

B (502) . l{v(S) } vglsﬂs'lgOt033"1'}'1,3“1"13.003130)0

The determinant in (5.2) can be shown to be equal to

(B) f‘_ 2ty - j42

{5.3) ‘
J=1

) '
based on some perticular cases evaluatef in 563 .

2ri2nt2s - j43

From this result, using the

method given at the end of the last section or otherwise, the first moment of

the ith esf in the A’s is glven by

' i
(501") ] {U:gfxi,n } = (:) jzl

2mts - 342

2nt+j-1 ®







8 2 &83 1\. ‘ . o®
Wow consider pn év?sm nl® It can be shown thet ;}J

@5‘“5) ufa {gsg n}' = vgs*’lgags"Bpeo-w?ng) '@' Vgs‘e’ligﬂ"lgS"ggS“‘#Q,fpglgg}

< F€$33°133"2‘3“333?5gs-6y? se 3130) °

How substitubing the valuwes of the determinants ié} in {5.5),

: yis} s{s-1){ens}{omrs+1)
(5.6) iy Youml ° T o %
Y3t § (ameenes-ges)

J=3
where G, = 6u° gli s(s-l)mg +..‘2(s~1§€252+s%8)m PR 782 - 8 + 12§

+ 30 116s(s-1)a° + 4{s-1){85%455+8)n + 2{s-1)(20s3 412524075008 )m

+ 4g” +3s£* 412¢3 +532 -2hs +36§+ s{s+1)(2ats+1)(2mis+2) (mts ) {2m2s+1)
+ {s-2)(2mi2s+3){2mes-1) ghsm + 25{3542)m 4283 + 3s + g+ 6§ o

It may be pointed out that {5.6) equals {4.k) when s = 3. The second moment of
the second esf in the A's can be obtained from {5.6) using the method given

et the end of section 4. Hence we get

{5.7) "2 gﬁhn% =

vhere G dis cbtained from Gl by attaching negstive sign to the first degree
term In n and then changing n to wia+s+l in all the texms.

Further, spplying {3.1) with i=2 and ™2, we get from (5.7)
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) I &.2..7
(5.8} #32 g gfa,m,n} Cﬁs,g-—g ”2 f%:n"asmg

6. Approximations to the distvibutions of U’(s) and (s) o
"1gm:n ’1,myn
The Pollowing spproximetion to the distribution of ULS) ‘usy be

s-1,m,n

suggested: (writing 052‘ for Ugﬂ% m,-,n)

{{e@m/éswl}} -1
(6.1} f(tigs)f; = { iﬂi

-1 yts) 1/(s- lbj St Ontats

{ B((Qm‘ﬂ'3,2n~t~s-1)} (s,.mnﬁgmﬁf(s-l) { v s(2dy
@ < Uﬁ L Do

Similarly, an approximation to the distribution of vgﬁg may be suggested

as. follows:

{ (s) z{(%ﬁ}/(s«-l"% -1 .. éféi)l/{s-l)} Dus

6.2) v( Bl .
{6.2) =(v;7)) = {B (ma,,amsﬂ)} (s-1)a02537 (=-1)
o< vgs; <8

The first moments are the seme for the respective epproximate and exsct
aistributions. The other (three) approximate and exact moments tend to be
the same in each cese when m and n are large.

7.  Approximations to the distributions of UESE and v}is) .

From the study of the first moment of Ugs) as well as Vﬁsj and their
second moments in particular cases in section 5, one might suggest the following
gpproximations:
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S 1
yH{ame-dem)/i b -3

_fley

(.2) 2(uf*)) - .

7.1 {Bgm-ﬂe,m % e e {U(a) /% l/j Bnvanve?
0< vgs) <o

and (;) {(m-1+e)/1§~1 (8) o) /1 amé
_f"‘if .{il— {Vi._-_/ii)} 2_

{2mis-i42)/1

) =) -
| { a(m-iese,&mﬂ}} 1(2)

o< 8§s) < @ o

These ageln have thelr first moment from the respective spproximate and
exact distributions the same.

8. Accuracy of the approximstions. For a comparison of the exact and
approximate moments, first consider ugfi,n vith 1 = s-1. While it may be
noted that the first moment of the epproximate distridution is the same es that
of the exact given in (3.3), the next three moments from the approximete distribu-

tion are es follows:

| 2 2s-1) (o,
(8.1 ) wy {0l =0 Sl
| " 3(e-1)
(0.2 o) 03 6% SR
oo 4(s-1)
y sl 2142
{8.3) {app.) ﬂh { (.s.]). m,n% <8 1::1 2n-3s¥i+2) °

Por large n, the exée_ss over unity of the ratio of approximate to exact

moments in the case of second, third and fourth moments respectively cen be






0

shown to be approximeiely
8-8) 8y = ((e-3)(s-2) + 2])/2(me2), 5, = 30, ema &, = 65, -

When s=3, =70 and m=5, the exact first four moments are respectively
0.02766, 0,00009361, 0.0000364% and 0.000001878 and 5, = 0.11, 55 = 0.33

and 51; = 0.T2. These values of B's are smaller thon the corresponding values
in (8.4). Whe#t s=3, the approximsie distribution could be used with remsonable
accuracy for values of m, n > 50. Por s=b, similar accuracy can be attained
when m, n » 100 and for s=5 vwhen m, n >150. It may, however, be pointed
out that the value of m could be smaller than indicated above to give sdeguate
accuracy provided n is falrly large, amd.i,n most of the epplicatiogs 'n is
connected with sample sizes end, therefore, is often large. For s=2, U§:z)n,n
.15 the sum of the roots and this case has been treated extensively in [2) s [h)

The approximate distribution vg‘;‘;’ , Eives better accuracy than discussed
sbove vhen iss-1 for the reeson that the linear factors in the moments involving
min tend to make the moments from the approximete and exact distributions closer
than in the case of Ugj’l’n for larger values of m and n. In general, this

"is true of other values of 1 also.
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ON THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIOKNS
OF THE ROOTS OF TWO MATRICES

By K. C. SREEDHARAN PrILrar
Purdue University

1. Summary. A lemma is given first which provides an easy method of express-
ing the product of an sth order Vandermonde type determinant and the kth and
Ith (k, I = 0) powers of the rth and hth (r, b < 3) elementary symmetric func-
tions (esf’s) respectively as a linear compound of determinants. The lemma
extends itself readily to the product of powers of any number of esf’s up to the
sth. Using this lemma and some reduction formulae for certain special types of
Vandermonde type determinants, a second lemma has been proved to show that
certain formulas for the moments of esf’s in s non-null characteristic roots

MO<MENEZE - £N < »)of amatrix can be easily derived from corre-
sponding formulas for the moments of corresponding esf’s in s non-null roots,
6:, (0 < 6, = -+ £ 0, <1) of another matrix and vice versa. Illustrations

are given explaining both lemmas.

2. Introduction. Many of the distribution problems in multivariate analysis
are based on the distribution of the non-null characteristic roots of a matrix
derived from sample observations taken from multivariate normal populations.
This distribution given by Fisher [1], Girshick [2], Hsu [3] and Roy [12] is of
the form

f(oly 62: Tty 0:) = 0(37 m, n) I;IIQT(I - Hi)nH (0; - Bi)

(2.1) i>j
0<6=<---=6<1,
where
22) C(s, m,n) = [ T[(2m + 2n + s + 7 + 2)/2)/
. =1

{Tl(2m + 7 + 1)/2]T[(2n + ¢ + 1)/2]T(4/2)}
and m and n are defined differently for various situations described in [7], [9].

Now, if \i = 6;/(1 — 6;), (= 1,2, ---, s), the joint distribution of the A’s
is obtained from (2.1) as

f1(>\1 ’ Az y ° T 7>‘l) = C(S, m, n) [IfI A:'n/(]- + )\i)m-f-n+a+1] H (k, - )\J)

i=1 5

(23)
O< M= 2N >

Received 10 June 1964.
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The studies on the first esf in 8’y as well as the Ms have been carried out by
Pillai [6], [8], [9], Pillai and Mijares [10].and Pillai and Samson [11]. Mijares [5]
has carried out some studies on esf’s in general. In this paper, a lemma is proved
which enables one to write down easily the moments of U$’) , from the respective
moments of V%) . and vice versa, where Ut . and V{0 . denote the sth esf’s
in the s M’s and s ¢’s respectively. But first, a lemma, is given (see next section)
on which will be based the proof of the main lemma showing the easy derivation
of the moments of U’ . from the respective moments of V{2, .’

3. Product of a Vandermonde determinant and powers of esf’s. In this section
we introduce the following lemma:

Lemma 1. Let D(gay Gors = - ,91), (g5 2 0,5 = 1, 2, --- | 3), denote the

determinant

x;.ll xzn— x:l
(31) D(gn;gk—I; 791) =
x{n xgn—l x{l

If a.(r = 3) denotes the rth esf in s z’s, then

(1)
(32) arD(gB7g8—17 :gl) = Z’D(g*:rg;—l; e 791,-)7
where g; = gi+46,7=1,2, ' =0,1land Y/ denotes the sum over the

() combinations of s g’s talcen r at a tzme for which r indices g; = gi + 1 such
that 8 = 1 while for other indices g; = g; such that 6 = Q.

(i)
(33) afahD(ga y Jo—1,5 ° ", gl) = Z” D(g;’7 fJ;,—l y T g;-,)i
where h < s,g] =g +6,7=1,2, - 8,0 =0,1and Z” denotes summation

over the ( V(1) terms obtamed by takmg h at a time of the s g’s m each Din Y. in
(3.2) for which h indices g7 = J] + 1 whale for other indices g; = g, .

(111) (a.)*(an)’ D(gs, go=1, -+, g1}, (k, 1 = 0) can be e:cpressed as a sum of
(*(3)! determinants obtained by y performing on D(g, , g1, - -+ , 1) n any order
(1) k times and (i) [ times with r = h.

However, if at least two of the indices in any determinant are equal, the corre-
sponding term in the summation vanishes.

Before indicating a proof of the lemma, let us consider an illustration. Let us
note first that [4]

(34) Ay = Z( l)w-“"’p'[gmsp ... 85”/(1p12p2 ... w”“pll pZ! e Do 1)],

where D extends over all non-negative values of p1, -+, p» such that
pL+ 202+ --- + wp, = w,and s, = 2_i=1 2. Also note that if we multiply
the right side of (3.1) by '™, differentiate with respect to ¢ once and put ¢ = 0
we get,
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(35) suD(ga—ygﬂ—l; 791) = j..le(g"g"'“ 7gj+lngi+uygi—17 791)'

Now consider the special case, w = 4. We get from (3.4)
(3.6) as = si/4! + $3/8 — %81/4 + 8,9,/3 — s./4.

Using the right side of (3.6) and by repeatedly applying (3.5) with varying
values of u (from 1 to 4) we get )

a4D(ga ’ gn—l; Tty gl)

= boZID(ga,ga-x, e gia g A i, gr)
s

8

+b1 Z D(gﬂygﬂ-—ly"'7gj+37gi-17"'7gi'+17"'7gl)

=1

L)

+ b ; Z D<g’7g‘—17 Ut 7gi+27 IR F i + 17 IR P + 17
(3.7) I#AG7 #§ =1 -

"',91)

+bs D, DGy o1, 5 0i+ 297 +2, 00, 1)

jx2i’=1

3

+ b4 > D(gs,Go-1, 595+ 1, -+, gp+1, - g +1,

ii =1
g 1, 1),
where bp = —1/4 + 1/3 — 1/4 + 1/8 4+ 1/4! = 0,
by = 1/3 — 1/2 + 4/4! = 0,
b, = (1/20)(—2/4 + 12/41) = 0,
by = (1/2)(2/8 — 2/4 + 6/4!) = 0,
by = 1/4!

and where the indices 7, 7', 77, 7 are the only ones which have been increased.
Now since in the last sum on theright sideof (3.7) there are only (3) distinguisha-
ble terms, it is obvious that as D(gs, gs—1, - - - , g1) is obtained from (3.7) as a
sum of (i) determinants whose indices are obtained by selecting 4 out of s g’s
at a time and increasing each of the 4 selected ¢’s by unity.

Now consider the general case (i). Apply (3.4) to (3.1) with w = r. We can
show that the coefficient of the determinant of a specified set of indices obtained
in this operation such that at least one g on the left side of (3.2) has been in-
creased by more than unity, is equal to zero. For instance, the coefficient of the
determinant with one g index increased by r — 7 > 1 while any other j ¢’s in-
creased each by unity is given by
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(3.8) (1/f) 22 (L) ™HIM[IM2™ .. (r — )P ip I pyl - Py T = 0

where p1 + 2ps + -+ + (r — J)pr—j =1 — J.

In a similar manner, coefficients of all other determinants with at least one
index increased by more than unity can be shown to be equal to zero. There
remain, therefore, only determinants in which r out of s indices have been in-
creased just by unity. It may be observed that this last set of determinants is
obtained from the term si/r! in (3.4), (w = r), while all other terms arise from
more than one term in (3.4), (w = r), and their coefficients are obtained as sums
of positive and negative values where each sum (coefficient) equals zero.

Now it may be seen that the truth of (ii) in Lemma 1 can be observed easily
by an application of (3.4) to the right side of (3.2) withw = h.

Similarly (iii) further follows easily by repeated application of (i), as stated
in the lemma, & + [ times, &k times using (3.4), (w = r), and [ times using (3.4)
with w = h. In addition, it may be pointed out that the method of proof extends
itself to generalize (iii) further to include powers of any number of esf’s up to
the sth.

4. Derivation of moments of U;S., from those of V.. . In this section we
prove the main lemma, stated below. Let

Vim+s—14+¢, - ,m+q;n)

. 1
(4.1) f gt (1 _ 9" dg, - f 07 (1 — 6,)" do,

f (L — )" dy - f oTTH(L — 6,)" oy

and let
Um+s—1+4+¢q, - ,m+ q;p)

m+a—1+q 2 m—rq 1

(42) f(1+>\)” | f(l o
mr—l—q As m--qq
8 Al
d\y - - - ——dX
f (1+w fo<1+w '
g; =0 Jj=12---,8 and p=m+n-+s+ L

Now, from Lemma 1 and (2.1), the kth moment uf Vi’ ..}, of V2 ., can be
expressed as a linear compound of determinants of the V type in (4.1) where
gs, Qs—1, -+ , @» Mmay take different sets of values in different terms. Further,
the coefficients of the linear compound would involve asacommon factor C(s,m, n)
but otherwise would be independent of m and n.

Similarly, u{ US .} can be shown to be a linear compound of the determinants
of the U-type in (4.2) with the coefficients of corresponding terms in this com-
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pound the same as in the previous compound, the correspondence of terms being
marked by the equality of the vector (gs, gu—1, -+ -, q1) in the two compounds.

Now we state the lemma.

LeMma 2. pi{ US4} is derivable from wel V. ») by making the following changes
in the expression for the latter (oblained by evaluating the linear compound of V-type
determinants): (a) Multiply by —1 all terms except the term in n in each linear
factor involving n and (b) change n to m + n + s + 1 after performing (a).

Before proving the lemma, let us illustrate it by a couple of specla.l cases. Using

(i) of Lemma 1 we get
(43) Fl{VfIfn)»,n} = 0(37 m, n)V(m + 87m+3 - 17 )
. m+s—i14+1lm+s—7i—1,---,m+ 1,m;n).

The right side of (4.3) can be shown to be equal to
<s>i 2m4+s—7+2)
) =1 (2m + 2n + 23 — j + 3)

based on some particular cases of determinants evaluated in [10]. From this
result using Lemma 2, the first moment of the <th esf in the A\’s is given by

oo S\vr@m+s—7+2)
(45) W”nf‘(@),gl Gn+i—1D

Now consider uz{Vzm ). Using (i) of Lemma 1 with h = r we get

(4.4)

()
,UZ{ 2,m,n

=C@,mnafVim+s+1,m+s,m+s—3,---,m-+ 1 m;n)
(4.6) +Vim+s+i,m+s—1Im+s—2,m+s—4,---,m~+1,m;n)
+Vim+s,m+s—1,m+s—-—2,m+s—3,m+s—35 -,
m + 1, m;n)}.
Now substituting the values of the determinants [10] in (4.6)

s(s—1)2m+s)2m+ s+ 1)
3= Om + 2n + 25 — j + 3)

(4.7) pe (VD) =

1,

where
G: = 6n%{ds(s — I)m’ + 2(s — 1)(25° + s + 8)m + s' + 7s° — 8s + 12}
+ 3n{16s(s — 1)m® + 4(s — 1)(85° + 55 + 8)m* + 2(s — 1)

((108° + 125° + 27s + 24)m + 45° + 3s* + 125° 4+ 35" — 24s + 36}
+s(s+1)2m+s+1)2m+s+2)(m+s)2m + 25+ 1)
+(s—-2)2m+2s+3)2m +s— 1)

S4sm® + 28(3s + 2)m + 25° + 3s° + s + 6}.
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Using Lemma 2 we get from (4.7),

s(s=—1)(C2m+39)C2m+s+1)
31 [[i-i (2n + 5 - 3)

where @ is obtained from (7, by attaching negative sign to the first degree term
in 7 and then changing n to m 4+ n + s + 1 in all the terms.
Proor. Apply Theorem 3 of [8] to the V-determinant in (4.1). We get

Vim+s—=144¢q, -, m+4+q;n) .
=(m+s+a+n"(B”+(m+s—1+q)C?),

(4.8) e {Usmn} =

b

(4.9)

w here

1
B® = 23 (=1)7"Vem+s+j—24q+q;;2n+ 1)

jm=r—1
(4.10) XVim+s—=24+q, -, m+j+ qu,
m+Jj=2+ ¢, -, m+q;n)
and
(411) C¥=V(m+s—2+q,m+3—24 g, - ,m+q;n).
Again, applying Theorem 4 of [8] to the U-determinant in (4.2) we get
Um+s—~1+4q, -, m+q;p)

(4.12) v 1—1 7 A (3 (s)

=p—-—(m+s+ )] Q7+ (m+s—1+q)R”),
where

1
Q" =22 (-1)7U@m+s+j-2+a+q;2 - 1)
(4.13) ’ | .
XUm+s—24qga, - ,m+7+ qju,
m+Jj—2+ g1, ,m+ q;p)

and

(414) R =Um+s—-2+q,m+s—2+q,---,m+ q;p).

First, 1t may be observed that the factor m 4+ s + ¢, + n in (4.9) becomes
the factor p — (m + s + ¢,) in (4.12) by changes (a) and (b) of the lemma.
Further, repeated application of Theorem 3 of [8] to the right side of (4.9)
would reduce it to a linear compound of terms each of which is a product of s/2
simple beta functions of Type I (V-type) if s is even and (s + 1)/2 beta func-
tions if s is odd. The coeflicients of this linear compound would involve products
of functions of m and n of the type (m + j + q; + »)™" and the type (m + j
— 1 + g¢;) as in (4.9). Similarly, repeated application of Theorem 4 of [8] to
the right side of (4.12) would reduce it to a linear compound as above with the
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exception that simple beta functions involved will be of Type II (U-type) in-
stead of Type Iand [p — (m + j + ¢;)]"" will replace (m + j + ¢; + n)~. Now
it may be observed that changes (a) and (b) of the lemma will make the cor-
responding coefficients the same in the two linear compounds which are obtained
after repeated applications of Theorems 3 and 4 of (8] to (4.9) and (4.12) re-
spectively. It remains, therefore, to show that C(s, m, n) times each term of the
linear compound involving products of beta functions of Type I reduces to
C(s, m, n) times the corresponding term in the second linear compound involving
the product of beta functions of Type IT using (a) and (b) of the lemma. Now
note that, if s is even,

C(s, m, n) =‘2"‘s(a+6)/8
ﬁr(2m+2n+8+2i+1)
(4.15) X—73 Li
I (T2m + 2)T(2n + 20)T(5)}(1+3)(1+3+5)- - - (1-3+5- - (s — 3))

=1

and if s is odd

C(s, m,n) = 2 e DC+IB
(s=1)/2
[I T@m+2m+s+20+ DI m+nts+1)

(4.16) XUﬁ” (T(2m+2)TCn+2) T ()| T [@m+ s+ 1)/2T[(2n+ s

=1 +1)/2](1+3) - - - (1:325)(1+35--- (s — 2))

Now, for s even, consider the term
C(s,m,n)V(2m + 28 — 3 4+ ¢ + ¢s—1;2n + 1)

(4.17) XV(2m+ 28 —T+ @+ Go3;2n + 1)
e V(2m+ 1+ g+ q;2n+ 1).

Substitute in (4.17) the value of C(s, m, n) from (4.15) and those-of the
Type I beta functions and we get

g(m, $)[(2m + 2n + 25 + o + ger — 1) --- (2m + 20 + 25 + 1)]
{2m +2n + 25+ g2+ o3 — 3) --- (2m + 2n + 25 — 1)]
(418) ---[Cm+2n+ g+ a+3)--- (2m+ 20 + s+ 3)]
[(2n 4+ 3)(2n + 2)][(2n + 5) --- (2n + 2)]
[(2n + s — 1) - (2n + 2)],

where g(m, s) is a function of m and s.
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Similarly consider
C(s, m,n)U(2m + 28 — 3 4+ q + g ; 2p — )U2m + 25 — 7
+ a2t @a; 20— 1) - UCm+ 1+ @+ q;20 — 1)
After substitution of values of C(3, m, n) and U’s in (4.19) we get
g(m,)[(2n — o — @1+ 3) -+ 2o+ D](2n = g2 — qus + 7)
2D (22— —q~1) - On s — 1)]
J2m +2n+ s+ 3) --- 2m + 2n 4+ 28)[[(2m + 2n + s + 5)
- (2m 4+ 2n 4+ 28)] .- [(2m 4+ 2n 4+ 28 — 1)(2m + 2n + 2s)].

Now it may be noted that (4.20) can he obtained from (4.18) by (a) and (b)
of the lemma. In a similar manner, when s is even, other corresponding terms of
the linear compounds in the two cases can be shown to satisfy (a) and (b) of

the lemma.
If s is odd, we may consider the terms like

Cls,m,n)V(2m + 28 ~3 + ¢ + q1;2n + 1)
e VeCm+3+ g+ p;2n+ 1)V(im + ¢ n).

Using (4.16) and the values of the V’s and performing (a) and (b) in (4.21)
we will get '

C(s,m,n)U2m +2s — 3+ ¢+ q-1;2p — 1)
e UCm+3+ g+ q;20 — 1)U(m 4+ g5 p).

Similarly, if s is odd, we can show that other corresponding terms of the linear
compounds in the two cases satisfy (a) and (b).

Hence the lemma.

It may be noted that u,{V; ...} may similarly be derived from pr{ Uz, mn) bY
inverse operations of (b) and (a) of Lemma 2. Further, Lemma 2 readily ex-
tends to the case of product moments (say of the rth and Ath esf’s) in view of
(i1) of Lemma 1.

(4.19)

(4.20)

(4.21)
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